Have a personal or library account? Click to login
Isolation and Study of the Nutritional Variability of Peripheral Layers of Barley Grains During Development Cover

Isolation and Study of the Nutritional Variability of Peripheral Layers of Barley Grains During Development

Open Access
|Mar 2022

References

  1. 1. Faostat. (2019). Food and Agriculture Organization of the United Nation. http://www.fao.org/faostat/en/%data2019
  2. 2. Monterrey, D. (2016). Cereals: Dietary Importance. Encyclopedia of Food and Health. Elsevier Ltd
  3. 3. Saulnier, L. (2012). Cereal Grains: Diversity and Nutritional Compositions. Cahier de Nutrition and Diététiques; 47, 54-515
  4. 4. Nair, S., Knoblauch, M., Ullrich, S., Baik, B.K. (2011). Microstructure of hard and soft kernels of barley. Journal of Cereal Science, 54 (3), 354-362 https://doi.org/10.1016/j.jcs.2011.06.014
  5. 5. Baik, B.K., Ullrich, S.E. (2008). Barley for food: characteristics, improvement, and renewed interest. Journal of Cereal Science, 48, 233–242 https://doi.org/10.1016/j.jcs.2008.02.002
  6. 6. Edney, M.J. (2004). Mather DE. Quantitative trait loci affect in germination trait s and malt friability in a two-rowed by six -rowed barley cross. Journal of Cereal Science, 39, 283-290 https://doi.org/10.1016/j.jcs.2003.10.008
  7. 7. Laskowski, W., Gorska-Warsewicz, H., Rejman, K., Czeczotko, M., Zwolinska, J. (2019). How important are cereals and cereal products in the average polish diet? Nutrients, 11(3), 679 https://doi.org/10.3390/nu11030679
  8. 8. Hariri, A. (2003). Study and modeling of malting tempering. Thesis of D. thesis. ENSIA, Institut national polytechnique of Lorraine, specialty: biotechnology and food industries. p. 218.
  9. 9. Ordaz-Ortiz, J.J., Devaux, M.F., Saulnier, L. (2005). Classification of wheat varieties based on structural features of arabinoxylans as revealed by endoxylanase treatment of flour and grain. Journal of Agricultural and Food Chemistry, 53, 8349-8356 https://doi.org/10.1021/jf050755v
  10. 10. Dornez, E., Cuyvers, S., Holopainen, U., Nordlund, E., Poutanen, K., Delcour, J.A., Courtin, C.M. (2011). Inactive fluorescently labelled xylanase as a novel probe for microscopic analysis of arabinoxylan containing wheat cell walls. Journal of Agricultural and Food Chemistry, 59, 6369e6375 https://doi.org/10.1021/jf200746g
  11. 11. Guillon, F., Tranquet, O., Quillien, L., Utille, J.P., Ordaz, Ortiz, J.J., Saulnier, L. (2004). Generation of polyclonal and monoclonal antibodies against arabinoxylans and their use for immunocytochemical location of arabinoxylans in cell walls of Endosperm of wheat. Journal of Cereal Science, 40, 167e182
  12. 12. Jilal, A. (2011). Assessment of genetically diverse international barley germplasm for development of food product applications. Thesis of doctora. Southern Cross University, p. 186
  13. 13. Czuchajowska, Z., Klamczynski, A., Paszczynska, B., Baik, B.K. (1998). Structure and functionality of barley starches. Cereal Chemistry, 75, 747–754 http://dx.doi.org/10.1094/CCHEM.1998.75.5.747
  14. 14. Izydorczyk, M.S., Storsley, J., Labossiere, D., MacGregor, A.W., Rossnagel, B.G. (2000). Variation in total and soluble b-glucan content in hulless barley: effects of thermal, physical, and enzymic treatments. Journal of Agricultural and Food Chemistry, 48, 982–989. https://doi.org/10.1021/jf991102f
  15. 15. Boufena, Z., Zaghouane, O., Zaghouane, F. (2006). Guide to the main varieties of straw cereals in Algeria. Ed ITGC; ICARDA; Algiers 154 p
  16. 16. Guide of the main varieties of Straw cereal in Algeria, (2006).
  17. 17. Nougarède, A. (1969). Plant biology. Volume I. Cytology. Ed. Masson; 598p
  18. 18. Latta, M., Eskin, M. (1980). A Simple and Rapid Colorimetric Method for Phytate Determination. Journal of Agricultural and Food Chemistry, 28, 1313–1315. https://doi.org/10.1021/jf60232a049
  19. 19. Vaintraub, L.A., Lapteva, N.A. (1988). Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Analytical Biochemistry, 175, 227-230pp https://doi.org/10.1016/0003-2697(88)90382-X
  20. 20. Rodier, J. (2005). The water analysis ‘‘natural water, waste water, sea water’’ (Paris: Bordas, 1984).p 66.
