Have a personal or library account? Click to login
Harnessing nanotechnology for aquatic animal health: Current trends and future prospects – A review Cover

Harnessing nanotechnology for aquatic animal health: Current trends and future prospects – A review

Open Access
|Oct 2025

References

  1. Abd El-Naby F.S., Naiel M.A., Al-Sagheer A.A., Negm S.S. (2019). Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture, 501: 82–89.
  2. Abdelazim A.M., Saadeldin I.M., Swelum A.A.A., Afifi M.M., Alkaladi A. (2018). Oxidative stress in the muscles of the fish Nile tilapia caused by zinc oxide nanoparticles and its modulation by vitamins C and E. Oxid. Med. Cell. Longev., 2018: 6926712.
  3. Abu-Elala N.M., AbuBakr H.O., Khattab M.S., Mohamed S.H., El-Hady M.A., Ghandour R.A., Morsi R.E. (2018). Aquatic environmental risk assessment of chitosan/silver, copper and carbon nanotube nanocomposites as antimicrobial agents. Int. J. Biol. Macromol., 113: 1105–1115.
  4. Ahmad N., Hussain S.M., Ali S., Sarker P.K., Al-Ghanim K.A., Mahmood M. (2024). Dietary nano-selenium supplementation improves growth performance, nutrient digestibility and hematology in Cirrhinus mrigala fingerlings. J. Trace Elem. Med. Biol., 84: 127443.
  5. Ahmad N., Hussain S. M., Ali S., Rizwan M., Zahoor A.F., Ahmed A.M., Zulfiqar A. (2023). Dietary exposure of Cr nanoparticles to Catla catla fingerlings: Effects on mineral digestibility and carcass composition. Aquac. Rep., 30: 101598.
  6. Aklakur M., Asharf Rather, M., Kumar N. (2016). Nanodelivery: an emerging avenue for nutraceuticals and drug delivery. Crit. Rev. Food Sci. Nutr., 56: 2352–2361.
  7. Alexpandi R., Gopi C.V.M., Durgadevi R., Kim H.J., Pandian S.K., Ravi A.V. (2020). Metal sensing-carbon dots loaded TiO2-nanocomposite for photocatalytic bacterial deactivation and application in aquaculture. Sci. Rep., 10: 12883.
  8. Ali Z., Ahmad R. (2020). Nanotechnology for water treatment. Environ. Nanotechnol., 3: 143–163.
  9. Allan J., Belz S., Hoeveler A., Hugas M., Okuda H., Patri A., Rauscher H., Silva P., Slikker W., Sokull-Kluettgen B., Tong W. (2021). Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul. Toxicol. Pharmacol., 122: 104885.
  10. Altun S., Kubilay A., Ekici S., Bi D., Diler O. (2010). Oral vaccination against Lactococcosis in rainbow trout (Oncorhynchus mykiss) using sodium alginate and poly (lactide-coglycolide) carrier. Kafkas Univ. Vet. Fak. Derg., 16: S211–S217.
  11. Angulo C., Tello‐Olea M., Reyes‐Becerril M., Monreal‐Escalante E., Hernández‐Adame L., Angulo M., Mazon‐Suastegui J.M. (2021). Developing oral nanovaccines for fish: A modern trend to fight infectious diseases. Rev. Aquac., 13: 1172–1192.
  12. Anzar N., Hasan R., Tyagi M., Yadav N., Narang, J. (2020). Carbon nanotube-A review on synthesis, properties and plethora of applications in the field of biomedical science. Sens. Int., 1: 100003.
  13. Arellano Vidal C.L., Govan J.E. (2024). Machine learning techniques for improving nanosensors in agroenvironmental applications. Agronomy, 14: 341.
  14. Arora B., Attri P. (2020). Carbon nanotubes (CNTs): a potential nanomaterial for water purification. J. Compos. Sci., 4: 135.
  15. Asaikkutti A., Bhavan P.S., Vimala K., Karthik M., Cheruparambath P. (2016). Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii. J. Trace Elem. Med. Biol., 35: 7–17.
  16. Ashouri S., Keyvanshokooh S., Salati A.P., Johari S.A., Pasha-Zanoosi H. (2015). Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture, 446: 25–29.
  17. Augustine R., Hasan A., Primavera R., Wilson R.J., Thakor A.S., Kevadiya B.D. (2020). Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun., 25: 101692.
  18. Ayesha B., Jabeen U., Naeem A., Kasi P., Malghani M.N.K., Khan S.U., Akhtar J., Aamir M. (2020). Synthesis of zinc stannate nanoparticles by sol-gel method for photocatalysis of commercial dyes. Results Chem., 2: 100023.
  19. Bacchetta C., Ale A., Simoniello M.F., Gervasio S., Davico C., Rossi A.S., Desimone M.F., Poletta G., López G., Monserrat J.M., Cazenave, J. (2017). Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol. Indic., 76: 230–239.
  20. Bai X., Smith Z.L., Wang Y., Butterworth S., Tirella A. (2022). Sustained drug release from smart nanoparticles in cancer therapy: A comprehensive review. Micromachines, 13: 1623.
  21. Batool U., Hussain S.M., Ali S., Rasul A., Shahzad M.M., Naeem A., Ahmad N., Munir M., Ghafoor A., Alshehri M.A. (2025). Nano-revolution in aquaculture: quantum dot innovations for sustainable fisheries. Aquac. Int., 33: 187.
