Have a personal or library account? Click to login
First Results of Time Series Analysis of the Permanent GNSS Observations at Polish EPN Stations Using GipsyX Software Cover

First Results of Time Series Analysis of the Permanent GNSS Observations at Polish EPN Stations Using GipsyX Software

Open Access
|Oct 2021

References

  1. Altamimi Z., Rebischung P., Métivier L., Collilieux X. (2016) ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, Journal of Geophysical Research: Solid Earth, Vol. 121, No. 8, 6109–6131.10.1002/2016JB013098
  2. Altamimi Z., Sillard P., Boucher C. (2007) CATREF software: Combination and analysis of terrestrial reference frames, LAREG Technical, Institut Géographique National, Paris, France, p. 47.
  3. Blewitt G. (2011) Advances in Global Positioning System technology for geodynamics investigations, Wiley
  4. Bock Y., Fang Peng., Genrich J., Hager B., Herring T., Hudnut K. (1993) Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements, Nature, Vol. 361, No. 6410, 337–34010.1038/361337a0
  5. Bosy J., Graszka W., Oruba A. (2010) ASG-EUPOS i podstawowa osnowa geodezyjna w Polsce, Biuletyn Wojskowej Akademii Technicznej, Vol. 59, 7–15.
  6. Bosy J., Krynski J. (2015) Reference frames and reference networks, Geodesy and Cartography, Vol. 64, No. 2, 5–2910.1515/geocart-2015-0011
  7. Chen J., Yang M. (2011) Absolute site velocity estimation using the GPS precise point positioning technique, in 32nd Asian Conference on Remote Sensing, ACRS 2011, 1443–1448.
  8. Dong Da-Nan. (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California, Journal of Geophysical Research, Vol. 94, No. B4, 3949-396610.1029/JB094iB04p03949
  9. Feng J., Chen H. (2019) Time series analysis of Xiamen GPS continuous operating station, Journal of Geomatics, Vol 44, No. 5
  10. Fulcher B., Little M., Jones N. (2013) Highly comparative time-series analysis: The empirical structure of time series and their methods, Journal of the Royal Society Interface, Vol.10, No. 83.10.1098/rsif.2013.0048
  11. Goudarzi M., Banville S. (2018) Application of PPP with ambiguity resolution in earth surface deformation studies: a case study in eastern Canada, Survey Review, Vol. 50, No.363, 531-54410.1080/00396265.2017.1337951
  12. Gubler E. (1984) The determination of recent crustal movements from precise leveling data, a review, in Workshop on precise leveling, Eds. H. Pelzer and W. Niemeier.
  13. Gubler E., Kahle H. G. (1985) Recent crustal movements in the Alpine-Mediterrane a region analyzed in the Swiss ALPS, Tectonophysics, Vol 130, 1-410.1016/0040-1951(86)90119-8
  14. Guo Fei, Li Xingxing, Zhang Xiaohong, Wang Jinling (2017) The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning, Advances in Space Research, Vol. 59, No. 11, 2714–2725.10.1016/j.asr.2016.05.018
  15. Herff C., Krusienski D. (2018) Extracting features from time series, in Fundamentals of Clinical Data Science. Springer International Publishing, 85–100.10.1007/978-3-319-99713-1_7
  16. Herring T. (2003) MATLAB Tools for viewing GPS velocities and time series, GPS Solution, No. 710.1007/s10291-003-0068-0
  17. Hofmann-Wellenhof B., Lichtenegger H., Collins J. (2012) Global positionig System: Theory and Practise. Springer Science & Business Media
  18. Kontny B. (2012) Models of vertical movements of the earth crust surface in the area of Poland derived from leveling and GNSS data, Acta Geodynamica Et Geomaterialia. Vol. 9, No. 3, 331-337
  19. Khoptar A., Savchuk S. (2020) Estimation of Ionospheric Delay Influence on the Efficiency of Precise Positioning of Multi-GNSS Observations, Baltic Surveying, Vol. 12, 14-1810.22616/j.balticsurveying.2020.002
  20. Kowalczyk K. (2017) Application of PPP Solution to Determine the Absolute Vertical Crustal Movements, in Proceedings of the 10th International Conference, Vilnius Gediminas Technical University.10.3846/enviro.2017.207
  21. Kowalczyk K. (2015) Creation of a model of relative vertical crustal movements in the polish territory on the basis of the data from active geodetic network EUPOS (ASG EUPOS), Acta Geodynamica et Geomaterialia, Vol. 12, No. 3, 215–225.10.13168/AGG.2015.0022
  22. Kowalczyk K. (2005) Determination of land uplift in the area of Poland, 6th International Conference Environment, al Engineering, (May 2005), 903–907.
  23. Kowalczyk K. (2006) Wyznaczenie modelu ruchów pionowych skorupy ziemskiej na obszarze Polski, Praca doktorska, Uniwersytet Warmińsko-Mazurski w Olsztynie
  24. Krakiwsky E., Vanicek P. (1986) Geodesy: The concept. Edited by N. Y. Elsevier.
