Have a personal or library account? Click to login
Analysis of The Itsg-Grace Daily Models in The Determination of Polar Motion Excitation Function Cover

Analysis of The Itsg-Grace Daily Models in The Determination of Polar Motion Excitation Function

Open Access
|Oct 2023

References

  1. Bizouard, C. (2020). Geophysical Modelling of the Polar Motion. In Geophysical Modelling of the Polar Motion. https://doi.org/10.1515/9783110298093
  2. Brzezinski, A. (1992). Polar motion excitation by variations of the effective angular momentum function: considerations concerning deconvolution problem. Manuscr. Geod., 17(1), 3–20.
  3. Brzezinski, A., Nastula, J., & Kolaczek, B. (2009). Seasonal excitation of polar motion estimated from recent geophysical models and observations. Journal of Geodynamics, 48(3–5), 235–240. https://doi.org/10.1016/J.JOG.2009.09.021
  4. Chen, J., Wilson, C., Chao, B., Shum, C. K., & Tapley, B. (2000). Hydrologic and oceanic excitations to polar motion and length-of-day variation. Geophysical Journal International, 141, 149–156. https://doi.org/10.1046/j.1365-246X.2000.00069.x
  5. Chen, J. L., & Wilson, C. R. (2005). Hydrological excitations of polar motion, 1993–2002. Geophysical Journal International, 160(3), 833–839. https://doi.org/10.1111/j.1365-246X.2005.02522.x
  6. Chen, J. L., Wilson, C. R., & Zhou, Y. H. (2012). Seasonal excitation of polar motion. Journal of Geodynamics, 62, 8–15. https://doi.org/10.1016/J.JOG.2011.12.002
  7. Dill, R. (2008). Hydrological model LSDM for operational Earth rotation and gravity field variations. Scientific Technical Report. https://doi.org/11.2312/GFZ.b103-08095
  8. Dobslaw, H., Dill, R., Grötzsch, A., Brzezinski, A., & Thomas, M. (2010). Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. Journal of Geophysical Research: Solid Earth, 115(B10). https://doi.org/https://doi.org/10.1029/2009JB007127
  9. Dobslaw, H., Flechtner, F., Bergmann-Wolf, I., Dahle, C., Dill, R., Esselborn, S., Sasgen, I., & Thomas, M. (2013). Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05. Journal of Geophysical Research: Oceans, 118(7), 3704–3711. https://doi.org/https://doi.org/10.1002/jgrc.20271
  10. Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Flechtner, F. (2017a) Product description document for AOD1B release 06. Technical report GRACE, 327–750. Available online: Ftp://isdcftp.gfz-potsdam.de/grace/DOCUMENTS/Level-1/GRACE_AOD1B_Product_Description_Document_for_RL06.pdf (accessed on 24.05.2023)
  11. Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Thomas, M., Dahle, C., Esselborn, S., König, R., & Flechtner, F. (2017b). A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophysical Journal International, 211, 263–269. https://doi.org/10.1093/GJI/GGX302
  12. Dobslaw, H., & Dill, R. (2018). Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics. Advances in Space Research, 61(4), 1047–1054. https://doi.org/https://doi.org/10.1016/j.asr.2017.11.044
  13. Göttl, F., Schmidt, M., & Seitz, F. (2018). Mass-related excitation of polar motion: an assessment of the new RL06 GRACE gravity field models. Earth, Planets and Space, 70(1), 195. https://doi.org/10.1186/s40623-018-0968-4
  14. Gross, R. (2015). Theory of Earth Rotation Variations. https://doi.org/10.1007/1345_2015_13
  15. Jin, S., Chambers, D. P., & Tapley, B. D. (2010). Hydrological and oceanic effects on polar motion from GRACE and models. Journal of Geophysical Research: Solid Earth, 115(B2). https://doi.org/10.1029/2009JB006635