  22. Bazari Moghaddam S., Sharif Rohani M., Haghighi M. (2021). Effects of nanoparticles of dried Aloe vera extract on some of the hematological parameters, liver enzymes and immune responses in Siberian sturgeon (Acipenser baerii). Sustain. Aquac. Health Manag. J., 7: 56–69.
  23. Behera T., Nanda P.K., Mohanty C., Mohapatra D., Swain P., Das B.K., Routray P., Mishra B.K., Sahoo S.K. (2010). Parenteral immunization of fish, Labeo rohita with Poly D, L-lactide-co-glycolic acid (PLGA) encapsulated antigen microparticles promotes innate and adaptive immune responses. Fish Shellfish Immunol., 28: 320–325.
  24. Behera T., Swain P. (2014). Antigen encapsulated alginate-coated chitosan microspheres stimulate both innate and adaptive immune responses in fish through oral immunization. Aquac. Int., 22: 673–688.
  25. Behera T., Swain P., Rangacharulu P.V., Samanta M. (2014). Nano-Fe as feed additive improves the hematological and immunological parameters of fish, Labeo rohita H. Appl. Nanosci., 4: 687–694.
  26. Bhattacharyya A., Reddy S.J., Hasan M.M., Adeyemi M.M., Marye R.R., Naika H. (2015). Nanotechnology-a unique future technology in aquaculture for the food security. Int. J. Bioassays, 4: 4115–4126.
  27. Cazenave J., Ale A., Bacchetta C., Rossi A.S. (2019). Nanoparticles toxicity in fish models. Curr. Pharm. Des., 25: 3927–3942.
  28. Chen G.H., Song C.C., Zhao T., Hogstrand C., Wei X.L., Lv W.H., Song Y.F., Luo Z. (2022). Mitochondria-dependent oxidative stress mediates ZnO nanoparticle (ZnO NP)-induced mitophagy and lipotoxicity in freshwater teleost fish. Environ. Sci. Technol., 56: 2407–2420.
  29. Cheng T.C., Yao K.S., Yeh N., Chang C.I., Hsu H.C., Chien Y.T., Chang C.Y. (2009). Visible light activated bactericidal effect of TiO2/Fe3O4 magnetic particles on fish pathogens. Surf. Coat. Tech., 204: 1141–1144.
  30. Chris U.O., Singh N.B., Agarwal A. (2018). Nanoparticles as feed supplement on growth behaviour of cultured catfish (Clarias gariepinus) fingerlings. Mater. Today: Proc., 5: 9076–9081.
  31. Collado-Gonzalez M., Esteban M.Á. (2022). Chitosan-nanoparticles effects on mucosal immunity: A systematic review. Fish Shellfish Immunol., 130: 1–8.
  32. Crintea A., Dutu A.G., Sovrea A., Constantin A.M., Samasca G., Masalar A.L., Ifju B., Linga E., Neamti L., Tranca R.A., Fekete Z. (2022). Nanocarriers for drug delivery: an overview with emphasis on vitamin D and K transportation. Nanomaterials, 12: 1376.
  33. Datta A., Patra C., Bharadwaj H., Kaur S., Dimri N., Khajuria R. (2017). Green synthesis of zinc oxide nanoparticles using Parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. J. Biotechnol. Biomater., 7: 271–276.
  34. Dawood M.A., Gewaily M.S., Soliman A.A., Shukry M., Amer A.A., Younis E.M., Abdel-Warith A.W.A., Van Doan H., Saad A.H., Aboubakr M., Abdel-Latif H.M. (2020a). Marine-derived chitosan nanoparticles improved the intestinal histo-morphometrical features in association with the health and immune response of grey mullet (Liza ramada). Mar. Drugs, 18: 611.
  35. Dawood M.A., Eweedah N.M., Moustafa E.M., El-Sharawy M.E., Soliman A.A., Amer A.A., Atia M.H. (2020b). Copper nanoparticles mitigate the growth, immunity, and oxidation resistance in common carp (Cyprinus carpio). Biol. Trace Elem. Res., 198: 283–292.
  36. Dawood M.A., Koshio S., Zaineldin A.I., Van Doan H., Ahmed H.A., Elsabagh M., Abdel-Daim M.M. (2019). An evaluation of dietary selenium nanoparticles for red sea bream (Pagrus major) aquaculture: growth, tissue bioaccumulation, and antioxidative responses. Environ. Sci. Pollut. Res., 26: 30876–30884.
  37. De Jong W.H., Borm P.J. (2008). Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed., 3: 133–149.
  38. Defe G.A., Antonio A.Z.C. (2018). Multi-parameter water quality monitoring device for grouper aquaculture. In: 2018 IEEE 10th International conference on humanoid, nanotechnology, information technology, communication and control, environment and management (HNICEM). IEEE, pp. 1–5.
  39. Ebrahimi P., Changizi R., Ghobadi S., Shohreh P., Vatandoust S. (2020). Effect of nano-Fe as feed supplement on growth performance, survival rate, blood parameters and immune functions of the stellate sturgeon (Acipenser stellatus). Russ. J. Mar. Biol., 46: 493–500.
  40. El Basuini M.F., El‐Hais A.M., Dawood M.A.O., Abou‐Zeid A.S., El‐Damrawy S.Z., Khalafalla M.S., Koshio S., Ishikawa M., Dossou S.J.A.N. (2017). Effects of dietary copper nanoparticles and vitamin C supplementations on growth performance, immune response and stress resistance of red sea bream, Pagrus major. Aquac. Nutr., 23: 1329–1340.
