Have a personal or library account? Click to login
Giving Cows a Digital Voice – AI-Enabled Bioacoustics and Smart Sensing in Precision Livestock Management Cover

Giving Cows a Digital Voice – AI-Enabled Bioacoustics and Smart Sensing in Precision Livestock Management

Open Access
|Aug 2025

References

  1. Alonso R.S., Sittón-Candanedo I., García Ó., Prieto J., Rodríguez-González S. (2020). An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Netw., 98: 102047.
  2. Alsina-Pagès R.M., Llonch P., Ginovart-Panisello G.J., Guevara R., Freixes M., Castro M., Duboc L., Mainau E. (2021). Dairy cattle welfare through acoustic analysis: Preliminary results of acoustic environment description. Proc. Euronoise 2021, 25–27 Oct 2021, Madeira, Portugal.
  3. Angrecka S., Solecka U., Vieira F.M.C., Herbut P., Deniz M., Adamczyk K., Godyń D. (2023). Noise as a factor of environmental stress for cattle – a review. Ann. Anim. Sci., 23: 717–723.
  4. Arablouei R., Bishop-Hurley G.J., Bagnall N., Ingham A. (2024). Cattle behavior recognition from accelerometer data: leveraging in-situ cross-device model learning. Comput. Electron. Agric., 227: 109546.
  5. Araújo V.M., Rili I., Gisiger T., Gambs S., Vasseur E., Cellier M., Diallo A.B. (2025). AI-powered cow detection in complex farm environments. Smart Agric. Technol., 10: 100770.
  6. Arazo E., Aly R., McGuinness K. (2022). Segmentation enhanced lameness detection in dairy cows from RGB and depth video. arXiv preprint arXiv:2206.04449.
  7. Aubé L., Mialon M.M., Veissier I., des Roches A.D.B. (2025). Validation of qualitative behaviour assessment for dairy cows at pasture. Appl. Anim. Behav. Sci., 283: 106489.
  8. Avanzato R., Avondo M., Beritelli F., Franco D.F., Tumino S. (2023). Detecting the number of bite prehension of grazing cows in an extensive system using an audio recording method. Proc. 8th Int. Conf. Yearly Reports Inform., Math., Eng. (ICYRIME 2023), Naples, Italy, 27–31, Vol. 3684. CEUR-WS.org.
  9. Baig T., Shastry C. (2022, October). Parturition and estrus detection in cows and heifers with WSN and IoT. In 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS) (pp. 201-208). IEEE.
  10. Bendel O., Zbinden N. (2024). The animal whisperer project. Proc. Int. Conf. Anim.-Comput. Interact., 1–9.
  11. Bertelsen M., Jensen M.B. (2023). Comparing weaning methods in dairy calves with different dam contact levels. J. Dairy Sci., 106: 9598–9612.
  12. Bloch V., Frondelius L., Arcidiacono C., Mancino M., Pastell M. (2023). Development and analysis of a CNN- and transfer-learning-based classification model for automated dairy cow feeding behavior recognition from accelerometer data. Sensors, 23: 2611.
  13. Brady B., Ramos E.A., May-Collado L., Landrau-Giovannetti N., Lace N., Arreola M.R., Santos G.M., da Silva V.M.F., Sousa-Lima R.S. (2022). Manatee calf call contour and acoustic structure varies by species and body size. Sci. Rep., 12: 19597.
  14. Burnham R. (2023). Animal calling behaviours and what this can tell us about the effects of changing soundscapes. Acoustics, 5: 631-652.
  15. Castillejo P, Cürüklü B, Fresco R, Johansen G, Bilbao-Arechabala S, Martínez-Rodríguez B, Pomante L, Martínez-Ortega JF, Santic M. (2019). The AFarCloud ECSEL project. 2019 22nd Euromicro Conference on Digital System Design (DSD), 414-419. IEEE.
  16. Cetintav B, Guven YS, Gulek E, Akbas AA. (2025). Generative AI meets animal welfare: Evaluating GPT-4 for pet emotion detection. Animals, 15: 492.
  17. Chelotti JO, Martinez-Rau LS, Ferrero M, Vignolo LD, Galli JR, Planisich AM, Rufiner HL, Giovanini LL. (2024). Livestock feeding behaviour: A review on automated systems for ruminant monitoring. Biosyst. Eng., 246: 150-177.
  18. Chelotti JO, Vanrell SR, Martinez-Rau LS, Galli JR, Utsumi SA, Planisich AM, Almirón SA, Milone DH, Giovanini LL, Rufiner HL. (2023). Using segment-based features of jaw movements to recognise foraging activities in grazing cattle. Biosyst. Eng., 229: 69-84.