  21. 21. Ween the AOAC. (1993). Methods of analysis for nutrition labeling. Airlington, USA. Fiber extractor for dosing of the raw fiber content; References 10521 & 10522
  22. 22. Troll, W., Lindsley, J.A. (1955). Photometric method for determination of proline. Jornal of Biological Chemistry. 215, 655 – 660 https://doi.org/10.1016/S0021-9258(18)65988-5
  23. 23. Rasio, A., Sorrentinio, G., Cedola, M.C., Pastore, D., Wittner, G. (1987). Osmotic and elastic adjustment of durum wheat leaves under stress conditions. Genetic Agr; 41, p: 427–436 https://doi.org/10.3923/ajbs.2020.119.126
  24. 24. Barron, C., Surget, A., Rouau, X. (2007). Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. Journal of Cereal Science, 45, 88-96 https://doi.org/10.1016/j.jcs.2006.07.004
  25. 25. Briggs, D.E. (1987). The morphology of barley; the vegetative phase, in: Briggs, D. E. (Ed. Eds), Barley. Chapman and Hall Ltd: London; 1-15
  26. 26. Evers, A.D., Blakeney, A.B., O’Brien, L. (1999). Cereal structure and composition. Australian Journal of Agricultural Research, 50, 629-650
  27. 27. Coban, H.b., Demirci, A. (2017). Chapter 2 -Phytase as a diet ingredient: from microbial production to its applications in food and feed industry. In Microbial Production of Food Ingredients and Additives [online]. Academic Press. 33-55, Handbook of Food Bioengineering; ISBN978-0-12-811520-6
  28. 28. Kumar, V., Sinha, A. K., Makkarh, P.S., Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition. Food Chemistry, 120 (4), 945-959. https://doi.org/10.1016/j.foodchem.2009.11.052
  29. 29. Selle, P.h., Ravindran, V. (2007). Microbial phytase in poultry nutrition. Animal Feed Science and Technology, 135 (1), 1-41 https://doi.org/10.1016/j.anifeedsci.2006.06.010
  30. 30. Kumar, V., Sinha, A.k. (2018). Chapter 3 -General aspects of phytases. In: Enzymes in Human and Animal Nutrition [online]. Academic Press. 53-72. ISBN978-0-12-805419-2
  31. 31. Schlemmer, U., Frolich, W., Prieto, Rafel, M., Grases, F. (2009). Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research; 53 Suppl 2, S330-375 https://doi.org/10.1002/mnfr.200900099
  32. 32. Dai, F., Qiu, L., Xu, Y., Cai, S., Qiu, B., Zhang, G. (2010). Differences in phytase and phytic acid content between cultivated and tibetan annual wild barleys. Journal of Agricultural and Food Chemistry; 58, 11821-11824 https://doi.org/10.1021/jf1029948
  33. 33. Barron, C., Samson, M. F., Lullien-Pellerin, V., Rouau, X. (2011). Wheat grain tissue proportions in milling fractions using biochemical marker measurements: application to different wheat cultivars. Journal of Cereal Science; 53, 306-311 https://doi.org/10.1016/j.jcs.2011.01.013
  34. 34. Tang, A. L., Wilcox, G., Walker, K. Z., Shah, N. P., Ashton, J. F., Stojanovsk, A. (2010a). Phytase activity from Lactobacillus spp. in calcium-fortified soymilk. Journal of Food Science. 75, 6, M373-M376 https://doi.org/10.1111/j.1750-3841.2010.01663.x
  35. 35. Lazarte, C. E., Carlsson, N.G., Almgren, A., Sandberg, A. S., Granfeldt, Y. (2015) Phytate, zinc, iron and calcium content of common Bolivian food, and implications for mineral bioavailability. Journal of Food Composition and Analysis. 39, 111-119 https://doi.org/10.1016/j.jfca.2014.11.015
  36. 36. Bhave, M., Morris, C.F. (2008). Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Molecular Biology; 66(3), 205-219 https://doi.org/10.1007/s11103-007-9263-7
