Have a personal or library account? Click to login
Assessment of GNSS PPP-Based Zenith Tropospheric Delay Cover

Assessment of GNSS PPP-Based Zenith Tropospheric Delay

Open Access
|Dec 2020

References

  1. Afifi, A., El-Rabbany, A., Jin, S. (2016) Un-differenced precise point positioning model using triple GNSS constellations. Cogent Geoscience, 2: 1223899.10.1080/23312041.2016.1223899
  2. Ahmed, F., Václavovic, P., Teferle, F. N., Douša, J., Bingley, R., Laurichesse, D. (2016) Comparative analysis of real-time precise point positioning zenith total delay estimates. GPS Solutions, 20, 187-199.10.1007/s10291-014-0427-z
  3. Bahadur, B., Nohutcu, M. (2018) PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solutions, 22:11310.1007/s10291-018-0777-z
  4. Bałdysz, Z., M. Szołucha, M., Nykiel, G., M. Figurski, M. (2017) Analysis of the Impact of Galileo Observations on the Tropospheric Delays Estimation. Baltic Geodetic Congress (BGC Geomatics), Gdansk, 2017, pp. 65-71.10.1109/BGC.Geomatics.2017.22
  5. BKG, Agency for Cartography and Geodesy, (2020) Available from https://igs.bkg.bund.de/dataandproducts/rinexsearch. Accessed on July 1st, 2020.
  6. Boehm, J., Niell, A., Tregoning, P., Schuh, H. (2006) Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33, 1-410.1029/2005GL025546
  7. Ding, N., Zhang, S., Wu, S., Wang, X., Kealy, A., Zhang, K. (2018) A new approach for GNSS tomography from a few GNSS stations. Atmospheric Measurement Techniques, 11, 3511-3522.10.5194/amt-11-3511-2018
  8. Ding, W., Teferle, F. N., Kazmierski, K., Laurichesse, D., Yuan, Y. (2017) An evaluation of real-time troposphere estimation based on GNSS Precise Point Positioning. Journal of Geophysical Research: Atmospheres, 122, 2779-2790.10.1002/2016JD025727
  9. Dousa, J., Bennitt, G. V. (2013) Estimation and evaluation of hourly updated global GPS Zenith Total Delays over ten months. GPS Solutions, 17, 453-464.10.1007/s10291-012-0291-7
  10. Dousa, J., Vaclavovic, P. (2014) Real-time zenith tropospheric delays in support of numerical weather prediction applications. Advances in Space Research, 53, 1347-1358.10.1016/j.asr.2014.02.021
  11. Feng, P., Li, F., Yan, J., Barriot, J. P. (2019) Evaluation of the zenithal total delay estimates from BeiDou/GPS combined signals in the frame of the IGS MGEX project. Acta Geodaetica et Geophysica, 54, 71-87.10.1007/s40328-018-0240-1
  12. Hofmann-Wellenhof, B., Lichtenegger, H., Walse, E. (2008) GNSS Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More. Springer, New York
  13. Hu, P., Huang, G., Zhang, Q., Wang, X., Mao, M. (2018) Algorithm and Performance of Precipitable Water Vapor Retrieval Using Multiple GNSS Precise Point Positioning Technology. China Satellite Navigation Conference (CSNC) 2018 Proceedings. CSNC 2018. Lecture Notes in Electrical Engineering, 497, 139-151.10.1007/978-981-13-0005-9_12
  14. IGS, International GNSS Service, (2020) Available from ftp://cddis.gsfc.nasa.gov/. Accessed on July 1st, 2020.
  15. IGS-MGEX, IGS Multi-GNSS Experiment, (2020) Available from ftp://cddis.gsfc.nasa.gov/gps/products /mgex. Accessed on July 1st, 2020.
  16. Lagler, K., Schindelegger, M., Bohm, J., Krasna, H., Nilsson, T. (2013) GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys Res Lett, 40, 1069-1073.10.1002/grl.50288437315025821263
  17. Leandro, R. F., Langley, R. B., Santos, M. C. (2008) UNB3m_pack: a neutral atmosphere delay package for radiometric space techniques. GPS Solutions, 12, 65-70.10.1007/s10291-007-0077-5