  19. Chelotti JO, Vanrell SR, Rau LSM, Galli JR, Planisich AM, Utsumi SA, Milone DH, Giovanini LL, Rufiner HL. (2020). An online method for estimating grazing and rumination bouts using acoustic signals in grazing cattle. Comput. Electron. Agric., 173: 105443.
  20. Chen Y, Yue X, Zhang C, Gao X, Tan RT, Li H. (2024). VoiceBench: Benchmarking LLM-based voice assistants. arXiv preprint arXiv:2410.17196.
  21. Clarke JA. (2024). Bison mother–offspring acoustic communication. J. Mammal., 105: 1182-1189.
  22. Cornips L. (2024). The semiotic repertoire of dairy cows. Lang Soc., 1-25.
  23. Dimov D, Penev T, Marinov I. (2023). Importance of noise hygiene in dairy cattle farming—A review. Acoustics, 5: 1036-1045.
  24. Van Dixhoorn IDE, de Mol RM, Schnabel SK, van der Werf JTN, van Mourik S, Bolhuis JE, Rebel JMJ, van Reenen CG. (2023). Behavioral patterns as indicators of resilience after parturition in dairy cows. J. Dairy Sci., 106: 6444-6463.
  25. Eckhardt R, Arablouei R, McCosker K, Bernhardt H. (2024). Modeling climate change impacts on cattle behavior using generative artificial intelligence: A pathway to adaptive livestock management. In: 2024 ASABE Annu Int Meet, 1. American Society of Agricultural and Biological Engineers.
  26. Eddicks M, Feicht F, Beckjunker J, Genzow M, Alonso C, Reese S, Ritzmann M, Stadler J. (2024). Monitoring of respiratory disease patterns in a multimicrobially infected pig population using artificial intelligence and aggregate samples. Viruses, 16: 1575.
  27. El Moutaouakil, K., & Falih, N. (2023). A design of a smart farm system for cattle monitoring. Indonesian J. Electric. Eng. Comput. Sci., 32: 857–864.
  28. Eriksson H, Fall N, Ivemeyer S, Knierim U, Simantke C, Fuerst-Waltl B, Winckler C, Weissensteiner R, Pomiès D, Martin B, Michaud A. (2022). Strategies for keeping dairy cows and calves together–a cross-sectional survey study. Animal, 16: 100624.
  29. Ferrero M, Vignolo LD, Vanrell SR, Martinez-Rau LS, Chelotti JO, Galli JR, Giovanini LL, Rufiner HL. (2023). A full end-to-end deep approach for detecting and classifying jaw movements from acoustic signals in grazing cattle. Eng. Appl. Artif. Intell., 121: 106016.
  30. Fuchs P, Stachowicz J, Schneider MK, Probo M, Bruckmaier RM, Umstätter C. (2024). Stress indicators in dairy cows adapting to virtual fencing. J. Anim. Sci., 102: skae024.
  31. Gavojdian D, Lazebnik T, Mincu M, Oren A, Nicolae I, Zamansky A. (2023). Bovinetalk: Machine learning for vocalization analysis of dairy cattle under negative affective states. arXiv:2307.13994.
  32. Gavojdian D, Mincu M, Lazebnik T, Oren A, Nicolae I, Zamansky A. (2024). BovineTalk: machine learning for vocalization analysis of dairy cattle under the negative affective state of isolation. Front Vet. Sci., 11: 1357109.
  33. Geng H, Hou Z, Liang J, Li X, Zhou X, Xu A. (2024). Motion focus global–local network: combining attention mechanism with micro action features for cow behavior recognition. Comput. Electron. Agric., 226: 109399.
  34. Grandin T. (2021). The visual, auditory, and physical environment of livestock handling facilities and its effect on ease of movement of cattle, pigs, and sheep. Front Anim. Sci., 2: 744207.
  35. Green AC, Clark CE, Lomax S, Favaro L, Reby D. (2020). Context-related variation in the peripartum vocalisations and phonatory behaviours of Holstein-Friesian dairy cows. Appl. Anim. Behav. Sci., 231: 105089.
  36. Green AC, Lidfors LM, Lomax S, Favaro L, Clark CE. (2021). Vocal production in postpartum dairy cows: Temporal organization and association with maternal and stress behaviors. J. Dairy Sci., 104: 826-838.
  37. Hagiwara M. (2023). Aves: Animal vocalization encoder based on self-supervision. In: ICASSP 2023 - IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), June 2023, pp. 1-5. IEEE.
  38. Hagiwara M., Cusimano M., Liu J.Y. (2022). Modeling animal vocalizations through synthesizers. arXiv preprint arXiv:2210.10857.
