References
- Abbaszadeh A., Yavari V., Hoseini S.J., Nafisi M., TorfiMozanzadeh M. (2019). Effects of different carbon sources and dietary protein levels in a biofloc system on growth performance, immune response against white spot syndrome virus infection and cathepsin L gene expression of Litopenaeus vannamei. Aquacult. Res., 50: 1162–1176.
- Abiri S.A., Chitsaz H., Najdegerami E.H., Akrami R., Jalali A.S. (2022). Influence of wheat and rice bran fermentation on water quality, growth performance, and health status of common carp (Cyprinus carpio L.) juveniles in a biofloc-based system. Aquaculture, 555: 738–168.
- Ajamhasani E., Akrami R., Najdegerami E.H., Chitsaz H., Shamloofar M. (2023). Different carbon sources and probiotics in biofloc-based common carp (Cyprinus carpio) culture: Effects on water quality, growth performance, fish welfare and liver histopathology. J. World Aquac. Soc., 1–17.
- Al-Subiai S.N., Jang I.K., Bae S-H., Yoon H., Hussain S., AlNuaimi S., Al-Foudari M., Al-Hasan E. (2025). Enhancing the performance of Litopenaeus vannamei nursery and grow-out by modifying Mg/Ca ratios in biofloc systems using low-salinity groundwater of Kuwait Desert. Aquaculture, 594: 741405.
- Ali S.A. (2013). Design and evaluate a drum screen filter driven by undershot waterwheel for aquaculture recirculating systems. Aquacult. Eng., 54: 38–44..
- Ali I., Rahman A. (2024). Environmental degradation: causes, effects and solutions. Int. J. Multidiscip. Res., 6(3): 1–10.
- Anand P.S.S., Kohli M.P.S., Kumar S., Sundaray J.K., Roy S.D., Venkateshwarlu G., Sinha A., Pailan G.H. (2014). Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418–419: 108–115.
- Anand P.S.S., Kumar S., Kohli M.P.S., Sundaray J.K., Sinha A., Pailan G.H., Roy D.S. (2017). Dietary biofloc supplementation in black tiger shrimp, Penaeus monodon: effects on immunity, antioxidant and metabolic enzyme activities. Aquacult. Res., 48: 4512–4523.
- AOAC. (2000). Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed. Gaithersburg, MD: Association of Official Analytical Chemists.
- APHA. (2017). Standard methods for the examination of water and wastewater, 23rd ed. Washington, DC: Public Health Association.
- Austin B., Lawrence A.L., Can E., Carboni C., Crockett J., Demirtaş Erol N., Dias Schleder D., Jatobá A., Kayış Ş., Karacalar U., Kizak V., Kop A., Thompson K., Mendez-Ruiz C.A., Serdar O., Seyhaneyildiz Can S., Watts S., Yücel Gier G. (2022). Selected topics in sustainable aquaculture research: Current and future focus. SAquaRes, 1(2): 74–122..
- Avnimelech Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3–4): 227–235..
- Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147..
- Avnimelech Y. (2009). Biofloc Technology. A Practical Guide Book. Baton Rouge, LA, USA: World Aquaculture Society.
- Avnimelech Y. (2012). Biofloc Technology – A Practical Guidebook, 2nd ed. Baton Rouge, LA, USA: World Aquaculture Society.
- Azim M.E. (2001). The potential of periphyton-based aquaculture production systems. Ph.D. Thesis, Fish Culture and Fisheries Group, Wageningen University, Netherlands, 219 pp.
- Bahamonde N., Vila I. (1971). Sinopsis sobre la biología del camarón de Río del Norte. Biología Pesquera, Chile 5: 3-60.
- Bakar N.A.S.A., Suraya S., Normi M., Baidurah S. (2024). Malaysian Biomass to Bioenergy: Scope, Challenges, and Applications toward Carbon Neutrality. In: Kapoor R.T., Sillanpää M., Rafatullah M. (Eds.), Catalytic Applications of Biochar for Environmental Remediation: Valorization of Lignocellulosic Waste Biomass into Bioenergy. ACS Symposium Series. Washington, DC: American Chemical Society, pp. 109–135..
- Baloi M.R., Arantes R., Schveitzer C., Magnotti L., Vinatea L. (2013). Performance of Pacific white shrimp Litopenaeus vannamei raised in biofloc systems with varying levels of light exposure. Aquacult. Eng., 52: 39–44..
- Ballester E.L.C., Marzarotto S.A., de Castro C.S., Frozza A., Pastore I., Abreu P.C. (2017). Productive performance of juvenile freshwater prawns Macrobrachium rosenbergii in biofloc system. Aquacult. Res., 48: 4748–4755..
- Bakhshi F., Najdegerami E.H., Manaffar R., Tukmechi A., Farah K.R. (2018). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484: 259–267..
- Bauer W., Prentice-Hernandez C., Tesser M.B., Wasielesky W. Jr., Poersch L.H. (2012). Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the Pacific white shrimp Litopenaeus vannamei. Aquaculture, 342–343: 112–116..
- Becerril-Cortés D., Monroy-Dosta M., Emerenciano M., Castro-Mejía G., Sofia B., Bermúdez S., Vela G. (2018). Effect on nutritional composition of produced bioflocs with different carbon sources (molasses, coffee waste and rice bran) in Biofloc System. Int. J. Fish Aquat. Stud., 6: 541–547.
