Have a personal or library account? Click to login
Numerical Model of Formation of Ejecta Faculae on Ceres Cover

Numerical Model of Formation of Ejecta Faculae on Ceres

Open Access
|Dec 2024

References

  1. Bowling, T., et al., 2019. Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus 320, 110–118.
  2. Bu, C., et al., 2019. Stability of hydrated carbonates on Ceres. Icarus 320, 136–149.
  3. Castillo, J.C., et al. 2019. Conditions for the preservations of brines inside Ceres. Geophys. Res. Lett. 46, 1963–1972.
  4. Ciarnello, M., et al. 2017. Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astronomy & Astrophysics, 598, A130.
  5. Czechowski, L., 2023 a. Some remarks on the origin of the faculae in Occator crater on Ceres. Submitted.
  6. Czechowski, L., 2023 b. Origin of the Bright Ejecta (Faculae) on Ceres. 55 Annual Meeting of the Division for Planetary Sciences, id. 102.07. Bulletin of the Americam Astronomical Society Vol. 55. No. 8 e-id 2023n8i102p07. https://baas.aas.org/pub/2023n8i102p07/release/1
  7. Czechowski, L., et al., 2023. The formation of cone chains in the Chryse Planitia region on Mars and the thermodynamic aspects of this process. Icarus, doi.org/10.1016/j.icarus.2023.115473.
  8. Czechowski, L., 2014. Some remarks on the early evolution of Enceladus. Planet. Sp. Sci., 104, 185–199, doi.org/10.1016/j.pss.2014.09.010.
  9. Czechowski, L., and K. J. Kossacki, 2012. Thermal convection in the porous methane-soaked regolith in Titan: Finite amplitude convection. Icarus, 2012, 217, 130–143.
  10. Domagal-Goldman, S.D., et al. 2016. The Astrobiology Primer v2.0. Astrobiology 16(8): 561–653.
  11. Ermakov, A.I. et al., 2017. Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft. J. Geophys. Res., 18 October 2017 https://doi.org/10.1002/2017JE005302.
  12. Hargitai, H., and Kereszturi, A., 2015, Encyclopedia of Planetary Landforms. ISBN 978-1-4614-3133-6. Berlin: Springer-Verlag, 2015.
  13. Hörz, F., 1982. Ejecta of the Ries Crater, Germany. Geological Implications of Impacts of Large Asteroids and Comets on the Earth, eds Leon T. Silver, Peter H. Schultz. https://doi.org/10.1130/SPE190-p39
  14. Gritsevich, M.I., 2009. Determination of parameters of meteor bodies based on flight observational data. Advances in Space Research 44, 323–336.
  15. Gustavo, C., et al., 2017. Vaporization and thermodynamics of forsterite-rich olivine and some implications for silicate atmospheres of hot rocky exoplanets, Icarus, 289, 42–55, ISSN 0019-1035, https://doi.org/10.1016/j.icarus.2017.02.006.ims.
  16. Melosh, H.J., 2011. Planetary surface processes. Cambridge Univ. Press., pp. 500.
  17. Moilanen, J., et al., 2021. Determination of strewn fields for meteorite falls. Monthly Notices of the Royal Astronomical Society, volume 503, 3, 3337–3350, https://doi.org/10.1093/mnras/stab586
  18. Nathues, A., et al. 2022. Brine residues and organics in the Urvara basin on Ceres. Nature Communications 13, 927. https://doi.org/10.1038/s41467-022-28570-8.
  19. Neesemann, A., et al., 2019. The various ages of Occator crater, Ceres: results of a comprehensive synthesis approach. Icarus 320, 60–82.
  20. Palomba, E., et al., 2019. Compositional differences among bright spots on the Ceres surface. Icarus 320 (2019) 202–212.
  21. Park, R.S.; et al., 2019. High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. Icarus. 319: 812–827. doi:10.1016/j.icarus.2018.10.024.
  22. Qing-Ming Tan, 2011. Dimensional Analysis. Springer, London. ISBN 978-3-642-19233-3
  23. Raponi, A., et al., 2019. Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus 320, 83–96.
  24. Ruesch, O., et al., 2019. Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus 320, 39–48.
  25. Ruesch, O., et al., 2016. Cryovolcanism on Ceres. Science 353, 6303. DOI: 10.1126/science.aaf4286.
  26. Schenk, P., et al., 2020. Raymond Impact heat driven volatile redistribution at Occator crater on Ceres as comparative planetary process. Nature Communications 11, 3679, https://www.nature.com/articles/s41467-020-17184-7.
  27. Schröder, S.E., et al., 2021. Dwarf planet (1) Ceres surface bluing due to high porosity resulting from sublimation. Nature Communications. 12, 274. https://doi.org/10.1038/s41467-020-20494-5.
  28. Scully, J.E.C., et al. 2020. The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion. Nature Communications 11, 3680. https://doi.org/10.1038/s41467-020-15973-8.
  29. Silber, E.A, et al., 2018. Physics of meteor generated shock waves in the Earth’s atmosphere – A review. Adv. Space Res., 62, 3, 489–532.
  30. Stein, N., et al., 2019. The formation and evolution of bright spots on Ceres. Icarus 320, 188–201.
  31. Sturm, S., et al., 2013. The Ries impact, a double-layer rampart crater on Earth. Geology 41 (5): 531–534. doi: https://doi.org/10.1130/G33934.1.
  32. Thomas, E.C., et al., 2018. Kinetic effect on the freezing of ammonium-sodium-carbonate-chloride brines and implications for the origin of Ceres’ bright spots. Icarus 320, 150–158.
  33. Turcotte D.L. and G. Schubert, 2002, Geodynamics, Cambridge Univ. Press, pp. 456.
  34. Vickery, A., 1986. Effect of an impact-generated gas cloud on the acceleration of solid ejecta. J. Geophys. Res., 91, B14, 14139–14160, https://doi.org/10.1029/JB091iB14p14139.
DOI: https://doi.org/10.2478/arsa-2024-0009 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 127 - 142
Submitted on: Feb 20, 2024
Accepted on: Oct 28, 2024
Published on: Dec 31, 2024
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Leszek Czechowski, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.

Volume 59 (2024): Issue 4 (December 2024)