Have a personal or library account? Click to login
Harnessing Biofloc Technology: A Sustainable Paradigm for Modern Aquaculture – A Review Cover

Harnessing Biofloc Technology: A Sustainable Paradigm for Modern Aquaculture – A Review

Open Access
|Oct 2025

References

  1. Abakari G., Luo G., Kombat E.O. (2021). Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review. Aquac. Fish., 6: 441–447.
  2. Abbaszadeh A., Keyvanshokooh S., Yavari V., Naderi M. (2019). Proteome modifications of Pacific white shrimp (Litopenaeus vannamei) muscle under biofloc system. Aquac. Nutr., 25: 358–366.
  3. Abiri S.A., Chitsaz H., Najdegerami E.H., Akrami R., Jalali A.S. (2022). Influence of wheat and rice bran fermentation on water quality, growth performance, and health status of common carp (Cyprinus carpio L.) juveniles in a biofloc-based system. Aqua-culture, 555: 738168.
  4. Adineh H., Naderi M., Hamidi M.K., Harsij M. (2019). Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish Shellfish Immunol., 95: 440–448.
  5. Ahmad I., Babitha Rani A.M., Verma A.K., Maqsood M. (2017). Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquac. Int., 25: 1215–1226.
  6. Ahmad I., Leya T., Saharan N., Babitha Rani A.M., Rathore G., Gora A.H., Bhat I.A., Verma A.K. (2019). Carbon sources affect water quality and haemato-biochemical responses of Labeo rohita in zero-water exchange biofloc system. Aquac. Res., 50: 2879–2887.
  7. Akinsemolu A.A. (2018). The role of microorganisms in achieving the sustainable development goals. J. Clean. Prod., 182: 139–155.
  8. Anand P.S., Kohli M.P.S., Kumar S., Sundaray J.K., Roy S.D., Venkateshwarlu G., Sinha A., Pailan G.H. (2014). Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418: 108–115.
  9. Arfuso F., Guerrera M.C., Fortino G., Fazio F., Santulli A., Piccione G. (2017). Water temperature influences growth and gonad differentiation in European sea bass (Dicentrarchus labrax, L. 1758). Theriogenology, 88: 145–151.
  10. Asaduzzaman M., Rahman M.M., Azim M.E., Islam M.A., Wahab M.A., Verdegem M.C.J., Verreth J.A.J. (2010). Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture, 306: 127–136.
  11. Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147.
  12. Avnimelech Y. (2009). Biofloc technology: A practical guide book. World Aquaculture Society, Baton Rouge, USA.
  13. Avnimelech Y., Kochba M. (2009). Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287: 163–168.
  14. Azim M.E., Little D.C. (2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283: 29–35.
  15. Azim M.E., Little D.C., Bron J.E. (2008). Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture. Bioresour. Technol., 99: 3590–3599.
  16. Badiola M., Mendiola D., Bostock J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng., 51: 26–35.
  17. Ballester E.L.C., Abreu P.C., Cavalli R.O., Emerenciano M., De Abreu L.,Wasielesky Jr W. (2010). Effect of practical diets with different protein levels on the performance of Farfante penaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquac. Nutr., 16: 163–172.
  18. Basuvaraj M., Fein J., Liss S.N. (2015). Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc. Water Res., 82: 104–117.
  19. Branson E.J. (2008). Fish welfare. John Wiley & Sons.
  20. Brito L.O., Arana L.A.V., Soares R.B., Severi W., Miranda R.H., da Silva S.M.B.C., Coimbra M.R.M., Gálvez A.O. (2014). Water quality, phytoplankton composition and growth of Litopenaeus vannamei (Boone) in an integrated biofloc system with Gracilaria birdiae (Greville) and Gracilaria domingensis (Kützing). Aquac. Int., 22: 1649–1664.
  21. Burford M.A., Thompson P.J., McIntosh R.P., Bauman R.H., Pearson D.C. (2003). Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture, 219: 393–411.
  22. Chaignon V., Lartiges B.S., El Samrani A., Mustin C. (2002). Evolution of size distribution and transfer of mineral particles between flocs in activated sludges: An insight into floc exchange dynamics. Water Res., 36: 676–684.