  39. Hagiwara M., Hoffman B., Liu J.Y., Cusimano M., Effenberger F., Zacarian K. (2023, June). Beans: The benchmark of animal sounds. In ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.
  40. Hasenpusch P., Wilder T., Seidel A., Thaller G. (2024). Dairy cow personality: Consistency in a familiar testing environment. JDS Communications, 5: 511-515.
  41. Holinger M., Bühl V., Helbing M., Pieper L., Kürmann S., Pontiggia A., Dohme-Meier F., Keil N., Ammer S. (2024). Behavioural changes to moderate heat load in grazing dairy cows under on-farm conditions. Livest. Sci., 279: 105376.
  42. Huang R., Li M., Yang D., Shi J., Chang X., Ye Z., Wu Y., Hong Z., Huang J., Liu J., Ren Y. (2024, March). Audiogpt: Understanding and generating speech, music, sound, and talking head. Proc. AAAI Conference on Artificial Intelligence, 38: 23802-23804.
  43. Islam M.M., Scott S.D. (2021). Exploring the effects of precision livestock farming notification mechanisms on Canadian dairy farmers. In International Summit Smart City 360° (pp. 247-266). Cham: Springer International Publishing.
  44. Jobarteh B., Mincu M., Dinu G., Neethirajan S. (2024). Multi modal information fusion of acoustic and linguistic data for decoding dairy cow vocalizations in animal welfare assessment. arXiv preprint arXiv:2411.00477.
  45. Johnsen J.F., Johanssen J.R.E., Aaby A.V., Kischel S.G., Ruud L.E., Soki-Makilutila A., Kristiansen T.B., Wibe A.G., Bøe K.E., Ferneborg S. (2021). Investigating cow–calf contact in cow-driven systems: Behaviour of the dairy cow and calf. J. Dairy Res., 88: 52–55.
  46. Johnsen J.F., Sørby J., Ferneborg S., Kischel S.G. (2024). Effect of debonding on stress indicators in cows and calves in a cow–calf contact system. JDS Communications, 5: 426–430.
  47. Jung D.H., Kim N.Y., Moon S.H., Jhin C., Kim H.J., Yang J.S., Kim H.S., Lee T.S., Lee J.Y., Park S.H. (2021). Deep learning-based cattle vocal classification model and real-time livestock monitoring system with noise filtering. Animals, 11: 357.
  48. Jung D.H., Kim N.Y., Moon S.H., Kim H.S., Lee T.S., Yang J.S., Lee J.Y., Han X., Park S.H. (2021). Classification of vocalization recordings of laying hens and cattle using convolutional neural network models. Journal of Biosystems Engineering, 46: 217-224.
  49. Karmiris I., Astaras C., Ioannou K., Vasiliadis I., Youlatos D., Stefanakis N., Chatziefthimiou A.D., Kominos T., Galanaki A. (2021). Estimating livestock grazing activity in remote areas using passive acoustic monitoring. Information, 12: 290.
  50. Kim E., Moon J., Shim J., Hwang E. (2023). DualDiscWaveGAN-based data augmentation scheme for animal sound classification. Sensors, 23: 2024.
  51. Kok A., Ternman E., Thorup V.M. (2023). Do you see the pattern? Make the most of sensor data in dairy cows. J. Dairy Res., 90: 252-256.
  52. Lamanna M., Bovo M., Cavallini D. (2025). Wearable collar technologies for dairy cows: A systematized review of the current applications and future innovations in precision livestock farming. Animals, 15: 458.
  53. Lange A., Bauer L., Futschik A., Waiblinger S., Lürzel S. (2020). Talking to cows: Reactions to different auditory stimuli during gentle human–animal interactions. Front. Psych., 11: 579346.
  54. Lardy R., Mialon M.M., Wagner N., Gaudron Y., Meunier B., Sloth K.H., Ledoux D., Silberberg M., des Roches A.D.B., Ruin Q., Bouchon M. (2022). Understanding anomalies in animal behaviour: Data on cow activity in relation to health and welfare. Animal-Open Space, 1: 100004.
  55. Laurijs K.A., Briefer E.F., Reimert I., Webb L.E. (2021). Vocalisations in farm animals: A step towards positive welfare assessment. Appl. Anim. Behav. Sci., 236: 105264.
  56. Lefèvre R.A., Sypherd C.C., Briefer É.F. (2025). Machine learning algorithms can predict emotional valence across ungulate vocalizations. iScience, 28: 110088.
  57. Lenner Á., Papp Z.L., Szabó C., Komlósi I. (2023). Calming Hungarian Grey cattle in headlocks using processed nasal vocalization of a mother cow. Animals, 14: 135.