  41. El-Naggar M., Salaah S., El-Shabaka H., Abd El-Rahman F., Khalil M., Suloma A. (2021). Efficacy of dietary chitosan and chitosan nanoparticles supplementation on health status of Nile tilapia, Oreochromis niloticus (L.). Aquac. Rep., 19: 100628.
  42. Escárcega-González C.E., Garza-Cervantes J.A., Vázquez-Rodríguez A., Morones-Ramírez J.R. (2018). Bacterial exopolysaccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. Int. J. Polym. Sci., 2018: 7045852.
  43. Escorcia-Díaz D., García-Mora S., Rendón-Castrillón L., Ramírez-Carmona M., Ocampo-López C. (2023). Advancements in nanoparticle deposition techniques for diverse substrates: a review. Nanomaterials, 13: 2586.
  44. Estrela F.N., Guimarães A.T.B., Silva F.G., da Luz T.M., Silva A.M., Pereira P.S., Malafaia G. (2021). Effects of polystyrene nanoplastics on Ctenopharyngodon idella (grass carp) after individual and combined exposure with zinc oxide nanoparticles. J. Hazard. Mater., 403: 123879.
  45. Ezema I.C., Ogbobe P.O., Omah A.D. (2014). Initiatives and strategies for development of nanotechnology in nations: a lesson for Africa and other least developed countries. Nanoscale Res. Lett., 9: 1–8.
  46. Faiz H., Zuberi A., Nazir S., Rauf M., Younus N. (2015). Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). Int. J. Agric. Biol., 17: 568–574.
  47. Fajardo C., Martinez-Rodriguez G., Blasco J., Mancera J.M., Thomas B., De Donato M. (2022). Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquac. Fish., 7: 185–200.
  48. Flegel T.W. (2012). Historic emergence, impact and current status of shrimp pathogens in Asia. J. Invertebr. Pathol., 110: 166–173.
  49. Fruncillo S., Su X., Liu H., Wong L.S. (2021). Lithographic processes for the scalable fabrication of micro-and nanostructures for biochips and biosensors. ACS Sensors, 6: 2002–2024.
  50. Fujiki K., Matsuyama H., Yano T. (1994). Protective effect of sodium alginates against bacterial infection in common carp, Cyprinus carpio L. J. Fish Dis., 17: 349–355.
  51. García-Ruiz D.L., Granados-Martínez F.G., Gutiérrez-García C.J., Ambriz-Torres J.M., de Jesús Contreras-Navarrete J., Flores-Ramírez N., Méndez F., Domratcheva-Lvova L. (2021). Synthesis of carbon nanomaterials by chemical vapor deposition method using green chemistry principles. In: Handbook of greener synthesis of nanomaterials and compounds. Elsevier, pp. 273–314.
  52. Garza F.A. (2024). Aquaculture and food security. In: An Introduction to sustainable aquaculture. Routledge, pp. 199–224.
  53. German-Cortés J., Vilar-Hernández M., Rafael D., Abasolo I., Andrade F. (2023). Solid lipid nanoparticles: multitasking nano-carriers for cancer treatment. Pharmaceutics, 15: 831.
  54. Golden C.D., Koehn J.Z., Shepon A., Passarelli S., Free C.M., Viana D.F., Matthey H., Eurich J.G., Gephart J.A., Fluet-Chouinard E., Nyboer E.A. (2021). Aquatic foods to nourish nations. Nature, 598: 315–320.
  55. Hairom N.H.H., Soon C.F., Mohamed R.M.S.R., Morsin M., Zainal N., Nayan N., Zulkifli C.Z., Harun N.H. (2021). A review of nanotechnological applications to detect and control surface water pollution. Environ. Technol. Innov., 24: 102032.
  56. Hajiyeva A., Mamedov C., Gasimov E., Rzayev F., Khalilov R., Ahmadian E., Eftehari A., Cho W.C. (2023). Ultrastructural characteristics of the accumulation of iron nanoparticles in the intestine of Cyprinus carpio (Linnaeus, 1758) under aquaculture. Ecotoxicol. Environ. Saf., 264: 115477.
  57. Halimi M., Alishahi M., Abbaspour M.R., Ghorbanpoor M., Tabandeh M.R. (2019). Valuable method for production of oral vaccine by using alginate and chitosan against Lactococcus garvieae/Streptococcus iniae in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 90: 431–439.
  58. Handy R.D., Shaw B.J. (2007). Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc., 9: 125–144.
  59. Harikrishnan R., Balasundaram C., Heo M.S. (2012). Poly d, l-lactide-co-glycolic acid (PLGA)-encapsulated vaccine on immune system in Epinephelus bruneus against Uronema marinum. Exp. Parasitol., 131: 325–332.
  60. Hobson D.W. (2009). Commercialization of nanotechnology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 1: 189–202.
  61. Hou P.X., Zhang F., Zhang L., Liu C., Cheng H.M. (2022). Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications. Adv. Funct. Mater., 32: 2108541.
  62. Huang P., Ye Z., Xie W., Chen Q., Li J., Xu Z., Yao M. (2013). Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles. Water Res., 47: 4050–4058.
  63. Hussain S.M., Khalid A., Shahzad M.M., Rasul A., Akram A.M., Ahmad N., Khalid F. (2019). Effect of dietary supplementation of selenium nanoparticles on growth performance and nutrient digestibility of common carp (Cyprinus carpio Linnaeus, 1758) fingerlings fed sunflower meal-based diet. Indian J. Fish, 66: 55–61.
  64. Izquierdo M.S., Ghrab W., Roo J., Hamre K., Hernández‐Cruz C.M., Bernardini G., Terova G., Saleh R. (2017). Organic, inorganic and nanoparticles of Se, Zn and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758). Aquac. Res., 48: 2852–2867.
