References
- Arslan, H., Sture, S. and Batiste, S. (2008) ‘Experimental simulation of tensile behavior of lunar soil simulant JSC-1’, Materials Science and Engineering A, 478(1–2). doi: 10.1016/j.msea.2007.05.113.
- Bednarz, S. et al. (2013) ‘Research of formed lunar regolith analog AGK-2010’, Archives of Mining Sciences, 58(2). doi: 10.2478/amsc-2013-0037.
- Benaroya, H. and Bernold, L. (2008) ‘Engineering of lunar bases’, Acta Astronautica. doi: 10.1016/j.actaastro.2007.05.001.
- Bentley, M. S. et al. (2009) ‘In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity’, Planetary and Space Science, 57(12). doi: 10.1016/j.pss.2009.07.013.
- Cesaretti, G. et al. (2014) ‘Building components for an outpost on the Lunar soil by means of a novel 3D printing technology’, Acta Astronautica. doi: 10.1016/j.actaastro.2013.07.034.
- Ferrone, K. L., Taylor, A. B. and Helvajian, H. (2022) ‘In situ resource utilization of structural material from planetary regolith’, Advances in Space Research, 69(5), pp. 2268–2282. doi: 10.1016/J.ASR.2021.12.025.
- Grugel, R. N. (2012) ‘Integrity of sulfur concrete subjected to simulated lunar temperature cycles’, Advances in Space Research, 50(9). doi: 10.1016/j.asr.2012.06.027.
- Heiken, G. H. and Vaniman, D. T. (1990) ‘Characterization of Lunar Ilmenite Resources’, Proceedings of the 20th Lunar and Planetary Science Conference.
- Hill, E. et al. (2007) ‘Apollo sample 70051 and high- and low-Ti lunar soil simulants MLS-1A and JSC-1A: Implications for future lunar exploration’, Journal of Geophysical Research E: Planets, 112(2). doi: 10.1029/2006JE002767.
- Just, G. H. et al. (2020) ‘Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilisation (ISRU) and recommendations for future excavation experiments’, Planetary and Space Science, 180. doi: 10.1016/j.pss.2019.104746.
- Katzer J. and Kobaka J. (2009a) ‘Influence of fine aggregate grading on properties of cement composite’, Silicates Industriels, 74 (1–2), pp. 9 – 14.
- Katzer, J. and Kobaka, J. (2009b) ‘Combined non-destructive testing approach to waste fine aggregate cement composites’, Science and Engineering of Composite Materials, 16(4).
- Katzer, J., Kobaka, J. and Ponikiewski, T. (2020) ‘Influence of crimped steel fibre on properties of concrete based on an aggregate mix of waste and natural aggregates’, Materials, 13(8). doi: 10.3390/MA13081906.
- Kobaka, J., Katzer, J. and Zarzycki, P. K. (2019) ‘Pilbara craton soil as a possible lunar soil simulant for civil engineering applications’, Materials. doi: 10.3390/ma122333871.
- Kong, W. G., Jolliff, B. L. and Wang, A. (2013) ‘Ti distribution in grain-size fractions of Apollo soils 10084 and 71501’, Icarus, 226(1). doi: 10.1016/j.icarus.2013.07.007.
- Makarious, A. S. et al. (1989) ‘Radiation distribution through ilmenite-limonite concrete and its application as a reactor biological shield’, International Journal of Radiation Applications and Instrumentation. Part, 40(3). doi: 10.1016/0883-2889(89)90158-5.
- Momi, J. et al. (2021) ‘Study of the rheology of lunar regolith simulant and water slurries for geopolymer applications on the Moon’, Advances in Space Research, 68(11). doi: 10.1016/j.asr.2021.08.037.
- Pinheiro, A. S. et al. (2013) ‘Thermal characterization of glasses prepared from simulated compositions of lunar soil JSC-1A’, Journal of Non-Crystalline Solids, 359(1). doi: 10.1016/j.jnoncrysol.2012.09.027.