- Becke C., Schumann M., Steinhagen D., Rojas-Tirado P., Geist J., Brinker A. (2019). Effects of unionized ammonia and suspended solids on rainbow trout (Oncorhynchus mykiss) in recirculating aquaculture systems. Aquaculture, 499: 348–357..
- Becke C., Schumann M., Geist J., Brinker A. (2020). Shape characteristics of suspended solids and implications in different salmonids aquaculture production systems. Aquaculture, 516: 734631..
- Boyd C.E., Tucker C.S., Somridhivej B. (2016). Alkalinity and Hardness: Critical but Elusive Concepts in Aquaculture. J. World Aquac. Soc., 47: 6–41..
- Caldini N., Cavalcante D., Rocha Filho P.R.N., Sá M. (2015). Feeding Nile tilapia with artificial diets and dried bioflocs biomass. Acta Sci. Anim. Sci., 37(4): 335–341..
- Campos S., Pinazo K., Gutiérrez P., Quiroz M. (2017). Monitoreo biológico y poblacional del recurso “camarón de río” Cryphiops caementarius (Molina, 1782) en los ríos Majes–Camaná y Ocoña. Inf. Inst. Mar Perú, 44(3): 442–448..
- Cao B., Abakari G., Luo G., Tan H., Wu X. (2020). Comparative analysis of nitrogen and phosphorus budgets in a bioflocs aquaculture system and recirculation aquaculture system during over-wintering of tilapia (GIFT, Oreochromis niloticus). Aquacult. Eng., 89: 102026..
- Cardona E., Lorgeoux B., Chim L., Goguenheim J., Le Delliou H., Cahu C. (2015). Biofloc contribution to antioxidant defense status, lipid nutrition and reproductive performance of broodstock of the shrimp Litopenaeus stylirostris: consequences for the quality of eggs and larvae. Aquaculture, 452: 252–262..
- Chakrapani S., Panigrahi A., Sundaresan J., Mani S., Palanichamy E., Rameshbabu V.S., Krishna A. (2022). Utilization of complex carbon sources on biofloc system and its influence on the microbial composition, growth, digestive enzyme activity of Pacific white shrimp, Penaeus vannamei culture. Turkish J. Fish Aquat. Sci., 22(4): TRJFAS18813..
- Chan-Vivas E., Magaña E., Maldonado C., Escalante K., Gaxiola G., Cuzon G. (2019). Does Biofloc Improve the Energy Distribution and Final Muscle Quality of Shrimp, Litopenaeus vannamei (Boone, 1883)? J. World Aquac. Soc., 50: 460–468..
- Chu C., Lee D. (2004). Multiscale structures of biological flocs. Chem. Eng. Sci., 59(8–9): 1875–1883..
- Copetti F.G., Gregoracci G.B., Vadstein O., Schveitzer R. (2021). Management of biofloc concentrations as an ecological strategy for microbial control in intensive shrimp culture. Aquaculture, 543: 736969..
- Crab R., Chielens B., Wille M., Bossier P., Verstraete W. (2009). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquacult. Res., 41: 559–567..
- Crab R., Chielens B., Wille M., Bossier P., Verstraete W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquacult. Res., 41(4): 559–567.
- Crab R., Defoirdt T., Bossier P., Verstraete W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356–357: 351–356..
- Cripps S. (1995). Serial particle fractionation and characterization of an aquacultural effluent. Aquaculture, 133: 323–339..
- Cripps S., Bergheim A. (2000). Solids management and removal for intensive land-based aquaculture production systems. Aquacult. Eng., 22: 33–56.
- da Silva M.A., de Alvarenga É.R., Costa F.F.B.D., Turra E.M., Alves G.F.D.O., Manduca L.G., Sales S.C.M. de, Leite N.R., Bezerra V.M., Moraes S.G.D.S., Teixeira E.D.A. (2020). Feeding management strategies to optimize the use of suspended feed for Nile tilapia (Oreochromis niloticus) cultivated in bioflocs. Aquacult. Res., 51(2): 605–615..
- Das R.R., Sarkar S., Saranya C., Esakkiraj P., Aravind R., Saraswathy R., Rekha P.N., Muralidhar M., Panigrahi A. (2022). Co-culture of Indian white shrimp, Penaeus indicus and seaweed, Gracilaria tenuistipitata in amended biofloc and recirculating aquaculture system (RAS). Aquaculture, 548: 737432..
- Dauda A.B., Romano N., Ebrahimi M., Karim M., Natrah I., Kamarudin M.S., Ekasari J. (2017). Different carbon sources affects biofloc volume, water quality and the survival and physiology of African catfish Clarias gariepinus fingerlings reared in an intensive biofloc technology system. Fish. Sci., 83(6): 1037–1048..
- De Schryver P., Crab R., Defoirdt T., Boon N., Verstraete W. (2008). The basics of bioflocs technology: the added value for aquaculture. Aquaculture, 277: 125–137..
- Decamp O., Conquest L., Forster I., Tacon A.G.J. (2002). The nutrition and feeding of marine shrimp within zero–water exchange aquaculture production system: Role of eukaryotic microorganisms. In: Lee C.S., O’Bryen P. (Eds.), Microbial approaches to aquatic nutrition within environmentally sound aquaculture production systems. Baton Rouge, LA, USA: World Aquaculture Society, pp. 79–86.
- Deng M., Chen J., Gou J., Hou J., Li D., He X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482: 103–110..
- Ebeling J.M., Timmons M.B., Bisogni J.J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 257(1–4): 346–358..
- Ebrahimi A., Akrami R., Najdegerami E.H., Ghiasvand Z., Koohsari H. (2020). Effects of different protein levels and carbon sources on water quality, antioxidant status and performance of common carp (Cyprinus carpio) juveniles raised in biofloc-based system. Aquaculture, 516: 734639..
- Ekasari J., Angela D., Waluyo S.H., Bachtiar T., Surawidjaja E.H., Bossier P., De Schryver P. (2016). The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426: 105–111..
- El-Sayed A.F.M. (2021). Use of biofloc technology in shrimp aquaculture: A comprehensive review, with emphasis on the last decade. Rev. Aquaculture, 13(1): 676–705..
- Elayaraja S., Mabrok M., Algammal A., Sabitha E., Rajeswari M.V., Zágoršek K. (2020). Potential influence of jaggery-based biofloc technology at different C:N ratios on water quality, growth performance, innate immunity, immune-related genes expression profiles, and disease resistance against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 107: 118–128..
- Emerenciano M.G.H., Wasielesky W., Soares R., Ballester E., Cavalli R., Izeppi E. (2007). Crescimento e sobrevivência do camarão-rosa (Farfantepenaeus paulensis) na fase de bercário em meio heterotrófico. Acta Sci. Biol. Sci., 29: 1–7..
- Emerenciano M.G.H., Ballester E.L.C., Cavalli R.O., Wasielesky W. (2011). Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: Growth performance, floc composition and salinity stress tolerance. Aquacult. Int., 19: 891–901..
- Emerenciano M.G.H., Gaxiola G., Cuzon G. (2013). Biofloc technology (BFT): A review for aquaculture application and animal food industry. Biomass Now–Cultivation and Utilization, 12: 301–328..
- Emerenciano M.G.C., Martínez-Córdova L.R., Martínez-Porchas M., Miranda-Baeza A. (2017). Biofloc technology (BFT): A tool for water quality management in aquaculture. Water Quality, 5: 92–109.
- Emerenciano M.G.C., Khanjani M.H., Sharifinia M., Miranda-Baeza A. 2025. Could biofloc technology (BFT) pave the way toward a more sustainable aquaculture in line with the circular economy?. Aquac. Res., 1020045.
- Escobar C., Pachamoro M., Reyes-Avalos W. (2017). Supervivencia y crecimiento de machos adultos del camarón de río Cryphiops caementarius (Molina, 1782) expuestos a salinidades. Ecol. Apl., 624 16: 75–82..
- Fernandes P.M., Pedersen L.F., Pedersen P.B. (2017). Influence of fixed and moving bed biofilters on microparticle dynamics in a recirculating aquaculture system. Aquacult. Eng., 78: 32–41..
- Ferreira L.M.H., Lara G., Wasielesky W., Abreu P.C. (2016). Biofilm versus biofloc: Are artificial substrates for biofilm production necessary in the BFT system? Aquacult. Int., 24: 921–930..
- Furtado P.S., Poersch L.H., Wasielesky W. (2014). The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology (BFT). Aquacult. Int., 23: 345–358..
- Furtado P., Campos B., Serra F., Klosterhoff M., Romano L., Wasielesky W. (2015). Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquacult. Int., 23(1): 315–327..
- Gallardo-Collí A., Pérez-Rostro C., Hernández-Vergara M., Ortega L., Huerta M. (2024). Effect of three biofloc flour production methods on its chemical composition. Aquacult. Int., 32: 5017–5028..
- García-Ríos L., Miranda-Baeza M.G.C., Emerenciano J.A., Huerta-Rábago A., Osuna P. (2019). Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture, 519: 26–31..
- Garcés S., Lara G. (2023). Applying biofloc technology in the culture of Mugil cephalus in subtropical conditions: Effects on water quality and growth parameters. Fishes, 8: 420..
- Ghosh A.K., Hasanuzzaman M.F.M., Sarower M.G., Islam M.R., Huq K.A. (2024). Unveiling the biofloc culture potential: Harnessing immune functions for resilience of shrimp and resistance against AHPND-causing Vibrio parahaemolyticus infection. Fish Shellfish Immunol., 151: 109710..
- Gonzalez-Vera C., Brown J.H. (2017). Effects of alkalinity and total hardness on growth and survival of postlarvae freshwater prawns, Macrobrachium rosenbergii (De Man 1879). Aquaculture, 473: 521–527..
- Graciano León F., Vásquez Mori J., Reyes-Avalos W. (2022). La dureza total del agua afecta la muda, calcificación, crecimiento y supervivencia de Cryphiops caementarius (Palaemonidae). Acta Biol. Colomb., 27(1): 88–96.
- Guo K., Shi M., Huang X., Luo L., Wang S., Zhang R., Xu W., Ruan G., Zhao Z. (2024). The Effect of Artificial Substrate and Carbon Source Addition on Bacterial Diversity and Community Composition in Water in a Pond Polyculture System. Fishes, 9(3): 80.
- Hach. (2003). DR/2500 Spectrophotometer Procedure Manual. Loveland, CO, USA: HACH Company.
- Hach. (2015). Hardness, Total; Titration with EDTA—Digital Titrator (4000 mg/L); DOC316.53.01176; 04/2015, Edition 8. Loveland, CO, USA: HACH Company.
- Helal, A.M., Zaher, M.M., Meshhal, D.T., Ashour, M., Younis, E.M., Abdelwarith, A.A., Al-Afify, A.D.G., Sharawy, Z., Davies, S., El-Haroun, E., Nassif, M.G. (2024). Biofloc supplementation improves growth performances, nutrient utilization, and histological status of Nile tilapia (Oreochromis niloticus) while enhancing zooplankton diversity, community, and abundance. Aquaculture, 585: 740711.
- Hosain M.E., Amin S.M.N., Arshad A., Salleh M.S., Karim M. (2021). Effects of carbon sources on the culture of giant river prawn in biofloc system during nursery phase. Aquacult. Rep., 19: 100607..
- Hosain M.E., Amin S.M.N., Kamarudin M.S., Arshad A., Karim M., Naser M.N., Fotedar R. (2024). Effects of different carbon sources on the growth and production of rotifer (Brachionus plicatilis) in a zero-water exchange biofloc culture system. Aquac. Res., 8837330.
- Hosain, M., Amin, S.M.N., Karim M.S., Arshad A., Kamarudin M.S., Shohaimi S. Naser M.N., Brown C. (2025). Effect of biofloc volume on growth, survival, economics and proximate composition of Macrobrachium rosenbergii postlarvae cultured in brackish water biofloc system. Blue Biotechnol., 2: 4.
- Huang H.H., Liao H.M., Lei Y.J., Yang P.H. (2022a). Effects of different carbon sources on growth performance of Litopenaeus vannamei and water quality in the biofloc system in low salinity. Aquaculture, 546: 737239..
- Huang H.H., Li C.Y., Song Y., Lei Y.J., Yang P.H. (2022b). Growth performance of shrimp and water quality in a freshwater biofloc system with a salinity of 5.0‰: Effects on inputs, costs and wastes discharge during grow-out culture of Litopenaeus vannamei. Aquacult. Eng., 98: 102265..
- Hussain A.S., Mohammad D.A., Sallam W.S., Shoukry N.M., Davis D.A. (2021). Effects of culturing the Pacific white shrimp Penaeus vannamei in “biofloc” vs “synbiotic” systems on the growth and immune system. Aquaculture, 542: 736905.
- Hussien M.H., Zayd M.M., Elshafey A.E., Khalafalla M.M., Shukry M., Abdelmegeid, M., Okasha L.A., Seboussi R., Aboraya M.H., Elolimy A.A. (2025). Comparing the effect of different carbon sources on growth, blood parameters, immunity, and water quality in Nile Tilapia (Oreochromis niloticus) cultured in a biofloc system. Aquacult. Rep., 42: 102755.
- Islam M.A., Islam S.S., Bir J., Debnath P., Ullah M.R., Huq K.A. (2023). Effect on water quality, growth performance and economics of giant freshwater prawn, Macrobrachium rosenbergii with partial feed in biofloc system. Aquaculture, Fish Fish, 3: 435–446..
- Jamir L., Kumar V., Kaur J., Kumar S., Singh H. (2021). Composition, valorization and therapeutical potential of molasses: A critical review. Environ. Technol. Rev., 10(1): 131–142..
- Jara C., Rudolph E., González. E. (2006). Estado de conocimiento de los malacostráceos dulceacuícolas de Chile. Gayana, 70(1): 40–49.
- Kaya D., Genc E., Genc M.A., Aktas M., Eroldogan O.T., Guroy D. (2020). Biofloc technology in recirculating aquaculture system as a culture model for green tiger shrimp, Penaeus semisulcatus: Effects of different feeding rates and stocking densities. Aquaculture, 528: 735526..
- Kelly T.R., Giosio D.R., Trotter A.J., Smith G.G., Fitzgibbon Q.P. (2023). Cannibalism in cultured juvenile lobster Panulirus ornatus and contributing biological factors. Aquaculture, 576: 739883.
- Khanjani M.H., Alizadeh M., Sharifinia M. (2021). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system, Aquacult. Int., 29: 307–321.
- Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2022). Microorganisms in biofloc aquaculture system. Aquacult. Rep., 26: 101300..
- Khanjani M.H., Mozanzade M.T., Sharifinia M., Emerenciano M.G.C. (2023a). Biofloc: a sustainable dietary supplement, nutritional value and functional properties, Aquaculture, 562: 738757. https://doi.org/10.1016/j.aquaculture.2022.738757, 738757
- Khanjani M.H., Sharifinia M., Emerenciano M.G.C. (2023b) A detailed look at the impacts of biofloc on immunological and hematological parameters and improving resistance to diseases. Fish Shellfish Immunol., 137: 108796.
- Khanjani M.H., Alizadeh M. (2024). Effects of different salinity levels on performance of Nile tilapia fingerlings in a biofloc culture system. Ann. Anim. Sci., 24(1): 235–245.
- Khanjani, M.H., Sharifinia, M. (2024). Feeding Nile tilapia with varying levels of biofloc: effect on growth performance, survival rate, digestive and liver enzyme activities, and mucus immunity. Aquacult. Int., 32: 8171–8194.
- Khanjani M.H., Mohammadi, A., Emerenciano, M.G.C. (2024a). Water quality in biofloc technology (BFT): an applied review for an evolving aquaculture. Aquacult, Int., 32: 9321–9374.
- Khanjani M.H., Sharifinia M., Emerenciano M.G.C. (2024b) Biofloc technology (BFT) in aquaculture: what goes right, what goes wrong? A scientific-based snapshot. Aquacult. Nutr., 7496572.
- Khanjani, M.H., Eslami J., Emerenciano M.G.C. (2025a). Wheat flour as carbon source on water quality, growth performance, hemolymph biochemical, and immune parameters of Pacific white shrimp (Penaeus vannamei) juveniles in biofloc technology (BFT). Aquac. Rep., 40: 102623.
- Khanjani M.H., Zahedi S., Sharifinia M., Hajirezaee S., Singh S.K. (2025b). Biological Removal of Nitrogenous Waste Compounds in the Biofloc Aquaculture System–A Review. Ann Anim Sci., 25(1): 3–21.
- Komara A.M.M., El–Sayed A.F.M., Hamdan A.M.M., Makled S.O. (2022). Use of two freshwater macrophytes, water hyacinth (Eichhornia crassipes) and coontail (Ceratophyllum demersum), as carbohydrate sources in biofloc system for Nile tilapia (Oreochromis niloticus). Aquacult. Res., 53(8): 3112–3126.
- Kuhn D.D., Smith S.A., Boardman G.D., Angier M.W., Marsh L., Flick G.J. (2010). Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei: Impacts on survival, growth, antennae length, and pathology. Aquaculture, 309: 109–114.
- Kumar V., Roy S., Behera B.K., Das B. (2021). Biofloc microbiome with bioremediation and health benefits. Front. Microbiol., 12: 3499.
- Li J.G., Liu C., Li Y., Deng M.A., Tadda L., Lan S., Zhu D., Liu S. (2018). Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture, 495: 919–931.
- Li C., Zhang X., Chen Y., Zhang S., Dai L., Zhu W., Chen Y. (2023). Optimized utilization of organic carbon in aquaculture biofloc systems: A review. Fishes, 8(9): 465.
- Li Z., Ju C., Jiao T., Liu H., Li Q. (2024a). Effects of biofloc on growth performance and survival of Pacific white shrimp (Litopenaeus vannamei) through C/N ratio manipulation, probiotic supplementation, and co-cultivation time: A meta-analysis. Aquaculture, 587: 740837.
- Li J.Y., Zhu Z., Lv X.L., Tan H.X., Liu W.C., Luo G.Z., Liu W. (2024b). Optimizing carbon sources on performance for enhanced efficacy in single-stage aerobic simultaneous nitrogen and phosphorus removal via biofloc technology. Bioresour. Technol., 411: 131347.
- Li J.Y., Zhu Z., Lv X.L., Hu X., Tan H.X., Liu W.C. (2024c). Exploring single-stage oxic process for simultaneous rapid recovery of phosphate and nitrate via bioflocs to promote circular economy. Chem. Eng. J., 497: 154575.
- Lin J.C., Chen Y.C. (2003). Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224(1–4): 193–201.
- Luis-Villaseñor I.E., Voltolina D., Audelo-Naranjo J.M., Pacheco-Marges M.R., Herrera-Espericueta V.E., Romero-Beltrán E. (2016). Effects of biofloc promotion on water quality, growth, biomass yield and heterotrophic community in Litopenaeus vannamei (Boone, 1931) experimental intensive culture. Ital. J. Anim. Sci., 14(3): 332–337.
- Luo G., Xu J., Li J., Zheng H., Tan H., Liu W. (2022). Rapid production bioflocs by inoculation and fertilized with different nitrogen and carbon sources. Aquacult. Eng., 98: 102262.
- Luo G., Jiayang L., Jinxiang X., Liu W., Tan H. (2023). Effects of dissolved organic carbon and total ammonia nitrogen concentrations with the same DOC/TAN on biofloc performance. Aquaculture, 574: 739713.
- Ma H., Tian M., Zhang R., Zhao J., Xu Q., Duan M. (2025). Effects of soybean oligosaccharides on water quality and microbial community in biofloc systems. Aquacult. Rep., 42: 102798.
- Maciel de Lima P.C., de Andrade R.J.V., Elins Moreira da Silva A., Campos C.V.F. da S., Oliveira C.Y.B., Olivera Gálvez A., Brito L.O. (2022). Effects of different molasses application rates on planktonic composition in low salinity biofloc culture of Nile tilapia, Oreochromis niloticus fingerlings. Chem. Ecol., 38(10): 913–934.
- Mahadik P.U., Wasave S.S., Chavan B.R., Meshram S.J., Ghode G.S., Wasave S.M., Naik S.D., Shingare P.E. (2024). Effect of fermented rice bran as a carbon source for rearing genetically improved farmed tilapia, Oreochromis niloticus (Linnaeus, 1758), fry in biofloc system. Aquaculture, 592: 741246.
- Mansour A.T., Esteban M.Á. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 64: 202–209.
- Martínez-Córdova L.R., Emerenciano M., Miranda-Baeza A., Martínez-Porchas M. (2015). Microbial-based systems for aquaculture of fish and shrimp: An updated review. Rev. Aquac., 7: 131–148.
- McMillan J.D., Wheaton F.W., Hochheimer J.N., Soares J. (2003). Pumping effect on particle sizes in a recirculating aquaculture system. Aquacult. Eng., 27(1): 53–59.
- Mendez C.A., Morales M.C., Merino G.E. (2021). Settling velocity distribution of bioflocules generated with different carbon sources during the rearing of the river shrimp Cryphiops caementarius with biofloc technology. Aquacult. Eng., 93: 102157.
- Mendez C. (2023). Efecto del cultivo con tecnología biofloc y diferentes densidades sobre el desempeño fisiológico y productivo de juveniles camarón de río Cryphiops caementarius. Ph.D. Thesis, Programa Cooperativo, Universidad de Chile; Universidad Católica del Norte; Pontificia Universidad Católica de Valparaíso, Coquimbo, Chile.
- Mendez C.A., Morales M.C., Brokordt K. (2024). Effects of stocking density of the river shrimp Cryphiops caementarius on physiological and performance responses in a biofloc system. Fishes, 9(10): 377.
- Mendez C.A., Morales M.C., Merino G.E. (2025). Effect of different carbon sources on biofloc particle size and settling velocity distribution in biofloc technology aquaculture system for northern river shrimp (Cryphiops caementarius) farming. Aquacult. Int., 33: 380.
- Meruane J.A., Morales M.C., Galleguillos C.A., Rivera M.A., Hosokawa H. (2006). Experiencias y resultados de investigaciones sobre el camarón de río del norte Cryphiops caementarius (Molina, 1782) (Decapoda: Palaemonidae): Historia natural y cultivo. Gayana, 70(2): 280–292.
- Moreno-Reyes J.E., Morales M.C., Meruane J.A. (2021). A feasible path towards year–round production: Effects of temperature and photoperiod on ovarian maturity of subtropical palaemonid, the river shrimp, Cryphiops caementarius. Aquacult. Rep., 21: 100809.
- Nguyen T.T.T., Foysal M.J., Gupta S.K., Tay A., Fotedar R., Gagnon M.M. (2024). Effects of carbon source addition in rearing water on sediment characteristics, growth, and health of cultured marron (Cherax cainii). Sci. Rep., 14: 1349.
- Oliveira L.K.W., Wasielesky M.B. Jr., Tesser J. (2024). Fish culture in biofloc technology (BFT): Insights on stocking density, carbon sources, C/N ratio, fish nutrition and health. Aquacult. Fish., 9: 522–533.
- Panigrahi A., Sundram M., Jebha J., Dayal J.S., Otta S.K., Bhuvaneswari T., Saraswathy R., Shyne Anand P.S., Rajababu D., Saranya C., Gopal C., Ravichandran P. (2017). Biofloc based nutrient dense culture system for nursery and grow-out farming of Pacific white shrimp Penaeus vannamei Boone, 1931. Indian J. Fish, 64: 22–32.
- Panigrahi A., Sundaram M., Saranya C., Swain S., Dash R., Dayal J.S. (2019). Carbohydrate sources differentially influence growth performance, microbial dynamics and immunomodulation in Pacific white shrimp (Litopenaeus vannamei) under biofloc system. Fish Shellfish Immunol., 86: 1207–1216.
- Parra O., Bicudo C. (1996). Algas de aguas continentales: Introducción a la biología y sistemática. Concepción, Chile: Ediciones Universidad de Concepción.
- Parra O. (1998). Una aproximación sistémica para la evaluación de la biodiversidad algal en ambientes acuáticos continentales de Chile. In: Sociedad Ficológica de América Latina y el Caribe; Sociedad Brasileña de Ficología, pp. 167–178.
- Pedersen P.B., von Ahnen M., Fernandes P., Naas C., Pedersen L.F., Dalsgaard J. (2017). Particle surface area and bacterial activity in recirculating aquaculture systems. Aquacult. Eng., 78: 18–23.
- Pereira S.M.N., Wasielesky W., Cucchi F., Gomes dos Reis W., Krummenauer D. (2024). Influence of different percentages of water reuse with bioflocs on the composition of the microbiota in the stomach of Penaeus vannamei shrimp. Aquacult. Fish.
- Popoola O., Miracle M.O. (2022). Performance of different biomaterials as carbon sources on the immunological response and oxidative status of African catfish Clarias gariepinus in biofloc systems. Aquaculture Stud., 22(2): AQUAST800.
- Promthale P., Pongtippatee P., Withyachumnarnkul B., Wongprasert K. (2019). Bioflocs substituted fishmeal feed stimulates immune response and protects shrimp from Vibrio parahaemolyticus infection. Fish Shellfish Immunol., 93: 1067–1075.
- R Core Team. (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
- Rajkumar M., Pandey P.K., Aravind R., Vennila A., Bharti V., Purushothaman C.S. (2016). Effect of different biofloc systems on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquacult. Res., 47: 3432–3444.