  65. Ji J., Torrealba D., Ruyra À., Roher N. (2015). Nanodelivery systems as new tools for immunostimulant or vaccine administration: targeting the fish immune system. Biology, 4: 664–696.
  66. Jiménez-Fernández E., Ruyra A., Roher N., Zuasti E., Infante C., Fernández-Díaz C. (2014). Nanoparticles as a novel delivery system for vitamin C administration in aquaculture. Aquaculture, 432: 426–433.
  67. Jin R., Zhai L., Zhu Q., Feng J., Pan X. (2020). Naked-eyes detection of Largemouth bass ranavirus in clinical fish samples using gold nanoparticles as colorimetric sensor. Aquaculture, 528: 735554.
  68. Joosten P.H., Aviles-Trigueros M., Sorgeloos P., Rombout J.H.W.M. (1995). Oral vaccination of juvenile carp (Cyprinus carpio) and gilthead seabream (Sparus aurata) with bioencapsulated Vibrio anguillarumbacterin. Fish Shellfish Immunol., 5: 289–299.
  69. Joosten P.H.M., Tiemersma E., Threels A., Caumartin-Dhieux C., Rombout J.H.W.M. (1997). Oral vaccination of fish against Vibrio anguillarum using alginate microparticles. Fish Shellfish Immunol., 7: 471–485.
  70. Khan I., Saeed K., Khan I. (2019). Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 12: 908–931.
  71. Khan S.K., Dutta J., Ahmad I., Rather M.A. (2024). Nanotechnology in aquaculture: Transforming the future of food security. Food Chem.: X, 24: 101974.
  72. Kim E., Hahn J., You Y., Choi Y.J. (2024). Design and optimization of a colorimetric biosensor using functionalized gold nanoparticles and bi-functional linker for agriculture and food industry. Microchem. J., 206: 111600.
  73. Kirubakaran D., Selvam K., Manimegalai P., Shivakumar M.S., Navina B. (2024). Bioremediation of emerging pollutants using nanomaterials. In: Bioremediation of emerging contaminants in water. American Chemical Society, pp. 111–133.
  74. Kole S., Shin S.M., Kwak I.S., Cho S.H., Jung S.J. (2022). Efficacy of Chitosan-PLGA encapsulated trivalent oral vaccine against viral haemorrhagic septicemia virus, Streptococcus parauberis, and Miamiensis avidus in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 127: 843–854.
  75. Kolupula A.K., Gora S.P., Bhanu Prakash C., Nagaraju S., Pagala J., Battapothula S. (2024). Harnessing nanotechnology for advancements in fisheries and aquaculture: a comprehensive review. Proc. Indian Natl. Sci. Acad., 90: 1–22.
  76. Kumar N., Thorat S.T., Patole P.B., Gite A., Kumar T. (2023). Does a selenium and zinc nanoparticles support mitigation of multiple-stress in aquaculture?. Aquaculture, 563: 739004.
  77. Kumar S.R., Ahmed V.I., Parameswaran V., Sudhakaran R., Babu V.S., Hameed A.S. (2008). Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish Shellfish Immunol., 25: 47–56.
  78. Kumar P.V., Pammi S.V.N., Kollu P., Satyanarayana K.V.V., Shameem U. (2014). Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind. Crops Prod., 52: 562–566.
  79. Kunjiappan S., Bhattacharjee C., Chowdhury R. (2015). Hepatoprotective and antioxidant effects of Azolla microphylla based gold nanoparticles against acetaminophen induced toxicity in a fresh water common carp fish (Cyprinus carpio L.). Nanomed. J., 2: 88–110.
  80. Kusuma S.A.F., Harmonis J.A., Pratiwi R., Hasanah A.N. (2023). Gold nanoparticle-based colorimetric sensors: Properties and application in detection of heavy metals and biological molecules. Sensors, 23: 8172.
  81. Leal C.A.G., Carvalho-Castro G.A., Sacchetin P.S.C., Lopes C.O., Moraes A.M., Figueiredo H.C.P. (2010). Oral and parenteral vaccines against Flavobacterium columnare: evaluation of humoral immune response by ELISA and in vivo efficiency in Nile tilapia (Oreochromis niloticus). Aquac. Int., 18: 657–666.
  82. Lekamge S., Ball A.S., Shukla R., Nugegoda D. (2020). The toxicity of nanoparticles to organisms in freshwater. Rev. Environ. Contam. Toxicol., 248: 1–80.
  83. León-Rodríguez L., Luzardo-Álvarez A., Blanco-Méndez J., Lamas J., Leiro J. (2012). A vaccine based on biodegradable microspheres induces protective immunity against scuticociliatosis without producing side effects in turbot. Fish Shellfish Immunol., 33: 21–27.
  84. Liu J., Chu H., Wei H., Zhu H., Wang G., Zhu J., He J. (2016). Facile fabrication of carboxymethyl cellulose sodium/graphene oxide hydrogel microparticles for water purification. RSC Adv., 6: 50061–50069.
  85. Liu S., Miao L., Li B., Shan S., Li D., Hou J. (2023). Long-term effects of Ag NPs on denitrification in sediment: Importance of Ag NPs exposure ways in aquatic ecosystems. Water Res., 242: 120283.
  86. Manasa D.J., Chandrashekar K.R., Kumar M.P., Suresh D., Kumar D.M., Ravikumar C.R., Bhattacharya T., Murthy H.A. (2021). Proficient synthesis of zinc oxide nanoparticles from Tabernaemontana heyneana Wall. via green combustion method: Antioxidant, anti-inflammatory, antidiabetic, anticancer and photocatalytic activities. Results Chem., 3: 100178.
