Have a personal or library account? Click to login
Evaluation of GGMs Based on the Terrestrial Gravity Disturbance and Moho Depth in Afar, Ethiopia Cover

Evaluation of GGMs Based on the Terrestrial Gravity Disturbance and Moho Depth in Afar, Ethiopia

By: Eyasu Alemu  
Open Access
|Oct 2021

References

  1. Barthelmes F. (2013) Definition of Functional of the Geopotential and Their Calculation from Spherical Harmonic Models, Scientific Technical Report STR09/02: Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. https://doi.org/10.2312/GFZ.b103-0902-26
  2. Barthelmes F. (2014) Global models. In: Grafarend E. (Ed.) Encyclopedia of Geodesy. Springer International Publishing, Switzerland, 1-9, https://doi.org/10.1007/978-3-319-02370-043-1.
  3. Bhattacharyya B. K. (1978) Computer modeling in gravity and magnetic interpretation. Geophysics, Vol. 43, No. 5, 912-929.
  4. Birbiraw D. (2015) Evaluation of Accuracy of Earth Gravity Model 2008 (EGM2008) using GPS and Levelling at central and western part of Ethiopia, Unpublished Master thesis, Addis Ababa University, Addis Ababa, Ethiopia
  5. Bolkas D., Fotopoulos G., and Braun A. (2016) On the impact of airborne gravity data to fused gravity field models, Journal of Geodesy, Vol. 90, No. 6, 561-571.
  6. Bruinsma S., Förste C., Abrikosov O., Lemoine J., Marty J., Mulet S., Rio M., and Bonvalot S. (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data; Geophysical Research Letters, Vol. 41, No. 21, 7508-7514, https://doi.org/10.1002/2014GL062045.10.1002/2014GL062045
  7. Ermias W. (2015) Evaluation of Accuracy of Earth Gravity Model 2008 (EGM2008) using GPS and Levelling at DebreBirhan city, Unpublished Master thesis, Addis Ababa University, Addis Ababa, Ethiopia
  8. Floberghagen R., Fehringer M., Lamarre D., Muzi D., Frommknecht B., Steiger C.H., Pineiro J., and da Costa A. (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. Journal of Geodesy, Vol. 85, No. 11, 749-758.
  9. Förste C., Abrykosov O., Bruinsma S., Dahle C., König R., and Lemoine J. (2019) ESA’s Release 6 GOCE gravity field model by means of the direct approach based on improved filtering of the reprocessed gradients of the entire mission (GO_CONS_GCF_2_DIR_R6). GFZ Data Services. https://doi.org/10.5880/ICGEM.2019.004
  10. Förste C., Bruinsma S. L., Abrikosov O., Lemoine J.-M., Marty J. C., Flechtner F., Balmino G., Barthelmes F., and Biancale R. (2014) EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. https://doi.org/10.5880/icgem.2015.1.
  11. Gerard A. and Debeglia N. (1975) Automatic three dimensional modeling for the interpretation of gravity or magnetic anomalies. Geophysics, Vol.40, No. 6, 1014-1034.
  12. Godah W., Szelachowska M., and Krynski J. (2017) On the analysis of temporal geoid height variations obtained from GRACE-based GGMs over the area of Poland. ActaGeophysica, Vol. 65, 713-725.10.1007/s11600-017-0064-3
  13. Hackney R.I., Featherstone W.E. (2003) Geodetic versus geophysical perspectives of the ‘gravity anomaly’, Geophysical Journal International, Vol. 154, Issue 1, 35–43, https://doi.org/10.1046/j.1365-246X.2003.01941.x10.1046/j.1365-246X.2003.01941.x
  14. Hammond J.O.S., Kendall J.M., Stuart G.W., Keir D., Ebinger C., Ayele A., and Belachew M. (2011) The nature of the crust beneath the afar triple junction: Evidence from receiver functions, Geochemistry, Geophysics, Geosystems,, Vol. 12, Q12004, https://doi.org/10.1029/2011GC003738.10.1029/2011GC003738
  15. Heiskanen W. A., and Moritz H. (1967) Physical geodesy: W.H. Freeman and Company.10.1007/BF02525647
