Have a personal or library account? Click to login

Shaping the future of orthodontics with artificial intelligence: An overview of innovations today, insights for tomorrow

Open Access
|Apr 2025

References

  1. Adegbite K, Ogunbanjo B, Ajisafe O, Adeniyi A. Knowledge of orthodontics as a dental specialty: a preliminary survey among LASUCOM students. Ann Med Health Sci Res. 2012;2:14–8
  2. Will LA. The history of orthodontic education: a century of development and debate. Am J Orthod Dentofacial Orthop. 2015;148:901–13.
  3. Peck S. The contributions of Edward H. Angle to dental public health. Community Dent Health. 2009;26:130–1.
  4. Agrawal P, Nikhade P. Artificial intelligence in dentistry: past, present, and future. Cureus. 2022;14:e27405.
  5. Dhingra K. Artificial intelligence in dentistry: current state and future directions. Bull R Coll Surg Engl. 2023;105:380–3.
  6. Albalawi F, Alamoud KA. Trends and applications of artificial intelligence technology in orthodontic diagnosis and treatment planning—a review. Appl Sci. 2022;12:11864.
  7. Liu J, Chen Y, Li S, Zhao Z, Wu Z. Machine learning in orthodontics: challenges and perspectives. Adv Clin Exp Med. 2021;30:1065–74.
  8. Katsumata A. Deep learning and artificial intelligence in dental diagnostic imaging. Jpn Dent Sci Rev. 2023;59:329–33.
  9. Nguyen TT, Larrivée N, Lee A, Bilaniuk O, Durand R. Use of artificial intelligence in dentistry: current clinical trends and research advances. J Can Dent Assoc. 2021;87:l7.
  10. Liu J, Zhang C, Shan Z. Application of artificial intelligence in orthodontics: current state and future perspectives. Healthcare (Basel). 2023;11:2760.
  11. Baxi S, Shadani K, Kesri R, Ukey A, Joshi C, Hardiya H. Recent advanced diagnostic aids in orthodontics. Cureus. 2022; 14:e31921.
  12. Subramanian AK, Chen Y, Almalki A, Sivamurthy G, Kafle D. Cephalometric analysis in orthodontics using artificial intelligence—a comprehensive review. Biomed Res Int. 2022;2022:1880113.
  13. Kazimierczak W, Gawin G, Janiszewska-Olszowska J, Dyszkiewicz-Konwińska M, Nowicki P, Kazimierczak N, et al. Comparison of three commercially available AI-driven cephalometric analysis tools in orthodontics. J Clin Med. 2024;13:3733.
  14. Kim MG, Moon JH, Hwang HW, Cho SJ, Donatelli RE, Lee SJ. Evaluation of an automated superimposition method based on multiple landmarks for growing patients. Angle Orthod. 2022;92:226–32.
  15. Wu TH, Lian C, Lee S, Pastewait M, Piers C, Liu J, et al. Two-stage mesh deep learning for automated tooth segmentation and landmark localization on 3D intraoral scans. IEEE Trans Med Imaging. 2022;41:3158–66.
  16. Tomášik J, Zsoldos M, Majdáková K, Fleischmann A, Oravcová ?, Sónak Ballová D, Thurzo A. The potential of AI-powered face enhancement technologies in face-driven orthodontic treatment planning. Appl Sci. 2024;14:7837.
  17. Croquet B, Matthews H, Mertens J, Fan Y, Nauwelaers N, Mahdi S, et al. Automated landmarking for palatal shape analysis using geometric deep learning. Orthod Craniofac Res. 2021;24 Suppl 2(Suppl 2):144–52.
  18. Kim H, Kim CS, Lee JM, Lee JJ, Lee J, Kim JS, et al. Prediction of Fishman’s skeletal maturity indicators using artificial intelligence. Sci Rep. 2023;13:5870.
  19. Kim DW, Kim J, Kim T, Kim T, Kim YJ, Song IS, et al. Prediction of hand-wrist maturation stages based on cervical vertebrae images using artificial intelligence. Orthod Craniofac Res. 2021;24 Suppl 2:68–75.
  20. Jeong Y, Nang Y, Zhao Z. Automated evaluation of upper airway obstruction based on deep learning. Biomed Res Int. 2023;2023:8231425.
  21. Li P, Kong D, Tang T, Su D, Yang P, Wang H, et al. Orthodontic treatment planning based on artificial neural networks. Sci Rep. 2019;9:2037.