  58. Lenner Á., Papp Z.L., Komlósi I. (2025). Analysis of sounds made by Bos taurus and Bubalus bubalis dams to their calves. Front. Vet. Sci., 12: 1549100.
  59. Li B., Xie Z., Xu X., Guo Y., Yan M., Zhang J., Yu K., Wu M. (2024). DiveSound: LLM-assisted automatic taxonomy construction for diverse audio generation. arXiv preprint arXiv:2407.13198.
  60. Li C., Minati L., Tokgoz K.K., Fukawa M., Bartels J., Sihan A., Takeda K.I., Ito H. (2022). Integrated data augmentation for accelerometer time series in behavior recognition: Roles of sampling, balancing, and Fourier surrogates. IEEE Sens. J., 22: 24230-24241.
  61. Li C., Tokgoz K.K., Fukawa M., Bartels J., Ohashi T., Takeda K.I., Ito H. (2021). Data augmentation for inertial sensor data in CNNs for cattle behavior classification. IEEE Sens. Lett., 5: 1-4.
  62. Li G., Xiong Y., Du Q., Shi Z., Gates R.S. (2021). Classifying ingestive behavior of dairy cows via automatic sound recognition. Sensors, 21: 5231.
  63. Linstädt J., Thöne-Reineke C., Merle R. (2024). Animal-based welfare indicators for dairy cows and their validity and practicality: A systematic review of the existing literature. Front. Vet. Sci., 11: 1429097.
  64. Liu J., Bailey D.W., Cao H., Son T.C., Tobin C.T. (2024). Development of a novel classification approach for cow behavior analysis using tracking data and unsupervised machine learning techniques. Sensors, 24: 4067.
  65. Liu, T., Wu, D.F. and Wang, L.Y. (2020, June). Development process of animal image recognition technology and its application in modern cow and pig industry. In IOP Conference Series: Earth and Environmental Science (Vol. 512, No. 1, p. 012090). IOP Publishing.
  66. Liu, L., Feng, Y., Fu, H., Yang, Y., Pan, X. and Jin, C. (2023). Channel-spatial-based few-shot bird sound event detection. arXiv preprint arXiv:2306.10499.
  67. Liu, W., Liu, H., Lin, F., Liu, H., Gao, T., Fang, X., Liu, J., Deng, X., Sun, Y., Xu, K. and Dou, Y. (2024). Few-shot bioacoustic event detection at the DCASE 2024 challenge. Recall, 1, p.F1_PB.
  68. Mac, S.E., Lomax, S. and Clark, C.E. (2022). Behavioral responses to cow and calf separation: Separation at 1 and 100 days after birth. Animal Bioscience, 36(5), p.810.
  69. Mahmud, M.S., Zahid, A., Das, A.K., Muzammil, M. and Khan, M.U. (2021). A systematic literature review on deep learning applications for precision cattle farming. Computers and Electronics in Agriculture, 187, p.106313.
  70. Mandel, R., Whay, H.R., Klement, E. and Nicol, C.J. (2016). Invited review: Environmental enrichment of dairy cows and calves in indoor housing. Journal of Dairy Science, 99(3), pp.1695-1715.
  71. Martinez-Rau, L.S., Chelotti, J.O., Ferrero, M., Galli, J.R., Utsumi, S.A., Planisich, A.M., Rufiner, H.L. and Giovanini, L.L. (2025). A noise-robust acoustic method for recognizing foraging activities of grazing cattle. Computers and Electronics in Agriculture, 229, p.109692.
  72. Martinez-Rau, L.S., Chelotti, J.O., Ferrero, M., Utsumi, S.A., Planisich, A.M., Vignolo, L.D., Giovanini, L.L., Rufiner, H.L. and Galli, J.R. (2023). Daylong acoustic recordings of grazing and rumination activities in dairy cows. Scientific Data, 10(1), p.782.
  73. Martinez-Rau, L.S., Chelotti, J.O., Giovanini, L.L., Adin, V., Oelmann, B. and Bader, S. (2024). On-device feeding behavior analysis of grazing cattle. IEEE Transactions on Instrumentation and Measurement, 73, pp.1-13.
  74. Martinez-Rau, L.S., Chelotti, J.O., Vanrell, S.R., Galli, J.R., Utsumi, S.A., Planisich, A.M., Rufiner, H.L. and Giovanini, L.L. (2022). A robust computational approach for jaw movement detection and classification in grazing cattle using acoustic signals. Computers and Electronics in Agriculture, 192, p.106569.
