References
- Bowling, T., et al., 2019. Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus 320, 110–118.
- Bu, C., et al., 2019. Stability of hydrated carbonates on Ceres. Icarus 320, 136–149.
- Castillo, J.C., et al. 2019. Conditions for the preservations of brines inside Ceres. Geophys. Res. Lett. 46, 1963–1972.
- Ciarnello, M., et al. 2017. Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astronomy & Astrophysics, 598, A130.
- Czechowski, L., 2023 a. Some remarks on the origin of the faculae in Occator crater on Ceres. Submitted.
- Czechowski, L., 2023 b. Origin of the Bright Ejecta (Faculae) on Ceres. 55 Annual Meeting of the Division for Planetary Sciences, id. 102.07. Bulletin of the Americam Astronomical Society Vol. 55. No. 8 e-id 2023n8i102p07.
https://baas.aas.org/pub/2023n8i102p07/release/1 - Czechowski, L., et al., 2023. The formation of cone chains in the Chryse Planitia region on Mars and the thermodynamic aspects of this process. Icarus, doi.org/10.1016/j.icarus.2023.115473.
- Czechowski, L., 2014. Some remarks on the early evolution of Enceladus. Planet. Sp. Sci., 104, 185–199, doi.org/10.1016/j.pss.2014.09.010.
- Czechowski, L., and K. J. Kossacki, 2012. Thermal convection in the porous methane-soaked regolith in Titan: Finite amplitude convection. Icarus, 2012, 217, 130–143.
- Domagal-Goldman, S.D., et al. 2016. The Astrobiology Primer v2.0. Astrobiology 16(8): 561–653.
- Ermakov, A.I. et al., 2017. Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft. J. Geophys. Res., 18 October 2017
https://doi.org/10.1002/2017JE005302 . - Hargitai, H., and Kereszturi, A., 2015, Encyclopedia of Planetary Landforms. ISBN 978-1-4614-3133-6. Berlin: Springer-Verlag, 2015.
- Hörz, F., 1982. Ejecta of the Ries Crater, Germany. Geological Implications of Impacts of Large Asteroids and Comets on the Earth, eds Leon T. Silver, Peter H. Schultz.
https://doi.org/10.1130/SPE190-p39 - Gritsevich, M.I., 2009. Determination of parameters of meteor bodies based on flight observational data. Advances in Space Research 44, 323–336.
- Gustavo, C., et al., 2017. Vaporization and thermodynamics of forsterite-rich olivine and some implications for silicate atmospheres of hot rocky exoplanets, Icarus, 289, 42–55, ISSN 0019-1035,
https://doi.org/10.1016/j.icarus.2017.02.006.ims . - Melosh, H.J., 2011. Planetary surface processes. Cambridge Univ. Press., pp. 500.
- Moilanen, J., et al., 2021. Determination of strewn fields for meteorite falls. Monthly Notices of the Royal Astronomical Society, volume 503, 3, 3337–3350,
https://doi.org/10.1093/mnras/stab586 - Nathues, A., et al. 2022. Brine residues and organics in the Urvara basin on Ceres. Nature Communications 13, 927.
https://doi.org/10.1038/s41467-022-28570-8 . - Neesemann, A., et al., 2019. The various ages of Occator crater, Ceres: results of a comprehensive synthesis approach. Icarus 320, 60–82.
- Palomba, E., et al., 2019. Compositional differences among bright spots on the Ceres surface. Icarus 320 (2019) 202–212.
- Park, R.S.; et al., 2019. High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. Icarus. 319: 812–827. doi:10.1016/j.icarus.2018.10.024.
- Qing-Ming Tan, 2011. Dimensional Analysis. Springer, London. ISBN 978-3-642-19233-3
- Raponi, A., et al., 2019. Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus 320, 83–96.
- Ruesch, O., et al., 2019. Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus 320, 39–48.
- Ruesch, O., et al., 2016. Cryovolcanism on Ceres. Science 353, 6303. DOI: 10.1126/science.aaf4286.
- Schenk, P., et al., 2020. Raymond Impact heat driven volatile redistribution at Occator crater on Ceres as comparative planetary process. Nature Communications 11, 3679,
https://www.nature.com/articles/s41467-020-17184-7 . - Schröder, S.E., et al., 2021. Dwarf planet (1) Ceres surface bluing due to high porosity resulting from sublimation. Nature Communications. 12, 274.
https://doi.org/10.1038/s41467-020-20494-5 . - Scully, J.E.C., et al. 2020. The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion. Nature Communications 11, 3680.
https://doi.org/10.1038/s41467-020-15973-8 . - Silber, E.A, et al., 2018. Physics of meteor generated shock waves in the Earth’s atmosphere – A review. Adv. Space Res., 62, 3, 489–532.
- Stein, N., et al., 2019. The formation and evolution of bright spots on Ceres. Icarus 320, 188–201.
- Sturm, S., et al., 2013. The Ries impact, a double-layer rampart crater on Earth. Geology 41 (5): 531–534. doi:
https://doi.org/10.1130/G33934.1 . - Thomas, E.C., et al., 2018. Kinetic effect on the freezing of ammonium-sodium-carbonate-chloride brines and implications for the origin of Ceres’ bright spots. Icarus 320, 150–158.
- Turcotte D.L. and G. Schubert, 2002, Geodynamics, Cambridge Univ. Press, pp. 456.
- Vickery, A., 1986. Effect of an impact-generated gas cloud on the acceleration of solid ejecta. J. Geophys. Res., 91, B14, 14139–14160,
https://doi.org/10.1029/JB091iB14p14139 .