  87. Mao J., Li S., He C., Tang Y., Chen Z., Huang J., Lai Y. (2019). Robust amphiprotic konjac glucomannan cross-linked chitosan aerogels for efficient water remediation. Cellulose, 26: 6785–6796.
  88. McLean E., Craig S.R. (2003). Overcoming barriers to the oral delivery of peptide and protein therapeutics to aquacultured organisms. In: Nutritional biotechnology in the food and feed industries, Lyons T.P., Jacques K.A. (eds). Nottingham University Press, UK, pp 551–565.
  89. Misra V.K., Gupta S., Singh C.P., Singh S., Kumar A. (2023). Nanoencapsulation of nutrients in fish feed: enhancing bioavailability, absorption, and health benefits for farmed fish. Biol. Forum - Int. J., 15: 632–639.
  90. Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. (2021). Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 20: 101–124.
  91. Moges F.D., Patel P., Parashar S.K.S., Das B. (2020). Mechanistic insights into diverse nano-based strategies for aquaculture enhancement: a holistic review. Aquaculture, 519: 734770.
  92. Mohammadi G., Rohani-Ghadikolaei K., Abdolalian E. (2024). Water quality and growth performance of Litopenaeus vannamei at different stocking densities in a chemoautotrophic-based system with limited organic carbon supplementation during the nursery phase. Aquac. Int., 32: 3917–3933.
  93. Mona C., Salomé M.M., Judit K., José-María N., Eric B., María-Luisa F.C. (2023). Considerations for bioaccumulation studies in fish with nanomaterials. Chemosphere, 312: 137299.
  94. Motamedi E., Atouei M.T., Kassaee M.Z. (2014). Comparison of nitrate removal from water via graphene oxide coated Fe, Ni and Co nanoparticles. Mater. Res. Bull., 54: 34–40.
  95. Muralisankar T., Bhavan P.S., Radhakrishnan S., Seenivasan C., Manickam N., Srinivasan V. (2014). Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn, Macrobrachium rosenbergii. Biol. Trace Elem. Res., 160: 56–66.
  96. Muralisankar T., Bhavan P.S., Radhakrishnan S., Seenivasan C., Srinivasan V. (2016). The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. J. Trace Elem. Med. Biol., 34: 39–49.
  97. Naik G.G., Jagtap V.A. (2024). Two heads are better than one: Unravelling the potential Impact of Artificial Intelligence in nanotechnology. Nano TransMed, 3: 100041.
  98. Nakhaei P., Margiana R., Bokov D.O., Abdelbasset W.K., Kouhbanani M.J., Varma R.S., Marofi F., Jarahian M., Beheshtkhoo N. (2021). Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol., 9: 705886.
  99. Nambi Krishnan J., Venkatachalam K.R., Ghosh O., Jhaveri K., Palakodeti A., Nair N. (2022). Review of thin film nanocomposite membranes and their applications in desalination. Front. Chem., 10: 781372.
  100. Nandipati M., Fatoki O., Desai S. (2024). Bridging nanomanufacturing and artificial intelligence—a comprehensive review. Materials, 17: 1621.
  101. Narayan K.G., Sinha D.K., Singh D.K. (2023). Economics of Disease. In: Veterinary Public Health & Epidemiology. Springer, Singapore.
  102. Narayanan K.B., Sakthivel N. (2008). Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett., 62: 4588–4590.
  103. Natarajan A., Devi K.S., Raja S., Senthil Kumar A. (2017). An elegant analysis of white spot syndrome virus using a graphene oxide/methylene blue based electrochemical immunosensor platform. Sci. Rep., 7: 46169.
  104. Naylor R.L., Hardy R.W., Buschmann A.H., Bush S.R., Cao L., Klinger D.H., Little D.C., Lubchenco J., Shumway S.E., Troell M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591: 551–563.
  105. Neethu K.M., Karmakar S., Sahoo B., Mishrra N., Moitra P. (2025). Use of quantum dots as nanotheranostic agents: emerging applications in rare genetic diseases. Small, 21: 2407353.
  106. Negi S. (2024). Surfactants as antimicrobial nanocoatings for medical devices and implants. In: Next-generation antimicrobial nanocoatings for medical devices and implants. Woodhead Publishing, pp. 181-204.
  107. Nezhadheydari H., Tavabe K.R., Mirvaghefi A., Heydari A., Frinsko M. (2019). Effects of different concentrations of Fe3O4@ ZnO and Fe3O4@ CNT magnetic nanoparticles separately and in combination on aquaculture wastewater treatment. Environ. Technol. Innov., 15: 100414.
  108. Nie Q., Zhang W., Wang L., Guo Z., Li C., Yao J., Li M., Wu D., Zhou L. (2018). Sensitivity enhanced, stability improved ethanol gas sensor based on multi-wall carbon nanotubes functionalized with Pt-Pd nanoparticles. Sens. Actuators B: Chem., 270: 140–148.
  109. Nsairat H., Khater D., Sayed U., Odeh F., Al Bawab A., Alshaer W. (2022). Liposomes: Structure, composition, types, and clinical applications. Heliyon, 8: e09394.
  110. Ogunfowora L.A., Iwuozor K.O., Ighalo J.O., Igwegbe C.A. (2021). Trends in the treatment of aquaculture effluents using nanotechnology. Clean. Mater., 2: 100024.