  37. 39. Egli, I., Davidsson, L., Juillerat, M.A., Barclay, D., Hurrell, R. (2003). Phytic acid degradation in complementary foods using phytase naturally occurring in whole grain cereals. Journal of Food Science, 68 (5), 1855-1859 https://doi.org/10.1111/j.1365-2621.2003.tb12342.x
  38. 40. Salem, H.B., Abdouli, H., Nefzaoui, A., El-Mastouri, A., BenSalem, L. (2005). Nutritive behaviour, and growth of Barbine lambs fed on oldman saltbush (Atriplex nummularia L.) and supplemented or not with barley grains or spineless cactus (Opuntia ficus-intermis) pads. Small Ruminant Research, 59, 229-237 https://doi.org/10.1016/j.smallrumres.2005.05.010
  39. 41. Fardet, A. (2010). New hypotheses for the health protective mechanisms of whole grain cereals:what is beyond fiber? Nutrition Research Reviews, 23,65–134. https://doi.org/10.1017/S0954422410000041
  40. 42. Moore, K.L., Zhao, F.J., Gritsch, C.S., Tosi, P., Hawkesford, M.J., McGrath, S.P., Shewry, P.R., Grovenor, C.R.M. (2012). Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry. Journal of Cereal Science, 55, 183–187. https://doi.org/10.1016/j.jcs.2011.11.00
  41. 43. Brouns, F., Hemery, Y., Price, R., Anson, N.M. (2012). Wheat aleurone separation, composition, health aspects, and potential food use. Critical Reviews in Food Science and Nutrition, 52, 553–568 https://doi.org/10.1080/10408398.2011.589540
  42. 44. Chalamacharla, R.B., Harsha, K., Sheik, K.B., Viswanatha, C.K. (2018). Wheat bran- composition and nutritional quality: a review. Advances Biotechnology & Microbiology, 9 (1), 555754 10.19080/AIBM.2018.09.555754
  43. 45. Fredlund, K., Isaksson, M., Rossander-Hulthén, L., Almgren, A., Sandberg, A.S. (2006). Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. Journal of Trace Elements in Medicine and Biology. 20, 1, 49-57 https://doi.org/10.1016/j.jtemb.2006.01.003
  44. 46. Austin, R.B., Craufurd, P.Q. (1989). The Agrometeorology of rainfed barley-based farming systems. Proceedings of an International Symposium. Ed. M. Johns, G.Mathys and D. The Ecophysiology of barley Tunis 6-10 Mars; Rijks: 35-57
  45. 47. Salem, H.B., Nefzaoui, A., Ben Salem, L. (2004). Spliness cactus (Opuntia ficus indica f. Intermis) and oldman saltbush (Atriplex nummularia L.) As alternative supplements for growing Barbarine lambs given straw-based diets. Small Ruminant Research, 51, 65-73 https://doi.org/10.1016/S0921-4488(03)00186-X
  46. 48. Soylak, M., Tuzen, M., Narin, I., Sari, H. (2004). Comparison of microwave, dry and wet digestion procedures for the determination of trace metal. Journal of Food and Drug Analysis, 12(3), 254–258.
  47. 49. Peterson, C.M., Klepper, B., Rickman, R.W. (1989). Seed reserves and seedling developmen in winter wheat. Agronomy Journal, 81(2), 245-251
  48. 50. Bock, M.A. (2000). Minor Constituents of Cereals. Food Science and Technology-New York-Marcel Dekker; 479-504
  49. 51. Qiu, H., Nadaud, I., Ledoigt, G., Piquet-Pissaloux, A., Branlard, G. (2016). Interruption of magnesium supply at heading influenced proteome of peripheral layers and reduced grain dry weight of two wheat (Triticum aestivum L.) genotypes. Journal of Proteomics, 143, 83–92 https://doi.org/10.1016/j.jprot.2016.03.029
  50. 52. Bartnik, M., & Jakubczyk, T. (1989). Chemical composition and the nutritive value of wheat bran. World review of nutrition and dietetics.