  75. Martinez-Rau, L.S., Adın, V., Giovanini, L.L., Oelmann, B. and Bader, S. (2023, July). Real-time acoustic monitoring of foraging behavior of grazing cattle using low-power embedded devices. In 2023 IEEE Sensors Applications Symposium (SAS) (pp. 01–06). IEEE.
  76. Marumo, J.L., Lusseau, D., Speakman, J.R., Mackie, M., Byar, A.Y., Cartwright, W. and Hambly, C. (2024). Behavioural variability, physical activity, rumination time, and milk characteristics of dairy cattle in response to regrouping. Animal, 18(3), p.101094.
  77. McManus, R., Boden, L.A., Weir, W., Viora, L., Barker, R., Kim, Y., McBride, P. and Yang, S. (2022). Thermography for disease detection in livestock: A scoping review. Frontiers in Veterinary Science, 9, p.965622.
  78. Meen, G.H., Schellekens, M.A., Slegers, M.H.M., Leenders, N.L.G., van Erp-van der Kooij, E. and Noldus, L.P. (2015). Sound analysis in dairy cattle vocalisation as a potential welfare monitor. Computers and Electronics in Agriculture, 118, pp.111-115.
  79. Abdanan Mehdizadeh, S., Sari, M., Orak, H., Pereira, D.F. and Nääs, I.D.A. (2023). Classifying chewing and rumination in dairy cows using sound signals and machine learning. Animals, 13(18), p.2874.
  80. Miao, Z., Elizalde, B., Deshmukh, S., Kitzes, J., Wang, H., Dodhia, R. and Ferres, J.M.L. (2023). Zero-shot transfer for wildlife bioacoustics detection.
  81. Miao, Z., Elizalde, B., Deshmukh, S., Kitzes, J., Wang, H., Dodhia, R. and Ferres, J.L. (2025). Multi-modal language models in bioacoustics with zero-shot transfer: A case study. Scientific Reports, 15(1), 7242.
  82. Miron, M., Keen, S., Liu, J.Y., Hoffman, B., Hagiwara, M., Pietquin, O., Effenberger, F. and Cusimano, M. (2025, April). Biodenoising: Animal vocalization denoising without access to clean data. In ICASSP 2025 – 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1–5). IEEE.
  83. Moreira, S.M., Silveira, I.D.B., da Cruz, L.A.X., Minello, L.F., Pinheiro, C.L., Schwengber, E.B., Restle, J. and Vaz, R.Z. (2023). Auditory sensitivity in beef cattle of different genetic origin. Journal of Veterinary Behavior, 59, 67–72.
  84. Moummad, I., Farrugia, N. and Serizel, R. (2024, April). Self-supervised learning for few-shot bird sound classification. In 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW) (pp. 600–604). IEEE.
  85. Neethirajan, S. (2025). Adapting a large-scale transformer model to decode chicken vocalizations: A non-invasive AI approach to poultry welfare. AI, 6(4), 65.
  86. Neethirajan, S. (2022). Affective state recognition in livestock—artificial intelligence approaches. Animals, 12(6), 759.
  87. Noda, T., Koizumi, T., Yukitake, N., Yamamoto, D., Nakaizumi, T., Tanaka, K., Okuyama, J., Ichikawa, K., & Hara, T. (2024). Animal-borne soundscape logger as a system for edge classification of sound sources and data transmission for monitoring near-real-time underwater soundscape. Scientific Reports, 14(1), 6394.
  88. Nolasco, I., Singh, S., Morfi, V., Lostanlen, V., Strandburg-Peshkin, A., Vidaña-Vila, E., Gill, L., Pamuła, H., Whitehead, H., Kiskin, I., & Jensen, F.H. (2023). Learning to detect an animal sound from five examples. Ecological Informatics, 77, 102258.
  89. Ntalampiras, S., Pezzuolo, A., Mattiello, S., Battini, M., & Brščić, M. (2020, July). Automatic detection of cow/calf vocalizations in free-stall barn. In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP) (pp. 41–45). IEEE.
  90. Nurcholis, N., & Sumaryanti, L. (2021). Reproductive behavior’s: Audiovisual detection of oestrus after synchronization using prostaglandin F2 alpha (PGF2α). In E3S Web of Conferences (Vol. 328, p. 04021). EDP Sciences.
  91. Oestreich, W.K., Oliver, R.Y., Chapman, M.S., Go, M.C., & McKenna, M.F. (2024). Listening to animal behavior to understand changing ecosystems. Trends in Ecology & Evolution, 39(10), 961–973.
  92. Özmen, G., Ozkan, İ.A., Inal, S., Tasdemır, S., Çam, M., & Arslan, E. (2022). Sound analysis to recognize cattle vocalization in a semi-open barn. Gazi Journal of Engineering Sciences, 8(1), 158–167.