  111. Oliveira C., Coelho C., Teixeira J.A., Ferreira-Santos P., Botelho C.M. (2022). Nanocarriers as active ingredients enhancers in the cosmetic industry—The European and North America regulation challenges. Molecules, 27: 1669.
  112. Parihar A., Sharma P., Choudhary N.K., Khan R., Mostafavi E. (2024). Internet-of-things-integrated molecularly imprinted polymer-based electrochemical nano-sensors for pesticide detection in the environment and food products. Environ. Pollut., 351: 124029.
  113. Parsai T., Kumar A. (2020). Tradeoff between risks through ingestion of nanoparticle contaminated water or fish: Human health perspective. Sci. Total Environ., 740: 140140.
  114. Patolsky F., Zheng G., Lieber C.M. (2006). Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc., 1: 1711–1724.
  115. Periyasamy A.P., Venkataraman M., Kremenakova D., Militky J., Zhou Y. (2020). Progress in sol-gel technology for the coatings of fabrics. Materials, 13: 1838.
  116. Perumal S., Atchudan R., Yoon D.H., Joo J., Cheong I.W. (2020). Graphene oxide-embedded chitosan/gelatin hydrogel particles for the adsorptions of multiple heavy metal ions. J. Mater. Sci., 55: 9354–9363.
  117. Pires N.M., Dong T., Yang Z., da Silva L.F. (2021). Recent methods and biosensors for foodborne pathogen detection in fish: Progress and future prospects to sustainable aquaculture systems. Crit. Rev. Food Sci. Nutr., 61: 1852–1876.
  118. Pisano R., Durlo A. (2023). Feynman’s frameworks on nanotechnology in historiographical debate. In: Handbook for the Historiography of Science. Cham: Springer International Publishing, pp. 441–478.
  119. Prasad M., Mahawer S.K. (2023). Nano-agrochemicals: Risk assessment and management strategies. Plant Health Arch., 1: 66–72.
  120. Priyadarshi N., Singhal N.K. (2023). Quartz Crystal Microbalance (qcm)-based nanosensors for the detection of pathogenic bacteria. In: Nanosensors for point-of-care diagnostics of pathogenic bacteria Singapore: Springer Nature Singapore, pp. 143–167.
  121. Quintanilla-Villanueva G.E., Maldonado J., Luna-Moreno D., Rodríguez-Delgado J.M., Villarreal-Chiu J.F., Rodríguez-Delgado M.M. (2023). Progress in plasmonic sensors as monitoring tools for aquaculture quality control. Biosensors, 13: 90.
  122. Raja A., Ashokkumar S., Marthandam R.P., Jayachandiran J., Khatiwada C.P., Kaviyarasu K., Raman R.G., Swaminathan M. (2018). Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J. Photochem. Photobiol. B: Biol., 181: 53–58.
  123. Rajeshkumar S., Venkatesan C., Sarathi M., Sarathbabu V., Thomas J., Basha K.A., Hameed A.S. (2009). Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol., 26: 429–437.
  124. Rangesh K., Anand M., Padmapriya S., Maruthupandy M. (2024). Current advances in the use of functionalized nanoparticles for the diagnosis and treatment of microbial infections in aquaculture. In: Nanoscience and nanotechnology for smart prevention, diagnostics and therapeutics: Fundamentals to applications, Kamaraj S.K., Thirumurugan A., Maruthupandy M., López Pérez M.G., Dhanabalan S.S. (eds). Scrivener Publishing LLC, Wiley, pp.117–142.
  125. Rauf A., Ahmad Z., Ibrahim M., Rezaul Islam M., Hemeg H. A., Al-Awthan Y.S., Bahattab O., Rahman A., Umar M., Muhammad N. (2024). Green synthesis of iron oxide NPs (IONPs) by using aqueous extract of Parthenium hysterophorus Linnaeus for the invitro antidiabetic and antiinflammatory activities. J. Pure Appl. Microbiol., 18: 2401–2410.
  126. Romalde J.L., Luzardo-Alvárez A., Ravelo C., Toranzo A.E., Blanco-Méndez J. (2004). Oral immunization using alginate microparticles as a useful strategy for booster vaccination against fish lactoccocosis. Aquaculture, 236: 119–129.
  127. Saffari S., Keyvanshokooh S., Zakeri M., Johari S.A., Pasha‐Zanoosi H.J.A.N. (2017). Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquac. Nutr., 23: 611–617.
  128. Sarkar B., Mahanty A., Gupta S.K., Choudhury A.R., Daware A., Bhattacharjee S. (2022). Nanotechnology: A next-generation tool for sustainable aquaculture. Aquaculture, 546: 737330.
  129. Sarkar D.J., Santhana Kumar V., Banerjee T., Roy S. (2023). Nanotechnological applications in aquatic health management. In Biotechnological tools in fisheries and aquatic health management. Singapore: Springer Nature Singapore, pp. 39–57.
  130. Satgurunathan T., Bhavan P.S., Joy R.D.S. (2019). Green synthesis of chromium nanoparticles and their effects on the growth of the prawn Macrobrachium rosenbergii post-larvae. Biol. Trace Elem. Res., 187: 543–552.
  131. Shah B.R., Mraz J. (2020). Advances in nanotechnology for sustainable aquaculture and fisheries. Rev. Aquac., 12: 925–942.
  132. Shan D., Zhao Y., Liu L., Linghu X., Shu Y., Liu W., Di M., Zhang J., Chen Z., Liu H., Wang B. (2023). Chemical synthesis of silver/titanium dioxide nanoheteroparticles for eradicating pathogenic bacteria and photocatalytically degrading organic dyes in wastewater. Environ. Technol. Innov., 30: 103059.