  51. 53. Sarpong, S. (2014). Traceability and supply chain complexity: confronting the issues and concerns. European Business Review, 26 (3), 271–284. https://doi.org/10.1108/EBR-09-2013-0113
  52. 54. Fraga, C.G. (2005). Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 26, 235–244. https://doi.org/10.1016/j.mam.2005.07.013
  53. 55. Kaiser, C.R., Bowman, J.G.P., Surber, L.M.M., Blake, T.K., Borkowski,.J.J. (2004). Variation in apparent component digestibility of barley in the rat from the core collection of the USDA National Small Grains Collection. Animal Feed Science and Technology, 113 (1-4), 97–112 https://doi.org/10.1016/j.anifeedsci.2003.11.008
  54. 56. Svihus, B., Gullord, M. (2002). Effect of chemical content and physical characteristics on nutritional value of wheat, barley and oats for poultry. Animal Feed Science and Technology, 102 (1-4), 71–92 https://doi.org/10.1016/S0377-8401(02)00254-7
  55. 57. Ragaee, S., El-Sayed, M., Abdel-Al Maher, N. (2006). Antioxydant activity and nutrient composition of selected cereals for food use. Food chemistry, 98 (1), 32-38 https://doi.org/10.1016/j.foodchem.2005.04.039
  56. 58. Fincher, G.B., Stone, B.A. (1986). Cell walls and their components in cereal grain technology. Advances in Cereal Science and Technology, 8, 207-295
  57. 59. Muir, J.G., Elaine, G.W., Keogh, J., Pizzey, C., Bird, A.R., Sharpe, K. (2004). Combining wheat bran with resistant starch has more beneficial effects on fecal indexes than does wheat bran alone. The American Journal of Clinical Nutrition, 79, 1020-1028 https://doi.org/10.1093/ajcn/79.6.1020
  58. 60. Kim, H., Stokes, K.S., Behall, K.M., Spears, K., Vinyard, B., Conway, J.M. (2009). Glucose and insulin responses to whole grain breakfasts varying in soluble fiber, β-glucan. European Journal of Nutrition, 48(3), 170-175 https://doi.org/10.1007/s00394-009-0778-3
  59. 61. Biel, W., Bobko, K., Maciorowski, R. (2009). Chemicalcomposition and nutritive value of husked and naked oats grain. Journal of Cereal Science, 49, 413–418 https://doi.org/10.1016/j.jcs.2009.01.009
  60. 62. Wozniak, A., Soroka, M.S.T., Epniowska, A., Makarski, B. (2014). Chemical composition of spring barley (Hordeum vulgare L.) grain cultivated in various tillage systems. Journal of Elementology, 19(2), 597–606. https://doi.org/10.5601/jelem.2014.19.2.438
  61. 63. Biel, W., Jaroszewska, A., Stankowski, S., Sadkiewicz, J., Bosko, P. (2015). Effects of genotype and weed control on the nutrient composition of winter spelt (Triticum aestivum ssp. Spelta L.) and common wheat (Triticum aestivum ssp. vulgare). Acta Agriculturae Scandinavica, Section B – Soil Plant Sci, 66(1), 27–35. https://doi.org/10.1080/09064710.2015.1062533
  62. 64. Alijošius, S., Švirmickas, G.J., Bliznikas, S., Gružauskas, R., Šašyte, V., Raceviciute-Stupeliene, A., Kliševiciute, V., Daukšiene, A. (2016). Grain chemical composition of different varieties of winter cereals. Zemdirbyste, 103(3), 273–280. https://doi.org/10.13080/z-a.2016.103.035
  63. 65. Biel, W., Maciorowski, R., Bobko, K., Jaskowska, I. (2011). Chemical composition and energy value of dwarf oats grain. Italian Journal of Food Science, 23(2), 180–187
  64. 66. Sykut-Domanska, E., Rzedzicki, Z., Nita, Z. (2013). Chemical Composition Variability of Naked and Husked Oat Grain (Avena sativa L.). Cereal Research Communications, 41(2), 327–337 https://doi.org/10.1556/crc.2013.0007
  65. 67. Khan, M.S., Yu, X., Kikuchi, A., Asahina, M. (2009). Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnology, 26, 125-13 https://doi.org/10.5511/plantbiotechnology.26.125
  66. 68. Frances, M.D., William, J.H., William, H.V., Charlene, T., Kerry, M.K., Okkyung, K.C., Susan, B.A. (2006). Protein accumulation and composition in wheat grains: effects of mineral nutrients and High temperature. European Journal of Agronomy, 25(2), 96-107 https://doi.org/10.1016/j.eja.2006.04.003
  67. 69. Raza, S.H., Athar, H.R., Ashraf, M., Hameed, A. (2007). Glycine betaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environmental and Experimental Botany, 60(3), 368-376 https://doi.org/10.1016/j.envexpbot.2006.12.009
Language: English
Page range: 1 - 11
Submitted on: Sep 1, 2021
Accepted on: Feb 1, 2022
Published on: Mar 7, 2022
Published by: Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania\"
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Lahouaria Labga, Samira Meziani, Haoud Khadidja, Saidani Souad, Tasleem Tahir Aysha, published by Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania\"
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.