- Ray, C. S. et al. (2010) ‘JSC-1A lunar soil simulant: Characterization, glass formation, and selected glass properties’, Journal of Non-Crystalline Solids. doi: 10.1016/j.jnoncrysol.2010.04.049.
- Rochette, P. et al. (2010) ‘Magnetic properties of lunar materials: Meteorites, Luna and Apollo returned samples’, Earth and Planetary Science Letters, 292(3–4). doi: 10.1016/j.epsl.2010.02.007.
- Samin, A.J. (2018), A review of radiation-induced demagnetization of permanent magnets, Journal of Nuclear Materials, 503, pp. 42–55. doi:10.1016/j.jnucmat.2018.02.029.
- Schuler, J.M., Smith, J.D., Mueller, R.P., Nick, A.J. (2019) ‘RASSOR, the reduced gravity excavator’, Lunar ISRU 2019, Developing a New Space Economy Through Lunar Resources and Their Utilization, 5061.
- Seweryn, K. et al. (2014) ‘Determining the geotechnical properties of planetary regolith using Low Velocity Penetrometers’, Planetary and Space Science, 99. doi: 10.1016/j.pss.2014.05.004.
- Seweryn, K., Paśko, P. and Visentin, G. (2019) ‘The Prototype of Regolith Sampling Tool Dedicated to Low Gravity Planetary Bodies’, Mechanisms and Machine Science, pp. 2711–2720. doi: 10.1007/978-3-030-20131-9_268.
- Sik Lee, T., Lee, J. and Yong Ann, K. (2015) ‘Manufacture of polymeric concrete on the Moon’, Acta Astronautica, 114. doi: 10.1016/j.actaastro.2015.04.004.
- Song, L. et al. (2020) ‘Vacuum sintering behavior and magnetic transformation for high-Ti type basalt simulated lunar regolith’, Icarus, 347. doi: 10.1016/j.icarus.2020.113810.
- Taylor, L. A., Pieters, C. M. and Britt, D. (2016) ‘Evaluations of lunar regolith simulants’, Planetary and Space Science, 126. doi: 10.1016/j.pss.2016.04.005.
- Toutanji, H. A., Evans, S. and Grugel, R. N. (2012) ‘Performance of lunar sulfur concrete in lunar environments’, Construction and Building Materials, 29. doi: 10.1016/j.conbuildmat.2011.10.041.
- Wallace, W. T. et al. (2009) ‘Lunar dust and lunar simulant activation and monitoring’, Meteoritics and Planetary Science, 44(7). doi: 10.1111/j.1945-5100.2009.tb00781.x.
- Wang, K. tuo et al. (2017) ‘Lunar regolith can allow the synthesis of cement materials with near-zero water consumption’, Gondwana Research, 44. doi: 10.1016/j.gr.2016.11.001.
- Zarzycki, P. K. and Katzer, J. (2019) ‘Multivariate Comparison of Lunar Soil Simulants’, Journal of Aerospace Engineering. doi: 10.1061/(asce)as.1943-5525.0001075.
- Zarzycki, P. K. and Katzer, J. (2020) ‘A proposition for a lunar aggregate and its simulant’, Advances in Space Research. doi: 10.1016/j.asr.2020.03.032.
- Zhang, T. et al. (2021) ‘The technology of lunar regolith environment construction on Earth’, Acta Astronautica, 178. doi: 10.1016/j.actaastro.2020.08.039.
- Zheng, Y. et al. (2009) ‘CAS-1 lunar soil simulant’, Advances in Space Research, 43(3). doi: 10.1016/j.asr.2008.07.006.
- Zhou, S. et al. (2021) ‘Preparation and evaluation of geopolymer based on BH-2 lunar regolith simulant under lunar surface temperature and vacuum condition’, Acta Astronautica, 189. doi: 10.1016/j.actaastro.2021.08.039.