  133. Shand H., Dutta S., Rajakumar S., James Paulraj S., Mandal A.K., Ramya Devi K.T., Ghorai, S. (2022). New age detection of viruses: The nano-biosensors. Front. Nanotechnol., 3: 814550.
  134. Sharma N.C., Sahi S.V., Nath S., Parsons J.G., Gardea-Torresde J.L., Pal T. (2007). Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ. Sci. Technol., 41: 5137–5142.
  135. Shrestha S., Wang B., Dutta P. (2020). Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci., 279: 102162.
  136. Shrivastava Y. (2024). Biosecurity practices for health management in aquaculture. In Futuristic Trends in Aquaculture. IIP Series. pp. 92–103.
  137. Silva V., Fernandes J.F., Tomás M.C., Silva C.P., Calisto V., Otero M., Lima D.L. (2023). Enhanced solar driven photocatalytic removal of antibiotics from aquaculture effluents by TiO2/carbon quantum dot composites. Catal. Today., 419: 114150.
  138. Solans C., Izquierdo P., Nolla J., Azemar N., Garcia-Celma M.J. (2005). Nano-emulsions. Curr. Opin. Colloid Interface Sci., 10: 102–110.
  139. Soltani M., Ghodratnema M., Ahari H., Ebrahimzadeh M.H., Atei M., Dastmalchi F., Rahmania J. (2009). The inhibitory effect of silver nanoparticles on the bacterial fish pathogens, Streptococcus iniae, Lactococcus garvieae, yersinia ruckeri, and Aeromonas hydrophila. Int. J. Vet. Res., 3: 137–142.
  140. Stentiford G.D., Neil D.M., Peeler E.J., Shields J.D., Small H.J., Flegel T.W., Vlak J.M., Jones B., Morado F., Moss S., Lotz J. (2012). Disease will limit future food supply from the global crustacean fishery and aquaculture sectors. J. Invertebr. Pathol., 110: 141–157.
  141. Stokes K., Clark K., Odetade D., Hardy M., Goldberg Oppenheimer P. (2023). Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications. Discov. Nano, 18: 153.
  142. Su X., Sutarlie L., Loh X.J. (2020). Sensors, biosensors, and analytical technologies for aquaculture water quality. Research, 2020: 8272705.
  143. Sukkarun P., Kitiyodom S., Yostawornkul J., Chaiin P., Yata T., Rodkhum C., Boonrungsiman S., Pirarat N. (2022). Chitosan-polymer based nanovaccine as promising immersion vaccine against Aeromonas veronii challenge in red tilapia (Oreochromis sp.). Fish Shellfish Immunol., 129: 30–35.
  144. Swain P., Sasmal A., Nayak S.K., Barik S.K., Mishra S.S., Mohapatra K.D., Swain S.K., Saha J.N., Sen A.K., Jayasankar P. (2016). Evaluation of selected metal nanoparticles on hatching and survival of larvae and fry of Indian major carp, rohu (Labeo rohita). Aquac. Res., 47: 498–511.
  145. Sweet L., Strohm B. (2006). Nanotechnology—life-cycle risk management. Hum. Ecol. Risk Assess., 12: 528–551.
  146. Tabatabaei M.S., Islam R., Ahmed M. (2021). Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: A review. Anal. Chim. Acta, 1143: 250–266.
  147. Tang L., Tan J., Nong H., Liu B., Cheng H.M. (2020). Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res., 2: 36–47.
  148. Technavio. (2022). Food nanotechnology market by application and geography - forecast and analysis 2021–2025. Available from https://www.technavio.com/report/food-nanotechnology-market-industry-analysis.
  149. Teixeira-Santos R., Gomes M., Gomes L.C., Mergulhao F.J. (2021). Antimicrobial and anti-adhesive properties of carbon nanotube-based surfaces for medical applications: A systematic review. Iscience, 24: 102001
  150. Thangapandiyan S., Alisha A.A., Anidha K. (2020). Growth performance, hematological and biochemical effects of iron oxide nanoparticles in Labeo rohita. Biocatal. Agric. Biotechnol., 25: 101582.
  151. Thawany P., Tiwari U.K., Deep A. (2023). Surface plasmon resonance (spr)-based nanosensors for the detection of pathogenic bacteria. In: Nanosensors for point-of-care diagnostics of pathogenic bacteria. Singapore: Springer Nature Singapore, pp. 41–57.
  152. Thiruppathiraja C., Kumar S., Murugan V., Adaikkappan P., Sankaran K., Alagar M. (2011). An enhanced immuno-dot blot assay for the detection of white spot syndrome virus in shrimp using antibody conjugated gold nanoparticles probe. Aquaculture, 318: 262–267.
  153. Thomas L., Neelima T.K., Archana T.M. (2024). Renewable functional materials derived from animal wastes and organic garbage waste to wealth–a green innovation in biomass circular bioeconomy. In: Handbook of advanced biomass materials for environmental remediation. Springer Nature, Singapore, pp. 43–73.
  154. Tian J.Y., Sun X.Q., Chen X.G. (2008a). Formation and oral administration of alginate microspheres loaded with pDNA coding for lymphocystis disease virus (LCDV) to Japanese flounder. Fish Shellfish Immunol., 24: 592–599.
  155. Tian J., Sun X., Chen X., Yu J., Qu L., Wang L. (2008b). The formulation and immunisation of oral poly (DL-lactide-co-glycolide) microcapsules containing a plasmid vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Int. Immunopharmacol., 8: 900–908.