  93. Pandeya, Y.R., Bhattarai, B., & Lee, J. (2020). Visual object detector for cow sound event detection. IEEE Access, 8, 162625–162633.
  94. Pandeya, Y.R., Bhattarai, B., Afzaal, U., Kim, J.B., & Lee, J. (2022). A monophonic cow sound annotation tool using a semi-automatic method on audio/video data. Livestock Science, 256, 104811.
  95. Page, M.J., Moher, D., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., & Chou, R. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160.
  96. Pallottino, F., Violino, S., Figorilli, S., Pane, C., Aguzzi, J., Colle, G., Nemmi, E.N., Montaghi, A., Chatzievangelou, D., Antonucci, F., & Moscovini, L. (2025). Applications and perspectives of generative artificial intelligence in agriculture. Computers and Electronics in Agriculture, 230, 109919.
  97. Patil, R., Hemavathy, B., Sarangi, S., Singh, D., Chakraborty, R., Junagade, S., & Pappula, S. (2024, January). Identifying Indian cattle behaviour using acoustic biomarkers. In ICPRAM (pp. 594–602).
  98. Pei, T., Alican, F., Yin, A.O., & Ihlamur, Y. (2025). GPT-HTree: A decision tree framework integrating hierarchical clustering and large language models for explainable classification. arXiv preprint arXiv:2501.13743.
  99. Peng, Y., Chen, Y., Yang, Y., Liu, M., Hu, R., Zou, H., Xiao, J., Jiang, Y., Wang, Z., & Xu, L. (2024). A multimodal classification method: Cow behavior pattern classification with improved EdgeNeXt using an inertial measurement unit. Computers and Electronics in Agriculture, 226, 109453.
  100. Peng, Y., Kondo, N., Fujiura, T., Suzuki, T., Yoshioka, H., & Itoyama, E. (2023). Japanese Black cattle call patterns classification using multiple acoustic features and machine learning models. Computers and Electronics in Agriculture, 204, 107568.
  101. Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M.T., Baker, M., Browne, W.J., Clark, A., Cuthill, I.C., Dirnagl, U., & Emerson, M. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Journal of Cerebral Blood Flow & Metabolism, 40(9), 1769–1777.
  102. Prestegaard-Wilson, J., & Vitale, J. (2024). Generative artificial intelligence in extension: a new era of support for livestock producers. Animal Frontiers, 14(6), 57–59.
  103. Pérez-Granados, C., & Schuchmann, K.L. (2023). The sound of the illegal: Applying bioacoustics for long-term monitoring of illegal cattle in protected areas. Ecological Informatics, 74, 101981.
  104. Pérez-Torres, L., Ortiz, P., Martínez, J.F., Orihuela, A., Rubio, I., Corro, M., Galina, C.S., & Ungerfeld, R. (2021). Short- and long-term effects of temporary early cow–calf separation or restricted suckling on well-being and performance in zebu cattle. Animal, 15(2), 100132.
  105. Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2023, July). Robust speech recognition via large-scale weak supervision. In International Conference on Machine Learning (pp. 28492–28518). PMLR.
  106. Ramos, E.A., Brady, B., Lasala, J.A., Liebschner, A., Obbink, S., Walker, Z., Rebello, M., & Magnasco, M.O. (2023). Antillean manatee calves in captive rehabilitation change vocal behavior in anticipation of feeding. Zoo Biology, 42(6), 723–729.
  107. Riaboff, L., Shalloo, L., Smeaton, A.F., Couvreur, S., Madouasse, A., & Keane, M.T. (2022). Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Computers and Electronics in Agriculture, 192, 106610.
  108. Robinson, D., Miron, M., Hagiwara, M., Weck, B., Keen, S., Alizadeh, M., Narula, G., Geist, M., & Pietquin, O. (2024). Naturelm-audio: An audio-language foundation model for bioacoustics. arXiv preprint arXiv:2411.07186.
  109. Rohan, A., Rafaq, M.S., Hasan, M.J., Asghar, F., Bashir, A.K., & Dottorini, T. (2024). Application of deep learning for livestock behaviour recognition: A systematic literature review. Computers and Electronics in Agriculture, 224, 109115.
  110. Rubenstein, P.K., Asawaroengchai, C., Nguyen, D.D., Bapna, A., Borsos, Z., Quitry, F.D.C., Chen, P., Badawy, D.E., Han, W., Kharitonov, E., & Muckenhirn, H. (2023). Audiopalm: A large language model that can speak and listen. arXiv preprint arXiv:2306.12925.
