References
- Barreto, D., Leak, J. (2021). Chapter 4 – A guide to modeling the geotechnical behavior of soils using the discrete element method, Modeling in geotechnical engineering eds. Samui P., Kumari S., Makarov V., Kurup P. Academic Press, 79–100.
- Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 120; 122–125.
- Calle, C.I., Buhler, C.R. (2020). Measurement of the angle of repose of apollo 14 lunar sample 14163, Lunar Dust 2020 (LPI Contrib, No. 2141).
- Chen, H., Zhao, S., Zhou, X. (2020). DEM investigation of angle of repose for super-ellipsoidal particles, Particuology, Vol. 50, 53–66.
- Elekes, F., Parteli, R. (2021). An expression for the angle of repose of dry cohesive granular materials on Earth and in planetary environments, Proceedings of the National Academy of Sciences, Vol. 118 (38).
- International Organization for Standardization. (1977). Surface active agents — Powders and granules — Measurement of the angle of repose.
- Jiang, M., Xi, B., Arroyo, M., Rodriguez-Dono, A. (2017) DEM simulation of soil-tool interaction under extraterrestrial environmental effects, Journal of Terramechanics, Vol. 71, 1–13.
- Just, G.H., Smith, K., Joy, K.H., Roy, M.J. (2020) Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilisation (ISRU) and recommendations for future excavation experiments, Planetary and Space Science, Vol. 180, 104746.
- Kobaka J., Katzer, J., Seweryn, K., Srokosz, P., Bujko, M. (2023) A study of lunar soil simulants from construction and building materials perspective. Case Studies in Construction Materials, Vol. 18, e02082.
- Knuth M.A., Johnson, J.B., Hopkins, M.A., Sullivan, R.J., Moore, J.M. (2012) Discrete Element Modeling of a Mars Exploration Rover wheel in granular material, Journal of Terramechanics, Vol. 49, 27–36.
- Li, C., Yin, H., Wu, C., Zhang, Y., Zhang, J., Wu, Z., Wang, W., Jia, D., Guan, S., Ren, R. (2021) Calibration of the Discrete Element Method and Modeling of Shortening Experiments, Frontiers in Earth Science, Vol. 9, 636512.
- Liu, T., Liang, L., Zhao, Y., Dengqing, C. (2020). An alterable constitutive law of high-accuracy DEM model of lunar soil, Advances in Space Research, Vol. 66, 1286–1302.
- Myers, R., Montgomery, D., Anderson-Cook, C. (2016). Response Surface Methodology, Process and Product Optimization using Design Experiments (Fourth Edition), Wiley.
- Saltelli, A., Tarantola, S., Capolongo, F., Ratto, M. (2004) Sensitivity analysis in practice: a guide to assessing scientific models, John Willy & Sons.
- Sanchez P., Scheeres, D.J. (2020) Cohesive regolith on fast rotating asteroids, Icarus, Vol 330, 113443.
- Schwager, T., Pöschel, T. (2007) Coefficient of restitution and linear-dashpot model revisited, Granular Matter, Vol. 9, 465–469.
- Wang, X., Zhang, Q., Huang, Y., Ji, J. (2022) An efficient method for determining DEM parameters of a loose cohesive soil modelled using hysteretic spring and linear cohesion contact models, Biosystems engineering, Vol. 215, 283–294.
- Wilkinson, A.; DeGennaro, A. (2007) Digging and pushing lunar regolith: Classical soil mechanics and the forces needed for excavation and traction, Journal of Terramechanics, Vol. 4(2), 133–152.
- Xi, B., Jiang, M., Cui, L., (2021) 3D DEM analysis of soil excavation test on lunar regolith simulant, Granular Matter, Vol. 23 (1).
- Zhu, L., Zou, M., Liu, Y., Gao, K., Su, B., Qi, Y. (2022) Measurement and calibration of DEM parameters of lunar soil simulant, Acta Astronautica, Vol. 191, 169–177.