  16. Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., & von Storch, J. S. (2013). Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. Journal of Advances in Modeling Earth Systems, 5(2), 422–446. https://doi.org/https://doi.org/10.1002/jame.20023
  17. Kurtenbach, E., Eicker, A., Mayer-Gürr, T., Holschneider, M., Hayn, M., Fuhrmann, M., & Kusche, J. (2012). Improved daily GRACE gravity field solutions using a Kalman smoother. Journal of Geodynamics, 59–60, 39–48. https://doi.org/10.1016/J.JOG.2012.02.006
  18. Lambeck, K. (1980). The earth’s variable rotation: geophysical causes and consequences. The Earth’s Variable Rotation: Geophysical Causes and Consequences. https://doi.org/10.1016/0031-9201(81)90054-6
  19. Mayer-Gürr, T., Behzadpour, S., Ellmer, M., Kvas, A., Klinger, B., Zehentner, N. (2016). ITSG-Grace2016-Monthly and Daily Gravity Field Solutions from GRACE. GFZ Data Services. Available online: http://dataservices.gfz-potsdam.de/icgem/showshort.php?id=escidoc:1697893
  20. Mayer-Gürr, T., Behzadpour, S., Ellmer, M., Kvas, A., Klinger, B., Strasser, S., Zehentner, N. (2018). ITSG-Grace2018-Monthly, Daily and Static Gravity Field Solutions from GRACE. GFZ Data Services. Available online: http://dataservices.gfz-potsdam.de/icgem/showshort.php?id=escidoc:3600910
  21. Meyrath, T., & van Dam, T. (2016). A comparison of interannual hydrological polar motion excitation from GRACE and geodetic observations. Journal of Geodynamics, 99. https://doi.org/10.1016/j.jog.2016.03.011
  22. Munk, W. H., & MacDonald, G. J. F. (1960). The rotation of the earth; a geophysical discussion. Cambridge [Eng.] University Press.
  23. Nastula, J., Winska, M., Sliwinska, J., & Salstein, D. (2019). Hydrological signals in polar motion excitation – Evidence after fifteen years of the GRACE mission. Journal of Geodynamics, 124, 119–132. https://doi.org/10.1016/J.JOG.2019.01.014
  24. Seoane, L., Nastula, J., Bizouard, C., & Gambis, D. (2011). Hydrological Excitation of Polar Motion Derived from GRACE Gravity Field Solutions. International Journal of Geophysics, 2011, 174396. https://doi.org/10.1155/2011/174396
  25. Sidorenkov, N. (2009). The Interaction Between Earth’s Rotation and Geophysical Processes. The Interaction Between Earth’s Rotation and Geophysical Processes by Nikolay S. Sidorenkov. Wiley, 2009. ISBN: 978-3-527-40875-7. https://doi.org/10.1002/9783527627721
  26. Sliwinska, J., Nastula, J., Dobslaw, H., & Dill, R. (2020). Evaluating Gravimetric Polar Motion Excitation Estimates from the RL06 GRACE Monthly-Mean Gravity Field Models. Remote Sensing, 12(6). https://doi.org/10.3390/rs12060930
  27. Sliwinska, J., Winska, M., & Nastula, J. (2022). Exploiting the Combined GRACE/GRACE-FO Solutions to Determine Gravimetric Excitations of Polar Motion. Remote Sensing, 14, 6292. https://doi.org/10.3390/rs14246292
  28. Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9). https://doi.org/10.1029/2004GL019920
  29. Winska, M., Nastula, J., & Salstein, D. (2017). Hydrological excitation of polar motion by different variables from the GLDAS models. Journal of Geodesy, 91(12), 1461–1473. https://doi.org/10.1007/s00190-017-1036-8
DOI: https://doi.org/10.2478/arsa-2023-0008 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 105 - 121
Submitted on: Mar 13, 2023
Accepted on: Jul 10, 2023
Published on: Oct 10, 2023
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Aleksander Partyka, Jolanta Nastula, Justyna Śliwińska, Tomasz Kur, Malgorzata Wińska, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.