  111. Russel, N.S., & Selvaraj, A. (2024). Decoding cow behavior patterns from accelerometer data using deep learning. Journal of Veterinary Behavior, 74, 68–78.
  112. Röttgen, V., Schön, P.C., Becker, F., Tuchscherer, A., Wrenzycki, C., Düpjan, S., & Puppe, B. (2020). Automatic recording of individual oestrus vocalisation in group-housed dairy cattle: Development of a cattle call monitor. Animal, 14(1), 198–205.
  113. Sattar, F. (2022). A context-aware method-based cattle vocal classification for livestock monitoring in smart farm. Chemistry Proceedings, 10(1), 89.
  114. Schillings, J., Bennett, R., & Rose, D.C. (2024). Managing end-user participation for the adoption of digital livestock technologies: expectations, performance, relationships, and support. The Journal of Agricultural Education and Extension, 30(2), 277–295.
  115. Schnaider, M.A., Heidemann, M.S., Silva, A.H.P., Taconeli, C.A., & Molento, C.F.M. (2022). Vocalization and other behaviors indicating pain in beef calves during the ear tagging procedure. Journal of Veterinary Behavior, 47, 93–98.
  116. Schnaider, M.A., Heidemann, M.S., Silva, A.H., Taconeli, C.A., & Molento, C.F. (2022). Vocalization and other behaviors as indicators of emotional valence: The case of cow–calf separation and reunion in beef cattle. Journal of Veterinary Behavior, 49, 28–35.
  117. Seyfarth, R.M., & Cheney, D.L. (2003). Signalers and receivers in animal communication. Annual Review of Psychology, 54(1), 145–173.
  118. Sharma, S., & Kadyan, V. (2023, March). Detection of estrus through automated classification approaches using vocalization pattern in Murrah buffaloes. In 2023 3rd International Conference on Artificial Intelligence and Signal Processing (AISP) (pp. 1–6). IEEE.
  119. Shi, Z., Chang, F., Jia, Y., Li, J., Qiu, Y., Miao, J., Jiang, W., Guo, X., Han, X., & Tang, W. (2024). Classifying and understanding of dairy cattle health using wearable inertial sensors with random forest and explainable artificial intelligence. IEEE Sensors Letters, 8(3), 1–4.
  120. Shorten, P.R. (2023). Acoustic sensors for detecting cow behaviour. Smart Agricultural Technology, 3, 100071.
  121. Shorten, P.R., & Hunter, L.B. (2023). Acoustic sensors for automated detection of cow vocalization duration and type. Computers and Electronics in Agriculture, 208, 107760.
  122. Shorten, P.R., & Hunter, L.B. (2024). Acoustic sensors to detect the rate of cow vocalization in a complex farm environment. Applied Animal Behaviour Science, 278, 106377.
  123. Silva M.M., Silveira, R.M.F., da Cruz, G.G., de Azevedo, K.A.M., Bittar, C.M.M., & da Silva, I.J.O. (2024). Acoustic-based models to assess herd-level calves’ emotional state: A machine learning approach. Smart Agricultural Technology, 9, 100682.
  124. Slob, N., Catal, C., & Kassahun, A. (2021). Application of machine learning to improve dairy farm management: A systematic literature review. Preventive Veterinary Medicine, 187, 105237.
  125. Stachowicz, J., Nasser, R., Adrion, F., & Umstätter, C. (2022). Can we detect patterns in behavioral time series of cows using cluster analysis? Journal of Dairy Science, 105(12), 9971–9981.
  126. Stowell, D. (2022). Computational bioacoustics with deep learning: A review and roadmap. PeerJ, 10, e13152.
  127. Stygar, A.H., Krampe, C., Llonch, P., & Niemi, J.K. (2022). How far are we from data-driven and animal-based welfare assessment? A critical analysis of European quality schemes. Frontiers in Animal Science, 3, 874260.
  128. Sun, Y., Wang, S., Feng, J., Ge, J., & Wang, T. (2023). Free-ranging livestock changes the acoustic properties of summer soundscapes in a Northeast Asian temperate forest. Biological Conservation, 283, 110123.
  129. Takefuji, Y. (2024). Unveiling livestock trade trends: A beginner’s guide to generative AI-powered visualization. Research in Veterinary Science, 180, 105435.
  130. Torre de la, M.P., Briefer, E.F., Reader, T., & McElligott, A.G. (2015). Acoustic analysis of cattle (Bos taurus) mother–offspring contact calls from a source–filter theory perspective. Applied Animal Behaviour Science, 163, 58–68.
  131. Tuyttens, F.A., Molento, C.F., & Benaissa, S. (2022). Twelve threats of precision livestock farming (PLF) for animal welfare. Frontiers in Veterinary Science, 9, 889623.