  23. Chen Z., Li J., Zhai Q., Chang Z., Li J. (2024). Nitrogen cycling process and application in different prawn culture modes. Rev. Aquac., 16: 1580–1602.
  24. Crab R., Defoirdt T., Bossier P., Verstraete W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aqua-culture, 356: 351–356.
  25. Dauda A.B. (2020). Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Rev. Aquac., 12: 1193–1210.
  26. Dauda A.B., Romano N., Ebrahimi M., Karim M., Natrah I., Kamarudin M.S., Ekasari J. (2017). Different carbon sources affects biofloc volume, water quality and the survival and physiology of African catfish Clarias gariepinus fingerlings reared in an intensive biofloc technology system. Fish. Sci., 83: 1037–1048.
  27. de Barros H.P., Valenti W.C. (2003). Food intake of Macrobrachium rosenbergii during larval development. Aquaculture, 216: 165–176.
  28. De Schryver P., Verstraete W. (2009). Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresour. Technol., 100: 1162–1167.
  29. De Schryver P., Crab R., Defoirdt T., Boon N., Verstraete W. (2008). The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, 277: 125–137.
  30. Deng M., Chen J., Gou J., Hou J., Li D., He X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482: 103–110.
  31. Deswati D., Zein R., Suparno S., Pardi H. (2023). Modified biofloc technology and its effects on water quality and growth of cat-fish. Sep. Sci. Technol., 58: 944–960.
  32. Diatin I., Shafruddin D., Hude N., Sholihah M.A., Mutsmir I. (2021). Production performance and financial feasibility analysis of farming catfish (Clarias gariepinus) utilizing water exchange system, aquaponic, and biofloc technology. J. Saudi Soc. Agric. Sci., 20: 344–351.
  33. Dilmi A., Refes W., Meknachi A. (2021). Effects of C/N ratio on water quality, growth performance, digestive enzyme activity and antioxidant status of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) in biofloc based culture system. Turk. J. Fish. Aquat. Sci., 22.
  34. Dinda R., Mandal A., Das S.K. (2020). Neem (Azadirachta indica A. Juss) supplemented biofloc medium as alternative feed in common carp (Cyprinus carpio var. communis Linnaeus) culture. J. Appl. Aquac., 32: 361–379.
  35. Dobrovol’skaya T.G., Zvyagintsev D.G., Chernov I.Y., Golovchenko A.V., Zenova G.M., Lysak L.V., Manucharova N.A., Marfenina O.E., Polyanskaya L.M., Stepanov A.L., Umarov M.M. (2015). The role of microorganisms in the ecological functions of soils. Eur. Soil Sci., 48: 959–967.
  36. Ebeling J.M., Timmons M.B., Bisogni J.J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257: 346–358.
  37. Ebrahimi A., Akrami R., Najdegerami E.H., Ghiasvand Z., Koohsari H. (2020). Effects of different protein levels and carbon sources on water quality, antioxidant status and performance of common carp (Cyprinus carpio) juveniles raised in biofloc based system. Aquaculture, 516: 734639.
  38. Eding E.H., Kamstra A., Verreth J.A.J., Huisman E.A., Klapwijk A. (2006). Design and operation of nitrifying trickling filters in recirculating aquaculture: a review. Aquac. Eng., 34: 234–260.
  39. Ekasari J., Maryam S. (2012). Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. Hayati J. Biosci., 19: 73–80.
  40. Ekasari J., Rivandi D.R., Firdausi A.P., Surawidjaja E.H., Zairin Jr M., Bossier P., De Schryver P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441: 72–77.
  41. Emerenciano M., Gaxiola G., Cuzon G. (2013). Biofloc technology (BFT): A review for aquaculture application and animal food industry. IntechOpen.
  42. Emerenciano M.G.C., Martínez-Córdova L.R., Martínez-Porchas M., Miranda-Baeza A. (2017). Biofloc technology (BFT): A tool for water quality management in aquaculture. Water Quality, 5: 92–109.
  43. Emerenciano M.G..C., Fitzsimmons K., Rombenso A.N., Miranda-Baeza A., Martins G.B., Lazzari R., Fimbres-Acedo Y.E., Pinho S.M. (2021). Biofloc technology (BFT) in tilapia culture. In Biology and aquaculture of tilapia (pp. 258–293). CRC Press.
  44. Erkinharju T., Dalmo R.A., Hansen M., Seternes T. (2021). Cleaner fish in aquaculture: Review on diseases and vaccination. Rev. Aquac., 13: 189–237.
  45. Fauji H., Budiardi T., Ekasari J. (2018). Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc-based nursery production with different stocking densities. Aquac. Res., 49: 1339–1346.
  46. Ferreira-Marinho Y., Otavio-Brito L., da Silva C.V.F., dos Santos I.G.S., Olivera-Gàlvez A. (2014). Effect of addition of Navicula sp. on plankton composition and postlarvae growth of Litopenaeus vannamei reared in culture tanks with zero water exchange. Lat. Am. J. Aquat. Res., 42: 427–437.
  47. Gao F., Liao S., Liu S., Bai H., Wang A., Ye J. (2019). The combination use of Candida tropicalis HH8 and Pseudomonas stutzeri LZX301 on nitrogen removal, biofloc formation and microbial communities in aquaculture. Aquaculture, 500: 50–56.
  48. García-Ríos L., Miranda-Baeza A., Coelho-Emerenciano M.G., Huerta-Rábago J.A., Osuna-Amarillas P. (2019). Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture, 502: 26–31.
  49. Green B.W. (2010). Effect of channel catfish stocking rate on yield and water quality in an intensive, mixed suspended-growth production system. N. Am. J. Aquac., 72: 97–106.
  50. Guerrera M.C., Arfuso F., Rizzo M., Saoca C., Fazio F., Fortino G., Santulli A., Piccione G. (2016). Gonadal sexual differentiation of European sea bass (Dicentrarchus labrax, L. 1758) of finger-lings in different size classes. Mar. Freshw. Behav. Physiol., 49: 347–354.
  51. Gutierrez-Wing M.T., Malone R.F. (2006). Biological filters in aqua-culture: trends and research directions for freshwater and marine applications. Aquac. Eng., 34: 163–171.
  52. Haridas H., Verma A.K., Rathore G., Prakash C., Sawant P.B., Babitha Rani A.M. (2017). Enhanced growth and immuno-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquac. Res., 48: 4346–4355.
  53. Hwihy H., Zeina A., Abu Husien M., El-Damhougy K. (2021). Impact of Biofloc technology on growth performance and biochemical parameters of Oreochromis niloticus. Egypt. J. Aquat. Biol., 25: 761–774.
  54. Jansson C., Northen T. (2010). Calcifying cyanobacteria – the potential of biomineralization for carbon capture and storage. Curr. Opin. Biotechnol., 21: 365–371.
  55. Jiang W., Ren W., Li L., Dong S., Tian X. (2020). Light and carbon sources addition alter microbial community in biofloc-based Litopenaeus vannamei culture systems. Aquaculture, 515: 734572.
  56. Ju Z.Y., Forster I., Conquest L., Dominy W. (2008). Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquac. Nutr., 14: 533–543.
  57. Jürgens K., Matz C. (2002). Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek, 81: 413–434.
  58. Kagali R.N., Ogello E.O., Sakakura Y., Hagiwara A. (2018). Fish-processing wastes as an alternative diet for culturing the minute rotifer Proales similis de Beauchamp. Aquac. Res., 49: 2477–2485.
  59. Kamilya D., Debbarma M., Pal P., Kheti B., Sarkar S., Singh S.T. (2017). Biofloc technology application in indoor culture of Labeo rohita (Hamilton, 1822) fingerlings: The effects on inorganic nitrogen control, growth and immunity. Chemosphere, 182: 8–14.
  60. Karigar C.S., Rao S.S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Res., 2011: 805187.
  61. Karimanzira D., Keesman K., Kloas W., Baganz D., Rauschenbach T. (2017). Efficient and economical way of operating a recirculation aquaculture system in an aquaponics farm. Aquac. Econ. Manag., 21: 470–486.
  62. Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912.
  63. Khanjani M.H., Alizadeh M. (2024). Effects of different salinity levels on performance of Nile tilapia fingerlings in a biofloc culture system. Ann. Anim. Sci., 24: 235–245.
  64. Khanjani M.H., Alizadeh M., Mohammadi M., Aliabad H.S. (2021). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a low-salinity biofloc system. Ann. Anim. Sci., 21: 1435–1454.
  65. Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2022). Microorganisms in biofloc aquaculture system. Aquac. Rep., 26: 101300.
  66. Khanjani M.H., Mozanzadeh M.T., Sharifinia M., Emerenciano M.G.C. (2023). Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738757.
  67. Khanjani M.H., Sharifinia M., Emerenciano M.G.C. (2024 a). Biofloc technology (BFT) in aquaculture: What goes right, what goes wrong? A scientific-based snapshot. Aquac. Nutr., 2024: 7496572.
  68. Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2024 b). Water quality in biofloc technology (BFT): An applied review for an evolving aquaculture. Aquac. Int., 32: 9321–9374.
  69. Khanjani M.H., Zahedi S., Sharifinia M., Hajirezaee S., Singh S.K. (2025). Biological removal of nitrogenous waste compounds in the biofloc aquaculture system – a review. Ann. Anim. Sci., 25: 3–21.
  70. Khoa T.N.D., Tao C.T., Van Khanh L., Hai T.N. (2020). Super-intensive culture of white leg shrimp (Litopenaeus vannamei) in outdoor biofloc systems with different sunlight exposure levels: Emphasis on commercial applications. Aquaculture, 524: 735277.
  71. Kim J.H., Kim S.K., Kim J.H. (2018). Bio-floc technology application in flatfish Paralichthys olivaceus culture: Effects on water quality, growth, hematological parameters, and immune responses. Aqua-culture, 495: 703–709.
  72. Kim J.H., Kang Y.J., Kim K.I., Kim S.K., Kim J.H. (2019). Toxic effects of nitrogenous compounds (ammonia, nitrite, and nitrate) on acute toxicity and antioxidant responses of juvenile olive flounder, Paralichthys olivaceus. Environ. Toxicol. Pharmacol., 67: 73–78.
  73. Kim J.H., Sohn S., Kim S.K., Hur Y.B. (2020). Effects on hematological parameters, antioxidant and immune responses, AChE, and stress indicators of olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater challenged by Edwardsiella tarda. Fish Shellfish Immunol., 97: 194–203.
  74. Kishawy A.T., Sewid A.H., Nada H.S., Kamel M.A., El-Mandrawy S.A., Abdelhakim T.M., El-Murr A.E.I., Nahhas N.E., Hozzein W.N., Ibrahim D. (2020). Mannanoligosaccharides as a carbon source in Biofloc boost dietary plant protein and water quality, growth, immunity and Aeromonas hydrophila resistance in Nile tilapia (Oreochromis niloticus). Animals, 10: 1724.
  75. Kumar S., Anand P.S.S., De D., Deo A.D., Ghoshal T.K., Sundaray J.K., Ponniah A.G., Jithendran K.P., Raja R.A., Biswas G., Lalitha N. (2017). Effects of biofloc under different carbon sources and protein levels on water quality, growth performance and immune responses in black tiger shrimp Penaeus monodon (Fabricius, 1978). Aquac. Res., 48: 1168–1182.
  76. Kumar V., Roy S., Behera B.K., Swain H.S., Das B.K. (2021). Biofloc microbiome with bioremediation and health benefits. Front. Microbiol., 12: 741164.
  77. Li C., Dai L. (2025). Multifunctional applications of biofloc technology (BFT) in sustainable aquaculture: a review. Fishes, 10: 353. Li C., Ge Z., Dai L., Chen Y. (2025). Integrated application of biofloc technology in aquaculture: a review. Water, 17: 2107.
  78. Li J., Liu G., Li C., Deng Y., Tadda M.A., Lan L., Zhu S., Liu D. (2018). Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture, 495: 919–931.
  79. Liu G., Zhu S., Liu D., Guo X., Ye Z. (2017). Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system. Fish Shellfish Immunol., 67: 19–26.
  80. Liu G., Ye Z., Liu D., Zhao J., Sivaramasamy E., Deng Y., Zhu S. (2018). Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish Shellfish Immunol., 81: 416–422.
  81. Liu H., Li H., Wei H., Zhu X., Han D., Jin J., Yang Y., Xie S. (2019). Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture, 506: 256–269.
  82. Liu G., Verdegem M., Ye Z., Zhao J., Xiao J., Liu X., Liang Q., Xiang K., Zhu S. (2025). Advancing aquaculture sustainability: a comprehensive review of biofloc technology trends, innovative research approaches, and future prospects. Rev. Aquac., 17: e12970.
  83. Long L., Yang J., Li Y., Guan C., Wu F. (2015). Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448: 135–141.
  84. Luo G., Gao Q., Wang C., Liu W., Sun D., Li L., Tan H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422: 1–7.
  85. Luo G., Li W., Tan H., Chen X. (2017). Comparing salinities of 0, 10 and 20 in biofloc genetically improved farmed tilapia (Oreochromis niloticus) production systems. Aquac. Fish., 2: 220–226.
  86. Mabroke R.S., Zidan A.E.N.F., Tahoun A.A., Mola H.R., Abo-State H., Suloma A. (2021). Feeding frequency affect feed utilization of tilapia under biofloc system condition during nursery phase. Aquac. Rep., 19: 100625.
  87. Madoni S.N., Costa P.B., Coburn J.W., Galpin A.J. (2018). Effects of foam rolling on range of motion, peak torque, muscle activation, and the hamstrings-to-quadriceps strength ratios. J. Strength Cond. Res., 32: 1821–1830.
  88. Manan H., Moh J.H.Z., Kasan N.A., Suratman S., Ikhwanuddin M. (2017). Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Appl. Water Sci., 7: 2437–2446.
  89. Mansour A.T., Esteban M.Á. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 64: 202–209.
  90. Martins A.M.P., Heijnen J.J., Van Loosdrecht M.C.M. (2003). Effect of dissolved oxygen concentration on sludge settleability. Appl. Microbiol. Biotechnol., 62: 586–593.
  91. Martins G..B., da Rosa C.E., Tarouco F.D.M., Robaldo R.B. (2019). Growth, water quality and oxidative stress of Nile tilapia Oreochromis niloticus (L.) in biofloc technology system at different pH. Aquac. Res., 50: 1030–1039.
  92. Matos J., Costa S., Rodrigues A., Pereira R., Pinto I.S. (2006). Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture, 252: 31–42.
  93. Menaga M., Felix S., Charulatha M., Gopalakannan A., Panigrahi A. (2019). Effect of in-situ and ex-situ biofloc on immune response of Genetically Improved Farmed Tilapia. Fish Shellfish Immunol., 92: 698–705.
  94. Minaz M., Kubilay A. (2021). Operating parameters affecting biofloc technology: carbon source, carbon/nitrogen ratio, feeding regime, stocking density, salinity, aeration, and microbial community manipulation. Aquac. Int., 29: 1121–1140.
  95. Mirzakhani N., Ebrahimi E., Jalali S.A.H., Ekasari J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C: N ratios. Aquaculture, 512: 734235.
  96. Mohammady E.Y., Soaudy M.R., Ali M.M., El-Ashry M.A., Abd El-Karim M.S., Jarmołowicz S., Hassaan M.S. (2023). Response of Nile tilapia under biofloc system to floating or sinking feed and feeding rates: Water quality, plankton community, growth, intestinal enzymes, serum biochemical and antioxidant status. Aquac. Rep., 29: 101489.
  97. Monroy-Dosta M.D.C., De Lara-Andrade R., Castro-Mejía J., Castro-Mejía G., Coelho-Emerenciano M.G. (2013). Composición y abundancia de comunidades microbianas asociadas al biofloce n un cultivo de tilapia. Rev. Biol. Mar. Oceanogr., 48: 511–520.
  98. Monroy-Dosta M.D.C., Becerril-Cortés D., Lazo J.P., Mena-López A., Negrete-Redondo P., Nogueda-Torres E., Navarro-Guillén C., Mata-Sotres J.A. (2025). Effect of biofloc culture on the daily rhythmicity of the activity and expression of digestive enzymes in tilapia, Oreochromis niloticus. Aquac. Nutr., 6617425.
  99. Nageswari P., Verma A.K., Gupta S., Jeyakumari A., Chandrakant M.H. (2022). Optimization of stocking density and its impact on growth and physiological responses of Pangasianodon hypophthalmus (Sauvage, 1878) fingerlings reared in finger millet based biofloc system. Aquaculture, 551: 737909.
  100. Najdegerami E.H., Bakhshi F., Lakani F.B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiol. Biochem., 42: 457–465.
  101. Nootong K., Pavasant P., Powtongsook S. (2011). Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system. J. World Aquac. Soc., 42: 339–346.
  102. Oehmen A., Yuan Z., Blackall L.L., Keller J. (2004). Short-term effects of carbon source on the competition of polyphosphate accumulating organisms and glycogen accumulating organisms. Water Sci. Technol., 50: 139–144.
  103. Ogello E.O., Wullur S., Sakakura Y., Hagiwara A. (2018). Composting fishwastes as low-cost and stable diet for culturing Brachionus rotundiformis Tschugunoff (Rotifera): Influence on water quality and microbiota. Aquaculture, 486: 232–239.
  104. Ogello E.O., Outa N.O., Obiero K.O., Kyule D.N., Munguti J.M. (2021). The prospects of biofloc technology (BFT) for sustainable aquaculture development. Sci. Afr., 14: e01053.
  105. Ogello E., Muthoka M., Outa N. (2024). Exploring regenerative aqua-culture initiatives for climate-resilient food production: Harnessing synergies between technology and Agroecology. Aquac. J., 4: 324–344.
  106. Oliveira L.K., Wasielesky Jr W., Tesser M.B. (2024). Fish culture in biofloc technology (BFT): Insights on stocking density carbon sources, C/N ratio, fish nutrition and health. Aquac. Fish., 9: 522–533.
  107. Pai M., Verma A.K., Krishnani K.K., Varghese T., Hittinahalli C.M., Verma M.K. (2024). Stocking density optimization and its impact on growth and physiological responses of Nile tilapia (Oreochromis niloticus) reared in hybrid biofloc-RAS culture system. Aquaculture, 588: 740920.
  108. Panigrahi A., Saranya C., Sundaram M., Kannan S.V., Das R.R., Kumar R.S., Rajesh P., Otta S.K. (2018). Carbon: nitrogen (C: N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish Shellfish Immunol., 81: 329–337.
  109. Pérez-Fuentes J.A., Hernández-Vergara M.P., Pérez-Rostro C.I., Fogel I. (2016). C: N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452: 247–251.
  110. Piedrahita R.H. (2003). Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture, 226: 35–44.
  111. Putra I., Rusliadi R., Fauzi M., Tang U.M., Muchlisin Z.A. (2017). Growth performance and feed utilization of African catfish Clarias gariepinus fed a commercial diet and reared in the biofloc system enhanced with probiotic. F1000Res., 6: 1545.
  112. Ragasa C., Agyakwah S.K., Asmah R., Mensah E.T.D., Amewu S., Oyih M. (2022). Accelerating pond aquaculture development and resilience beyond COVID: Ensuring food and jobs in Ghana. Aquaculture, 547: 737476.
  113. Rajkumar M., Pandey P.K., Aravind R., Vennila A., Bharti V., Purushothaman C.S. (2016). Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquac. Res., 47: 3432–3444.
  114. Raza B., Zheng Z., Yang W. (2024). A review on biofloc system technology, history, types, and future economical perceptions in aqua-culture. Animals, 14: 489.
  115. Rind K.H., Habib S.S., Ujan J.A., Fazio F., Naz S., Batool A.I., Ullah M., Attaullah S., Khayyam K., Khan K. (2023). The effects of different carbon sources on water quality, growth performance, hematology, immune, and antioxidant status in cultured Nile Tilapia with biofloc technology. Fishes, 8: 512.
  116. Romano N., Dauda A.B., Ikhsan N., Karim M., Kamarudin M.S. (2018). Fermenting rice bran as a carbon source for biofloc technology improved the water quality, growth, feeding efficiencies, and biochemical composition of African catfish Clarias gariepinus juveniles. Aquac. Res., 49: 3691–3701.
  117. Said M.M., Taha E.M. (2022). Biofloc effects on body composition, plasma protein, lipid profile, zooplankton community, and economics of Nile tilapia fingerlings reared under different stocking densities. Egypt. J. Aquat. Biol. Fish., 26: 593–611.
  118. Salehizadeh H., Van Loosdrecht M.C.M. (2004). Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechno-logical importance. Biotechnol. Adv., 22: 261–279.
  119. Santos L., Ramos F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Int. J. Antimicrob. Agents, 52: 135–143.
  120. Schrader K.K., Green B.W., Perschbacher P.W. (2011). Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish (Ictalurus punctatus). Aquac. Eng., 45: 118–126.
  121. Sgnaulin T., de Mello G.L., Thomas M.C., Garcia J.R.E., de Oca G.A.R.M., Emerenciano M.G..C. (2018). Biofloc technology (BFT): An alternative aquaculture system for piracanjuba Brycon orbignyanus? Aquaculture, 485: 119–123.
  122. Sharifinia M., Taherizadeh M., Namin J.I., Kamrani E. (2018). Ecological risk assessment of trace metals in the surface sediments of the Persian Gulf and Gulf of Oman: Evidence from subtropical estuaries of the Iranian coastal waters. Chemosphere, 191: 485–493.
  123. Sharifinia M., Daliri M., Kamrani E. (2019). Estuaries and coastal zones in the northern Persian gulf (Iran). In Coasts and estuaries (pp. 57–68). Elsevier.
  124. Shourbela R.M., Khatab S.A., Hassan M.M., Van Doan H., Dawood M.A. (2021). The effect of stocking density and carbon sources on the oxidative status, and nonspecific immunity of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Animals, 11: 184.
  125. Singh T., Mandal A., Holeyappa S.A., Khairnar S.O., Tyagi A. (2024). Growth performance and physiological responses of striped catfish (Pangasianodon hypophthalmus) under different carbohydrates supplemented biofloc aquaculture systems. Aquaculture, 579: 740252.
  126. Sontakke R., Haridas H. (2018). Economic viability of biofloc based system for the nursery rearing of milkfish (Chanos chanos). Int. J. Curr. Microbiol. Appl. Sci., 7: 2960–2970.
  127. Suresh A., Grygolowicz-Pawlak E., Pathak S., Poh L.S., bin Abdul Majid M., Dominiak D., Bugge T.V., Gao X., Ng W.J. (2018). Understanding and optimization of the flocculation process in biological wastewater treatment processes: A review. Chemo-sphere, 210: 401–416.
  128. Tasleem S., Alotaibi B.S., Masud S., Habib S.S., Acar Ü., Gualandi S.C., Ullah M., Khan K., Fazio F., Khayyam K. (2024). Biofloc system with different carbon sources improved growth, haematology, nonspecific immunity, and resistivity against the Aeromonas hydrophila in Common Carp, Cyprinus carpio. Aquac. Res., 2024: 7652354.
  129. Uribe C., Folch H., Enríquez R., Moran G..J.V.M. (2011). Innate and adaptive immunity in teleost fish: a review. Vet. Med., 56: 486–503.
  130. Verma A.K., Rani A.B., Rathore G., Saharan N., Gora A.H. (2016). Growth, non-specific immunity and disease resistance of Labeorohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457: 61–67.
  131. Vinatea L., Gálvez A.O., Browdy C.L., Stokes A., Venero J., Haveman J., Lewis B.L., Lawson A., Shuler A., Leffler J.W. (2010). Photo-synthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: interaction of water quality variables. Aquac. Eng., 42: 17–24.
  132. Wang C., Pan L., Zhang K., Xu W., Zhao D., Mei L. (2016). Effects of different carbon sources addition on nutrition composition and extracellular enzymes activity of bioflocs, and digestive enzymes activity and growth performance of Litopenaeus vannamei in zero-exchange culture tanks. Aquac. Res., 47: 3307–3318.
  133. Webster C.D., Lim C. (2002). Editors. Nutrient requirements and feeding of finfish for aquaculture. CABI Publishing.
  134. Wilén B.M., Nielsen J.L., Keiding K., Nielsen P.H. (2000). Influence of microbial activity on the stability of activated sludge flocs. Colloids Surf. B Biointerfaces, 18: 145–156.
  135. Xu W.J., Pan L.Q. (2013). Enhancement of immune response and anti-oxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412: 117–124.
  136. Xu W.J., Pan L.Q., Zhao D.H., Huang J. (2012). Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, 350: 147–153.
  137. Yang S.F., Li X.Y. (2009). Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions. Process Biochem., 44: 91–96.
  138. Yu Y.B., Lee J.H., Choi J.H., Choi Y.J., Jo A.H., Choi C.Y., Kang J.C., Kim J.H. (2023). The application and future of biofloc technology (BFT) in aquaculture industry: A review. J. Environ. Manag., 342: 118237.
  139. Yu Z., Li L., Zhu R., Li M., Wu L.F. (2020). Effects of bioflocs with different C/N ratios on growth, immunological parameters, anti-oxidants and culture water quality in Opsariichthys kaopingensis Dybowski. Aquac. Res., 51: 805–815.
  140. Yun H.S., Kim D.H., Kim J.G., Kim Y.S., Yoon H.S. (2022). The microbial communities (bacteria, algae, zooplankton, and fungi) improved biofloc technology including the nitrogen-related material cycle in Litopenaeus vannamei farms. Front. Bioeng. Biotechnol., 10: 883522.
  141. Yusuf M.W., Utomo N.B.P., Yuhana M. (2015). Growth performance of catfish (Clarias gariepinus) in biofloc-based super intensive culture added with Bacillus sp. J. Fish. Aquat. Sci., 10: 523.
  142. Zablon W.O., Ogello E.O., Getabu A., Omondi R. (2022). Biofloc system improves protein utilization efficiency and growth performance of Nile tilapia, Oreochromis niloticus fry: Experimental evidence. Aquac. Fish., 2: 94–103.
  143. Zhang J., Hu Y., Ai Q., Mao P., Tian Q., Zhong L., Xiao T., Chu W. (2018 a). Effect of dietary taurine supplementation on growth performance, digestive enzyme activities and antioxidant status of juvenile black carp (Mylopharyngodon piceus) fed with low fish meal diet. Aquac. Res., 49: 3187–3195.
  144. Zhang M., LiY., Xu D.H., Qiao G., Zhang J., Qi Z., Li Q. (2018 b). Effect of different water biofloc contents on the growth and immune response of gibel carp cultured in zero water exchange and no feed addition system. Aquac. Res., 49: 1647–1656.
  145. Zhao P., Huang J., Wang X.H., Song X.L., Yang C.H., Zhang X.G., Wang G.C. (2012). The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture, 354: 97–106.
  146. Zhao Z., Xu Q., Luo L., Wang C.A., Li J., Wang L. (2014). Effect of feed C/N ratio promoted bioflocs on water quality and production performance of bottom and filter feeder carp in minimum-water exchanged pond polyculture system. Aquaculture, 434: 442–448.
  147. Zhao S., Zhang S., Liu J., Wang H., Zhu J., Li D., Zhao R. (2021 a). Application of machine learning in intelligent fish aquaculture: A review. Aquaculture, 540: 736724.
  148. Zhao Z., Xu Q., Luo L., Qiao G., Wang L., Li J., Wang C. (2021 b). Effect of bio-floc on water quality and the production performance of bottom and filter feeder carp fed with different protein levels in a pond polyculture system. Aquaculture, 531: 735906.
DOI: https://doi.org/10.2478/aoas-2025-0090 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1387 - 1401
Submitted on: May 8, 2025
Accepted on: Aug 18, 2025
Published on: Oct 24, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Panneerselvam Dheeran, Kanagaraja Anantharaja, Edward Inpent Campal, Tao Kara, Manickam Selvaraj, Ulaganathan Arisekar, Mohammed A. Assiri, Karuppannan Iswarya, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.