  22. Suhail Y, Upadhyay M, Chhibber A, Kshitiz K. Machine learning for the diagnosis of orthodontic extractions: a computational analysis using ensemble learning. Bioengineering (Basel). 2020;7:55.
  23. Jung SK, Kim TW. New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofacial Orthop. 2016;149:127–33.
  24. Tanikawa C, Tan TJ, Takada K. Facial soft-tissue shape changes after fixed edgewise treatment with premolar extraction in individual artificial-intelligence-classified facial profile patterns. BMC Oral Health. 2024;24:740.
  25. Eslami S, Faber J, Fateh A, Sheikholaemmeh F, Grassia V, Jamilian A. Treatment decision in adult patients with class III malocclusion: surgery versus orthodontics. Prog Orthod. 2018;19:28.
  26. Khanagar SB, Alfouzan K, Awawdeh M, Alkadi L, Albalawi F, Alghilan MA. Performance of artificial intelligence models designed for diagnosis, treatment planning, and predicting prognosis of orthognathic surgery (OGS)—a scoping review. Appl Sci. 2022;12:5581.
  27. Kato RM, Parizotto J de OL, Oliveira PHJ de, Gonçalves JR. Artificial intelligence in orthognathic surgery—a narrative review of surgical digital tools and 3D orthognathic surgical planning. J Calif Dent Assoc. 2023;51:1–9.
  28. Woo H, Jha N, Kim YJ, Sung SJ. Evaluating the accuracy of automated orthodontic digital setup models. Semin Orthod. 2023;29:60–7.
  29. Park JH, Kim YJ, Kim J, Kim J, Kim IH, Kim N, et al. Use of artificial intelligence to predict outcomes of nonextraction treatment of Class II malocclusions. Semin Orthod. 2021;27:87–95.
  30. Tanikawa C, Yamashiro T. Development of novel artificial intelligence systems to predict facial morphology after orthognathic surgery and orthodontic treatment in Japanese patients. Sci Rep. 2021;11:15853.
  31. M’hamed J, Dallel I, Tobji S, Ben Amor F. The impact of artificial intelligence on contemporary orthodontic treatment planning-A systematic review and meta-analysis. SJ Dent Sci. 2022;9:70–87.
  32. El-Dawlatly MM, Abdelmaksoud AR, Amer OM, El-Dakroury AE, Mostafa YA. Evaluation of the efficiency of computerized algorithms to formulate a decision support system for deepbite treatment planning. Am J Orthod Dentofacial Orthop. 2021;159:512–21.
  33. Hansa I, Katyal V, Semaan SJ, Coyne R, Vaid NR. Artificial intelligence-driven remote monitoring of orthodontic patients: Clinical applicability and rationale. Semin Orthod. 2021;27:138–56.
  34. Li S, Guo Z, Lin J, Ying S. Artificial intelligence for classifying and archiving orthodontic images. Biomed Res Int. 2022;2022:1473977.
  35. Gandedkar NH, Wong MT, Darendeliler MA. Role of virtual reality (VR), augmented reality (AR), and artificial intelligence (AI) in tertiary education and research of orthodontics: An insight. Semin Orthod. 2021;27:69–77.
  36. Faber J, Faber C, Faber P. Artificial intelligence in orthodontics. APOS Trends Orthod. 2019;9:201–5.
  37. Strunga M, Urban R, Surovková J, Thurzo A. Artificial intelligence systems assisting in the assessment of the course and retention of orthodontic treatment. Healthcare. 2023;11:683.
  38. Nordblom NF, Büttner M, Schwendicke F. Artificial intelligence in orthodontics: critical review. J Dent Res. 2024;103:577–84.
DOI: https://doi.org/10.2478/aoj-2025-0007 | Journal eISSN: 2207-7480 | Journal ISSN: 2207-7472
Language: English
Page range: 88 - 99
Submitted on: Dec 1, 2024
Accepted on: Feb 1, 2025
Published on: Apr 9, 2025
Published by: Australian Society of Orthodontists Inc.
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Zahra Jaafar Akwaid, Eman Almousa, published by Australian Society of Orthodontists Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.