  25. Heflin B., Hurst K., Muellerschoen R., Wu S., Yunck T, Zumbcrge J. (1996) Gipsy-Oasis II: A High Precision GPS Data Processing System and General Satellite Orbit, NASA Technology Transfer Conference, p. 10.
  26. Lindberg M. (2014) Report from EUREF WG on Deformation models, in Symposium of the IAG Subcommission for Europe (EUREF) held in Vilnius.
  27. Murra J., et al. (2020) Regional global navigation satellite system networks for crustal deformation monitoring, Seismological Research Letters, Vol. 91, No. 2 A, 552–572.10.1785/0220190113
  28. Niewiarowski J., Wwyrzykowski T. (1961) Wyznaczenie współczesnych ruchów pionowych skorupy ziemskiej na obszarze Polski przez porównanie wyników powtarzanych niwelacji precyzyjnych, Prace Instytutu Geodezji i Kartografii, Vol. 7, No. 1.
  29. Pelzer H., Niemeier W. (1984) Precise Levelling, in Contributions to the Workshop on Precise Levelling Held at the University of Hannover, March 16-18, 1983. Ferd. Dümmlers Verlag.
  30. Robinson G. (2009) Time Series Analysis. International Encyclopedia of Human Geography, 285-29310.1016/B978-008044910-4.00546-0
  31. Ryczywolski M., Oruba A,. Leończyk M. (2008) The precise satellite positioning system ASG-EUPOS, GEOS 2008, January 2007, 1-6
  32. Ryczywolski M., Oruba A., Wajda S. (2010) Coordinate stability monitoring module working within ASG-EUPOS reference station network, EUREF 2010 International Symposium.
  33. Saaranen V. and Mäkinen J. (2002) Determining postglacial rebound from the three precise levellings in Finland : status in 2002, Proceedings of the 14th General Meeting of the Nordic Geodetic Commission, Espoo, Finland, October 1–5,
  34. Sandford H. (1978) Models for Extracting Vertical Crustal Movements Leveling Data, Proc. of the 9th OEOP Conference, An International Symposium on the Applications of Geodesy lo GeoJynamics, Dept. of Geodetic Science Kept. Vol. 2, No. 280, 183–191.
  35. Segall P., Davis J. (1997) GPS applications for geodynamics and earthquake studies, Annual Review of Earth and Planetary Sciences, Vol. 25, 301-33610.1146/annurev.earth.25.1.301
  36. Szołucha M., Kroszczyński K., Kiliszek D. (2018) Accuracy of Precise Point Positioning (PPP) with the use of different International GNSS Service (IGS) products and stochastic modelling, Geodesy and Cartography, 67(2), 207–238.10.24425/gac.2018.125472
  37. Teatini P., Gambolati G., Ferronato M., Settari A., Walters D. (2011) Land uplift due to subsurface fluid injection, Journal of Geodynamics, Vol. 51, No. 1, 1-1610.1016/j.jog.2010.06.001
  38. Tian Y. (2011) iGPS: IDL tool package for GPS position time series analysis., GPS Solution, Vol. 15, No. 3, 299-30310.1007/s10291-011-0219-7
  39. Torge W. (2001) Geodesy. 3rd edditi. Berlin, New York: de Gruyter.10.1515/9783110879957
  40. Williams S. (2008) CATS: GPS coordinate time series analysis software, GPS Solution, Vol. 12, No. 2, 147-15310.1007/s10291-007-0086-4
  41. Wyrzykowski T. (1985) Mapa współczesnych prędkości pionowych ruchów powierzchni skorupy ziemskiej na obszarze Polski, Instytut Geodezji i kartografii, Warszawa 1895
  42. Wyrzykowski T. (1987) A new determination of recent vertical movements of the earth’s crust in Poland, Journal of Geodynamics, Vol. 7, No. 2-4, 171-17810.1016/0264-3707(87)90035-4
  43. Villiger A., Dach R. (2017) IGS International GNSS Service Technical report 2017, Astronomical Institute University of Bern
  44. Xu G. (2007) Theory, Algorithms and Applications, Springer Science Business Media.
  45. Ye S., R. (2002) Theory and its realization of GPS precise point positioning using un-differenced phase observations Wuhan University, Wuhan,
  46. Yi W., Song W., Lou Y. et al. et al. (2017) Improved method to estimate undifferenced satellite fractional cycle biases using network observations to support PPP ambiguity resolution, GPS Solution, Vol. 21, No. 3, 1369–1378.10.1007/s10291-017-0616-7
  47. Zhang Y., Wu J., Xue Y., Wang Z., Yao Y., Yan X. (2015) Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China, Hydrogeology Journal, Vol. 23, No. 8, 1851–186610.1007/s10040-015-1302-x
  48. Zogg J., M. (2002) GPS basics, U-Blox, Thalwil, Vol. No, Januar), 1–60.
  49. Zumberge J., Heflin M., Jefferson D., Watkins M., Webb F. (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research: Solid Earth, Vol. 102, No. B3, 5005–501710.1029/96JB03860
DOI: https://doi.org/10.2478/arsa-2021-0008 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 101 - 118
Submitted on: Feb 3, 2021
Accepted on: Sep 24, 2021
Published on: Oct 8, 2021
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Adam Łyszkowicz, Renata Pelc-Mieczkowska, Anna Bernatowicz, Stepan Savchuk, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.