  18. Li, X., Dick, G., Lu, C., Ge, M., Nilsson, T., Ning, T., Wickert, J., Schuh, H. (2015) Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor from BeiDou, Galileo, GLONASS, and GPS Observations. IEEE Transactions on Geoscience and Remote Sensing, 53, 6385-6393.10.1109/TGRS.2015.2438395
  19. Li, X., Tan, H., Li, X., Dick, G., Wickert, J., Schuh, H. (2018) Real-Time Sensing of Precipitable Water Vapor from BeiDou Observations: Hong Kong and CMONOC Networks. Journal of Geophysical Research: Atmospheres, 123, 7897–7909.10.1029/2018JD028320
  20. Li, X., Zus, F., Lu, C., Dick, G., Ning, T., Ge, M., Wickert, J., Schuh, H. (2015) Retrieving of atmospheric parameters from multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model. Journal of Geophysical Research: Atmospheres, 120, 7189-7204.10.1002/2015JD023454
  21. Lu, C., Chen, X., Liu, G., Dick, G., Wickert, J., Jiang, X., Zheng, K., Schuh, H. (2017) Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams. Remote Sensing, 9, 1317.10.3390/rs9121317
  22. Lu, C., Li, X., Nilsson, T., Ning, T., Heinkelmann, R., Ge, M., Glaser, S., Schuh, H. (2015) Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. Journal of Geodesy, 89, 843-856.10.1007/s00190-015-0818-0
  23. Mendez Astudillo, J., Lau, L., Tang, Y. T., Moore, T. (2018) Analysing the Zenith Tropospheric Delay Estimates in On-line Precise Point Positioning (PPP) Services and PPP Software Packages. Sensors (Basel), 18.10.3390/s18020580
  24. Oikonomou, C., Tymvios, F., Pikridas, C., Bitharis, S., Balidakis, K., Michaelides, S., Haralambous, H., Charalambous, D. (2018) Tropospheric delay performance for GNSS integrated water vapor estimation by using GPT2w model, ECMWF’s IFS operational model and in situ meteorological data. Advances in Geosciences, 45, 363-375.10.5194/adgeo-45-363-2018
  25. Pan, L., Guo, F. (2018) Real-time tropospheric delay retrieval with GPS, GLONASS, Galileo and BDS data. Sci Rep, 8, 17067.10.1038/s41598-018-35155-3624420330459438
  26. Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. Bulletin Géodésique, 105, 279–29810.1007/BF02521844
  27. Ssenyunzi, R. C., Oruru, B., Mutonyi D’ujanga, F., Realini, E., Barindelli, S., Tagliaferro, G., Van De Giesen, N. (2019) Variability and accuracy of Zenith Total Delay over the East African tropical region. Advances in Space Research, 64, 900-920.10.1016/j.asr.2019.05.027
  28. Xu, A., Xu, Z., Ge, M., Xu, X., Zhu, H., Sui, X. (2013) Estimating zenith tropospheric delays from BeiDou navigation satellite system observations. Sensors (Basel), 13, 4514-4526.10.3390/s130404514367309723552104
  29. Zhao, Q., Yao, Y., Cao, X., Yao, W. (2019) Accuracy and reliability of tropospheric wet refractivity tomography with GPS, BDS, and GLONASS observations. Advances in Space Research, 63, 2836-2847.10.1016/j.asr.2018.01.021
  30. Zheng, F., Lou, Y., Gu, S., Gong, X., Shi, C. (2018) Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. Journal of Geodesy, 92, 545-560.10.1007/s00190-017-1080-4
DOI: https://doi.org/10.2478/arsa-2020-0012 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 171 - 184
Submitted on: Jul 16, 2020
|
Accepted on: Dec 8, 2020
|
Published on: Dec 31, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Mohamed Abdelazeem, Ahmed El-Rabbany, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.