  132. Vandermeulen, J., Bahr, C., Johnston, D., Earley, B., Tullo, E., Fontana, I., Guarino, M., Exadaktylos, V., & Berckmans, D. (2016). Early recognition of bovine respiratory disease in calves using automated continuous monitoring of cough sounds. Computers and Electronics in Agriculture, 129, 15–26.
  133. Vidal, G., Sharpnack, J., Pinedo, P., Tsai, I.C., Lee, A.R., & Martínez-López, B. (2023). Comparative performance analysis of three machine learning algorithms applied to sensor data registered by a leg-attached accelerometer to predict metritis events in dairy cattle. Frontiers in Animal Science, 4, 1157090.
  134. Vidana-Vila, E., Malé, J., Freixes, M., Solís-Cifré, M., Jiménez, M., Larrondo, C., Guevara, R., Miranda, J., Duboc, L., Mainau, E., & Llonch, P. (2023). Automatic detection of cow vocalizations using convolutional neural networks. Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI), Tampere, Finland.
  135. Vogt, A., Waiblinger, S., Palme, R., von Borstel, U.K., & Barth, K. (2025). Dairy cows’ responses to two separation methods after three months of cow–calf contact. Journal of Dairy Science, 108(2), 1940–1963.
  136. Volkmann, N., Kulig, B., Hoppe, S., Stracke, J., Hensel, O., & Kemper, N. (2021). On-farm detection of claw lesions in dairy cows based on acoustic analyses and machine learning. Journal of Dairy Science, 104(5), 5921–5931.
  137. Vranken E., Mounir M., Norton T. (2023). Sound-based monitoring of livestock. In: Encyclopedia of Digital Agricultural Technologies. Cham, Switzerland: Springer International Publishing; p.1358-1369.
  138. Vu H., Prabhune O.C., Raskar U., Panditharatne D., Chung H., Choi C., Kim Y. (2024). MmCows: A multimodal dataset for dairy cattle monitoring. Advances in Neural Information Processing Systems; 37:59451-59467.
  139. Wang B., Zou X., Lin G., Sun S., Liu Z., Zhang W., Liu Z., Aw A., Chen N.F. (2024). Audiobench: A universal benchmark for audio large language models. arXiv preprint arXiv:2406.16020.
  140. Wang J., Chen H., Wang J., Zhao K., Li X., Liu B., Zhou Y. (2023). Identification of oestrus cows based on vocalisation characteristics and machine learning technique using a dual-channel-equipped acoustic tag. Animal, 17(6), p.100811.
  141. Wang J., Si Y., Wang J., Li X., Zhao K., Liu B., Zhou Y. (2023). Discrimination strategy using machine learning technique for oestrus detection in dairy cows by a dual-channel-based acoustic tag. Comput. Electron. Agricult., 210: 107949.
  142. Wang Z., Liu J., Arablouei R., Bishop-Hurley G., Matthews M., Borges P. (2022, October). Multi-modal sensing for behaviour recognition. In Proceedings of the 28th Annual International Conference on Mobile Computing And Networking (pp. 900-902).
  143. Watts J.M., Stookey J.M. (2000). Vocal behaviour in cattle: the animal’s commentary on its biological processes and welfare. Appl. Anim. Behav. Sci., 67: 15-33.
  144. Welk A., Neave H.W., Jensen M.B. (2024). Invited review: The effect of weaning practices on dairy calf performance, behavior, and health—A systematic review. J. Dairy Sci., 107: 5237-5258.
  145. Wu H., Chen X., Lin Y.C., Chang K.W., Chung H.L., Liu A.H., Lee H.Y. (2024). Towards audio language modeling—an overview. arXiv preprint arXiv:2402.13236.
  146. Wu Y., Hu X., Fu Z., Zhou S., Li J. (2024). GPT-4o: Visual perception performance of multimodal large language models in piglet activity understanding. arXiv preprint arXiv:2406.09781.
  147. Yang Q., Xu J., Liu W., Chu Y., Jiang Z., Zhou X., Leng Y., Lv Y., Zhao Z., Zhou C., Zhou J. (2024). Air-bench: Benchmarking large audio-language models via generative comprehension. arXiv preprint arXiv:2402.07729.
  148. Yoshihara Y., Oya K. (2021). Characterization and assessment of vocalization responses of cows to different physiological states. J. Appl. Anim. Res., 49: 347-351.
DOI: https://doi.org/10.2478/aoas-2025-0091 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: May 22, 2025
Accepted on: Aug 18, 2025
Published on: Aug 26, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mayuri Kate, Suresh Neethirajan, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT