Have a personal or library account? Click to login
Efficiency of Using GNSS-PPP for Digital Elevation Model (DEM) Production Cover

Efficiency of Using GNSS-PPP for Digital Elevation Model (DEM) Production

Open Access
|Apr 2020

References

  1. Alkan, R. M., Saka, M. H., Ozulu, M. and İlçi, V. (2017) ‘Kinematic precise point positioning using GPS and GLONASS measurements in marine environments’, Measurement: Journal of the International Measurement Confederation, 109, pp. 36–43. doi: 10.1016/j.measurement.2017.05.054.10.1016/j.measurement.2017.05.054
  2. Bangen, S. G., Wheaton, J. M., Bouwes, N., Bouwes, B. and Jordan, C. (2014) ‘A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers’, Geomorphology, 206, pp. 343–361. doi: 10.1016/j.geomorph.2013.10.010.10.1016/j.geomorph.2013.10.010
  3. Bolkas, D., Fotopoulos, G., Braun, A. and Tziavos, I. N. (2016) ‘Assessing Digital Elevation Model Uncertainty Using GPS Survey Data’, Journal of Surveying Engineering, 142(3), pp. 1–8. doi: 10.1061/(ASCE)SU.1943-5428.0000169.10.1061/(ASCE)SU.1943-5428.0000169
  4. Cai, C. and Gao, Y. (2013) ‘Modeling and assessment of combined GPS/GLONASS precise point positioning’, GPS Solutions, 17(2), pp. 223–236. doi: 10.1007/s10291-012-0273-9.10.1007/s10291-012-0273-9
  5. Farah, A. (2018) ‘Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography‘ Artificial Satellites 53(1): 37-46.10.2478/arsa-2018-0004
  6. Federal Geographic Data Committee (1998) Geospatial Positioning Accuracy Standards Part 3 : National Standard for Spatial Data Accuracy, National Spatial Data Infrastructure. Reston, Virginia. doi: FGDC-STD-007.3-1998.
  7. Hofmann-Wellenhof, B., Lichtenegger, H. and Wasle, E. (2008) GNSS — Global Navigation Satellite Systems. 1st edn. Springer-Verlag Wien. doi: 10.1007/978-3-211-73017-1.10.1007/978-3-211-73017-1
  8. Meneghini, C. and Parente, C. (2017) ‘Advantages of Multi GNSS Constellation: GDOP Analysis for GPS, GLONASS and Galileo Combinations’, International Journal of Engineering and Technology Innovation; Vol 7, No 1 (2017). Available at: http://ojs.imeti.org/index.php/IJETI/article/view/367.
  9. Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R. D. and Mukhopadhyay, A. (2012) ‘Evaluation of vertical accuracy of open source Digital Elevation Model (DEM)’, International Journal of Applied Earth Observation and Geoinformation. Elsevier B.V., 21(1), pp. 205–217. doi: 10.1016/j.jag.2012.09.004.10.1016/j.jag.2012.09.004
  10. Patel, A., Katiyar, S. K. and Prasad, V. (2016) ‘Performances evaluation of different open source DEM using Differential Global Positioning System (DGPS)’, Egyptian Journal of Remote Sensing and Space Science. Authority for Remote Sensing and Space Sciences, 19(1), pp. 7–16. doi: 10.1016/j.ejrs.2015.12.004.10.1016/j.ejrs.2015.12.004
  11. Peckham, R. and Gyozo, J. (2007) Digital terrain modelling: development and applications in a policy support environment. 1st edn. Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-540-36731-4.10.1007/978-3-540-36731-4
  12. Rizos, C., Janssen, V., Roberts, C. and Grinter, T. (2012) ‘Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End?’, in FIG Working Week 2012, pp. 1–17. Available at: https://eprints.utas.edu.au/13280/.
  13. Sanz, J., Rovira-Garcia, A., Hernández-Pajares, M., Juan, M., Ventura-Traveset, J., López-Echazarreta, C. and Hein, G. (2012) ‘The ESA/UPC GNSS-Lab Tool (gLAB): an advanced educational and professional package for GNSS data processing and analysis’, in 6th ESA Workshop on Satellite Navigation Technologies Multi-GNSS Navigation Technologies. Noordwijk, the Netherlands.
  14. Teunissen, P. J. G. and Montenbruck, O. (2017) Springer handbook of global navigation satellite systems. 1st edn. Springer International Publishing. doi: 10.1007/978-3-319-42928-1.10.1007/978-3-319-42928-1
  15. Zhou, F., Dong, D., Li, W., Jiang, X., Wickert, J. and Schuh, H. (2018) ‘GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations’, GPS Solutions, 22(2), p. 33. doi: 10.1007/s10291-018-0699-9.10.1007/s10291-018-0699-9
  16. Zumberge, J. F., Heftin, M. B., Jefferson, D., Watkins, M. M. and Webb, F. H. (1997) ‘Precise point positioning for the efficient and robust analysis of GPS data from large networks’, Journal of Geophysical Research, 102(10), pp. 5005–5017. doi: 10.1029/96JB03860.10.1029/96JB03860
  17. Websites:
  18. GAPS-PPP (2019): GNSS Analysis and Positioning Software, ©University of New Brunswick, Available at: http://gaps.gge.unb.ca/, Access on 19th July, 2019.
  19. APPS-PPP (2019): Automatic Precise Positioning Service, Jet Propulsion Laboratory, California Institute of Technology. Available at: http://apps.gdgps.net/, Access on 19th July, 2019.
  20. CSRS-PPP (2019): The Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP). Available at: https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php, Access on 19th July, 2019.
  21. magicGNSS (2019): magicGNSS web service, Available at: https://magicgnss.gmv.com/, Access on 19th July, 2019.
DOI: https://doi.org/10.2478/arsa-2020-0002 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 17 - 28
Submitted on: Sep 23, 2019
Accepted on: Mar 17, 2020
Published on: Apr 24, 2020
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Ashraf Abdallah, Amgad Saifeldin, Abdelhamid Abomariam, Reda Ali, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.