- Ray A.J., Shuler A.J., Leffler J.W., Browdy C.L. (2009). Microbial ecology and management of biofloc systems. In: Browdy C.L., Jory D.E. (Eds.), The Rising Tide. Baton Rouge, LA, USA: World Aquaculture Society.
- Ray A.J., Seaborn G., Leffler J.W., Wilde S.B., Lawson A., Browdy C.L. (2010). Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture, 310: 130–138.
- Ray A.J., Seaborn G., Vinatea L., Browdy C.L., Leffler J.W. (2012). Effects of biofloc reduction on microbial dynamics in minimal-exchange, superintensive shrimp, Litopenaeus vannamei, culture systems. J. World Aquac. Soc., 43: 790–801.
- Raza B., Zheng Z., Yang W. (2024a). A review on biofloc system technology, history, types, and future economical perceptions in aquaculture. Animals, 14: 1489.
- Raza B., Zheng Z., Zhu J., Yang W. (2024b). A review: Microbes and their effect on growth performance of Litopenaeus vannamei (white leg shrimps) during culture in biofloc technology system. Microorganisms, 12: 1013.
- Reyes-Avalos W. (2016). Efecto del recipiente de cultivo sobre la supervivencia y el crecimiento de machos de Cryphiops caementarius en sistemas individualizados. Rev. Bio Cienc., 3: 311–325.
- Ridha M.T., Hossain M.A., Azad I.S., Saburova M. (2020). Effects of three carbohydrate sources on water quality, water consumption, bacterial count, growth and muscle quality of Nile tilapia (Oreochromis niloticus) in a biofloc system. Aquacult. Res., 51: 4225–4237.
- Rind K.H., Habib S.S., Ujan J.A., Fazio F., Naz S., Batool A.I., Ullah M., Attaullah S., Khayyam K., Khan K. (2023). The Effects of Different Carbon Sources on Water Quality, Growth Performance, Hematology, Immune, and Antioxidant Status in Cultured Nile Tilapia with Biofloc Technology. Fishes, 8(10): 512.
- Romano N., Zeng C. (2017).Cannibalism of decapod crustaceans and implications for their aquaculture: A review of its prevalence, influencing factors, and mitigating methods. Rev. Fish. Sci. Aquac., 25(1): 42–69.
- Rusten B., Eikebrokk B., Ulgenes Y., Lygren E. (2006). Design and operations of the Kaldnes moving bed biofilm reactors. Aquacult. Eng., 34: 322–331.
- Said M.M., Zaki F.M., Taw N., Snyder G.S. (2024). Light limitation alters water quality, biofloc composition, zooplankton community, and performance of the whiteleg shrimp (Litopenaeus vannamei) reared with intensive biofloc. Egypt. J. Aquatic Biol. Fish., 28(3): 359–381.
- Samocha T.M., Prangnell D.I., Hanson T.R., Treece G.D., Morris T.C., Castro L.F., Staresinic N. (2017). Design and operation of super intensive, biofloc-dominated systems for indoor production of the Pacific white shrimp, Litopenaeus vannamei. Texas A&M Agrilife Research Experience; World Aquaculture Society.
- Schveitzer R.R., Arantes P.F.S., Costódio C.M., do Espírito Santo L.V., Arana W.Q., Seiffert E.R., Andreatta W. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacult. Eng., 56: 59–70.
- Serra F.P., Gaona C.A.P., Furtado P.S., Poersch W., Wasielesky W. (2015). Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquacult. Int., 23: 1325–1339.
- Sharawy Z.Z., Abbas E.M., Abdelkhalek N.K., Ashry O.A., Abd El-Fattah L.S., El-Sawy M.A., Helal M.F., El-Haroun E. (2022). Effect of organic carbon source and stocking densities on growth indices, water microflora, and immune-related genes expression of Litopenaeus vannamei larvae in intensive culture. Aquacult. Int., 546: 737397.
- Silva R.A.S., Oliveira G.A.A., Silva J.M., Silva I.S., Garcia C.A.B., Gomes M.V.T., Monteiro A.S.C., Costa S.S.L. (2025). Evaluation of shrimp farming impacts on the water quality of the Lower São Francisco watershed region, Brazil. Reg. Stud. Mar. Sci., 81: 103933.
- Smirnov N. (1996). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 11. Amsterdam, Netherlands: SPB Academic Publishing.
- Sokal R.R., Rohlf F.J. (1969). Biometry: Principles and Practices of Statistics in Biological Research. San Francisco, CA: W. H. Freeman & Company.
- Soliman A.M., Abdel-Tawwab M. (2022). Effects of different carbon sources on water quality, biofloc quality, and the productivity of Nile tilapia reared in biofloc-based ponds. Ann. Anim. Sci., 22: 1281–1289.
- Streble H., Krauter D. (1987). Atlas de los microorganismos de agua dulce. Barcelona, Spain: Ediciones Omega S.A.
- Suita S.M., Braga A., Ballester E., Cardozo A.P., Abreu P.C., Wasielesky W. (2016). Contribution of bioflocs to the culture of Litopenaeus vannamei post–larvae determined using stable isotopes. Aquacult. Int., 24: 1473–1487.
- Sun Y., Zhang J., Dong D., Li M., Yang X., Song X., Li X. (2024). Effects of carbon source addition strategies on water quality, growth performance, and microbial community in shrimp BFT aquaculture systems. Aquaculture, 578: 740027.
- Suneetha K., Padmavathi P., Chatla D. (2024). Hatchery performance of Pacific white shrimp, Penaeus vannamei in biofloc technology by using different carbon sources. Blue Biotechnology, 1: 13.
- Tacon A.G.J.; Cody J.J.; Conquest L.D.; Divakaran S.; Forster I.P.; Decamp O.E. (2002). Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquacult. Nutr., 8: 121–137.
- Tavabe K.R., Rafiee G., Shoeiry M.M., Houshmandi S., Frinsko M., Daniels H. (2015). Effects of water hardness and calcium: magnesium ratios on reproductive performance and offspring quality of Macrobrachium rosenbergii. J. World Aquac. Soc., 46(5): 519–530.
- Tierney T.W., Ray A.J. (2018). Comparing biofloc, clear–water, and hybrid nursery systems (Part I): Shrimp (Litopenaeus vannamei) production, water quality, and stable isotope dynamics. Aquacult. Eng., 82: 73–79.
- Tinh T.H., Koppenol T., Hai T.N., Verreth J.A.J., Verdegem M.C.J. (2021). Effects of carbohydrate sources on a biofloc nursery system for whiteleg shrimp (Litopenaeus vannamei). Aquaculture, 531: 735795.
- Torres-Lagos E., Henríquez-Castillo C., Méndez C., Morales M.C., Cárcamo C.B., Navarrete P., Schmitt P., Brokordt K. (2024). Biofloc culture system shapes the structure and function of environmental and intestinal bacterial communities in the river prawn (Cryphiops caementarius). Aquacult. Rep., 39: 102359.
- Ulloa D., Morales M., Emerenciano M. (2020). Biofloc technology: Principles focused on potential species and the case study of Chilean river shrimp Cryphiops caementarius. Rev. Aquac., 12(3): 1–24.
- Ulloa D. (2021). Efectos de la tecnología biofloc, utilizando dos fuentes de carbono, sobre parámetros zootécnicos, enzimas digestivas y respuesta inmune en Cryphiops caementarius (Molina, 1782). Ph.D. Thesis, Programa Cooperativo, Universidad de Chile; Universidad Católica del Norte; Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
- Velásquez P., Colón J.F., Solorzano Reyes J.F., Ochoa Pereira P.M., Solano Motoche G.W., Quizhpe Cordero P., Guillen Añasco R.M. (2023). Caracterización de la calidad del agua durante el cultivo del camarón Litopenaeus vannamei con agua dulce en el sur del Ecuador. J. Selva Andina Anim. Sci., 10(2): 74–87.
- Vidal L. (1995). Estudio del fitoplancton en el sistema lagunar estuarino tropical Ciénaga Grande de Santa Marta, Colombia, durante el año 1987. [Tesis MSc]. Universidad Nacional de Colombia, 207 pp.
- Wang C., Pan L., Zhang K., Xu W., Zhao D., Mei L. (2025). Effects of different carbon sources addition on nutrition composition and extracellular enzymes activity of bioflocs, and digestive enzymes activity and growth performance of Litopenaeus vannamei in zero- exchange culture tanks. Aquac. Res., 47: 1–12.
- Wei Y., Liao S.A., Wang A.L. (2016). The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture, 465: 88–93.
- Wei G., Shan D., Li G., Li X., Tian R., He J., Shao Z. (2020a). Prokaryotic communities vary with floc size in a biofloc–technology based aquaculture system. Aquaculture, 529: 735632.
- Wei Y.F., Wang A.L., Liao S.A. (2020b). Effect of different carbon sources on microbial community structure and composition of ex-situ biofloc formation. Aquaculture, 515: 734492.
- Wurmann C. Routledge E. (2017). Aquaculture diversification in South America: general views and facts and case studies of the republic of Chile and the federative republic of Brazil. In: Harvey, B., Soto, D., Carolsfeld, J., Beveridge, M. & Bartley, D.M. eds. Planning for aquaculture diversification: the importance of climate change and other drivers. FAO. Technical Workshop, 23–25 June 2016, FAO Rome. FAO Fisheries and Aquaculture Proceedings No. 47. Rome, FAO. 166 pp.
- Xu W.J., Pan L.Q., Zhao D.H., Huang J. (2012). Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, 350–353: 147–153.
- Xu W.J., Morris T.C., Samocha T.M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453: 169–175.
- Yu Y.B., Lee J.H., Choi J.H., Choi Y.J., Jo A.H., Choi C.Y., Kang J.C., Kim J.H. (2023). The application and future of biofloc technology (BFT) in the aquaculture industry: A review. J. Environ. Manag., 342: 118237.
- Zhao D., Pan L., Huang F., Wang C., Xu W. (2016). Effects of different carbon sources on bioactive compound production of biofloc, immune response, antioxidant level, and growth performance of Litopenaeus vannamei in zero-water exchange culture tanks: carbon sources affecting biofloc development. J. World Aquacult. Soc., 47(4): 566–576.
- Zhu Z., Tan J., Abakari G., Hu X., Tan H., Liu W., Luo G. (2025). Effects of settleable versus unsettled biofloc removal strategy on aquaculture system performance and microbial community. Aquaculture, 595: 741553.