  16. Hildenbrand T.G., Briesacher A., Flanagan G., Hinze W.J., Hittelman A.M., Keller G.R., Kucks R.P., Plouff D., Roest W., Seeley J., Smith D.A., and Webring M. (2002) Rationale and Operational Plan to Upgrade the U.S Gravity Database. USGS Open-File Report 02-463.
  17. Ince E.S., Barthelmes F., Reißland S., Elger K., Förste C., Flechtner F., Schuh H. (2019) ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services and future plans. - Earth System Science Data, 11, pp. 647-674, http://doi.org/10.5194/essd-11-647-2019.10.5194/essd-11-647-2019
  18. Kivior I. and Boyd D. (1998) Interpretation of the aeromagnetic experimental survey in the Eromanga/Cooper basin. Canadian Journal of Exploration Geophysics, Vol. 34, No. 1 and 2, 58-66.
  19. Lavayssière A., Rychert C., Harmon N., Keir D., Hammond J.O., Kendall J.M., Doubre C., Leroy S. (2018) Imaging Lithospheric Discontinuities beneath the Northern East African Rift Using S-to-P Receiver Functions. Geochemistry, Geophysics, Geosystems, Vol. 19, No. 10, 4048-4062. https://doi.org/10.1029/2018gc00746310.1029/2018GC007463
  20. Novák P., 2010. Direct modeling of the gravitational field using harmonic series. ActaGeodynamica et Geomaterialia, Vol. 7, No. 1, 35-47.
  21. Oliveira Jr., Vanderlei C., Uieda L, Hallam K., Barbosa A.T., and Valéria C.F. (2018) Code and data for “Should geophysicists use the gravity disturbance or the anomaly?” https://doi.org/10.5281/zenodo.1255306
  22. Pavlis N.K., Holmes S. A., Kenyon S. C., and Factor J. K. (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of geophysical research: solid earth, 117(B4)10.1029/2011JB008916
  23. Philippe N.N., Eliezer M.D., Théophile N.M. and Tabod C.T. (2006) Spectral analysis and gravity modelling in the Yagoua, Cameroon, sedimentary basin, GeofísicaInternacional, Vol. 45, No. 210.22201/igeof.00167169p.2006.45.3.206
  24. Reigber C., Lühr H., and Schwintzer P. (2002) CHAMP mission status. Advances in Space Research, Vol. 30, No. 2, 129-134. https://doi.org/10.1016/S0273-1177(02)00276-410.1016/S0273-1177(02)00276-4
  25. Rummel R., Balmino G., Johannessen J., Visser P., and Woodworth P. (2002) Dedicated gravity field missions-principles and aims, Journal of Geodynamics, Vol. 33, 3-20.
  26. Spector A. and Grant F.S. (1970) Statistical models for interpreting aeromagnetic data. Geophysics, Vol.35,293-302. 10.1190/1.1440092
  27. Tapley B.D., Bettadpur S., Watkins M., and Reigber C. (2004) The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, Vol. 31, L09607. https://doi.org/10.1029/2004GL019920 10.1029/2004GL019920
  28. Yilmaz M., Turgut B., Gullu M., and Yilmaz I. (2017) The evaluation of high-degree geopotential models for regional geoid determination in Turkey, AKU Journal of Science and Engineering, Vol. 17, No. 1, 147-153.
  29. Yilmaz M., Turgut B., Gullu M., and Yilmaz I. (2016) Evaluation of recent global geopotential models by GNSS/Levelling data: Internal Aegean region. International Journal of Engineering and Geosciences, Vol. 1, No. 1, 15-19. https://doi.org/10.26833/ijeg.285221 10.26833/ijeg.285221
  30. Zerihun G. (2017) Evaluation of Gravity Field Models: EIGEN-6C4 and GOCO03S combined with EGM08 using GNSS-Levelling, Unpublished Master thesis, Adama Science and Technology University, Adama, Ethiopia
  31. Zingerle P., Pail R., Gruber T., and Oikonomidou X. (2019) The experimental gravity field model XGM2019e. GFZ Data Services. https://doi.org/10.5880/ICGEM.2019.007
DOI: https://doi.org/10.2478/arsa-2021-0007 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 78 - 100
Published on: Oct 8, 2021
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Eyasu Alemu, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.