  156. Tian J., Yu J., Sun X. (2008c). Chitosan microspheres as candidate plasmid vaccine carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus). Vet. Immunol. Immunopathol., 126: 220–229.
  157. Tortella G.R., Rubilar O., Durán N., Diez M.C., Martínez M., Parada J., Seabra A.B. (2020). Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater., 390: 121974.
  158. Tyshenko M.G., Farhat N., Lewis R., Shilnikova N., Krewski D. (2010). Applying a precautionary risk management strategy for regulation of nanotechnology. Int. J. Nanotechnol., 7: 243–264.
  159. Udo I.U., Etukudo U., Anwana U.I.U. (2018). Effects of chitosan and chitosan nanoparticles on water quality, growth performance, survival rate and meat quality of the African catfish, Clarias gariepinus. Nanoscience, 1: 12–25.
  160. Upadhyayula V.K., Deng S., Mitchell M.C., Smith G.B. (2009). Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci. Total Environ., 408: 1–13.
  161. Vaseeharan B., Ramasamy P., Chen J.C. (2010). Antibacterial activity of silver nanoparticles (AgNps) synthesized by tea leaf extracts against pathogenic Vibrio harveyi and its protective efficacy on juvenile Feneropenaeus indicus. Lett. Appl. Microbiol., 50: 352–356.
  162. Vinay T.N., Bhat S., Gon Choudhury T., Paria A., Jung M.H., Shivani Kallappa, G., Jung S.J. (2018). Recent advances in application of nanoparticles in fish vaccine delivery. Rev. Fish. Sci. Aquac., 26: 29–41.
  163. Visan A.I., Negut I. (2024). Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery. Life, 14: 233.
  164. Wang N., Zhang R., Liu K., Zhang Y., Shi X., Sand W., Hou B. (2024). Application of nanomaterials in antifouling: A review. Nano Mater. Sci., 6: 672–700.
  165. Weyland M., Andersen M.F., Hobbs R.A., Sanchez L., Ruksasakchai P., Szigeti S.S. (2023). Controlling individual atoms with optical tweezers. In Optical trapping and optical micromanipulation. SPIE, pp. 37–41.
  166. Willett W., Rockström J., Loken B., Springmann M., Lang T., Vermeulen S., Garnett T., Tilman D., DeClerck F., Wood A., Jonell M. (2019). Food in the anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet, 393: 447–492.
  167. Wu H., Zou M., Fan X., Su F., Xiao F., Zhou M., Sun Y., Zhao F., Wu G. (2022). Facile, rapid, and low-cost detection for influenza viruses and respiratory syncytial virus based on a catalytic DNA assembly circuit. ACS Omega, 7: 15074–15081.
  168. Xu J.J., Zhao T., Luo Z., Zhong C.C., Zheng H., Tan X.Y. (2023). Effects of dietary supplementation with manganese dioxide nanoparticles on growth, Mn metabolism and kidney health of yellow catfish Pelteobagrus fulvidraco. Aquac. Rep., 33: 101815.
  169. Ye S., Jin W., Huang Q., Hu Y., Shah B.R., Li Y., Li B. (2016). Development of Mag-FMBO in clay-reinforced KGM aerogels for arsenite removal. Int. J. Biol. Macromol., 87: 77–84.
  170. Yetisgin A.A., Cetinel S., Zuvin M., Kosar A., Kutlu O. (2020). Therapeutic nanoparticles and their targeted delivery applications. Molecules, 25: 2193.
  171. Yu Q., Li W., Liu M., Li M., Zhuo X., Feng L., Wang G., Li P. (2021). Aptamer-mediated targeted siRNA delivery against grouper iridovirus infection. Aquaculture, 544: 737148.
  172. Zhang S., Shao K., Hong C., Chen S., Lin Z., Huang Z., Mureti G. (2023). Carbon dot embedded photonic crystal molecularly imprinted as dual-mode fluorometric/colorimetric sensor for the determination of sulfadimethoxine in fish. J. Food Compos. Anal., 122: 105477.
  173. Zhao X., Ren X., Zhu R., Luo Z., Ren B. (2016). Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat. Toxicol., 180: 56–70.
  174. Zhu B., Zhang C., Zhao Z., Wang G.X. (2020). Targeted delivery of mannosylated nanoparticles improve prophylactic efficacy of immersion vaccine against fish viral disease. Vaccines, 8: 87.
  175. Zhu C., Wu Z., Liu Q., Wang X., Zheng L., He S., Yang F., Ji H., Dong W. (2024). Selenium nanoparticles in aquaculture: Unique advantages in the production of Se-enriched grass carp (Ctenopharyngodon idella). Anim. Nutr., 16: 189–201.
  176. Zhu H., Li Q., Ren Y., Gao Q., Chen J., Wang N., Deng J., Xing X. (2018). A new insight into cross‐sensitivity to humidity of SnO2 sensor. Small, 14: 1703974.
  177. Ziaei-Nejad S., Abaei N.K., Doost B.N., Johari S.A. (2021). Effects of supplemental feeding of common carp (Cyprinus carpio) with iron nanoparticles and probiotic Lactobacillus on blood biochemical factors. Biol. Bull., 48: 177–184.
DOI: https://doi.org/10.2478/aoas-2025-0105 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: Dec 23, 2024
Accepted on: Sep 16, 2025
Published on: Oct 16, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Pabitra Barik, Madhulika, Maibam Malemngamba Meitei, Soibam Ngasotter, Martina Meinam, Rupam Sharma, Kishore Kumar Krishnani, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT