Have a personal or library account? Click to login
From Waste to Feed: Enhancing Sustainability in Ruminant Nutrition Through Cashew Apple Utilization – A Review Cover

From Waste to Feed: Enhancing Sustainability in Ruminant Nutrition Through Cashew Apple Utilization – A Review

Open Access
|Oct 2025

References

  1. Adeigbe O., Olasupo F., Adewale D., Abimbola M. (2015). A review on cashew research and production in Nigeria in the last four decades. Sci. Res. Essays, 10: 196–209.
  2. Adou M., Adjouman D., Kouadio O., Tetchi A., Amani N.G. (2021). Improvement of cashew apple juice (Anacardium occidentale L.) by association with passion fruit juice (Passiflora edulis). Food Nutr. Sci., 12: 787–804.
  3. Agboola-Adedoja M., Adelusi A., Ogunwolu Q., Ugwu C., Alli M., Adesanya K., Akinpelu A. (2022). Cashew production, consumption and utilization: Implication on health of end users. World J. of Adv. Res. Rev., 14: 182–186.
  4. Ahaotu E.O., Ihekoronye B. (2019). Environmental, ecological and anti-nutritional factors for cashew utilization in rabbit production – a review. Int. J. Res. Agr. For., 6: 8–22.
  5. Aidoo R., Kwofie E.M., Ngadi M.O. (2022). Circularity of cashew apples: examining the product-process pathways, techno-functional, nutritional/phytomolecular qualities for food applications. ACS Food Sci. Tech., 2: 1051–1066.
  6. Akinmoladun O.F. (2021). Stress amelioration potential of vitamin C in ruminants: a review. Trop Anim Health Prod, 54: 24.
  7. Akyereko Y.G., Wireko-Manu F., Alemawor F., Adzanyo M. (2022). Cashew apples in Ghana: stakeholders’ knowledge, perception, and utilization. Int. J. Food Sci., 1–10.
  8. Akyereko Y.G., Yeboah G.B., Wireko-Manu F.D., Alemawor F., Mills-Robertson F.C., Odoom W. (2023). Nutritional value and health benefits of cashew apple. JSFA Reports, 3: 110–118.
  9. Alp D., Bulantekin Ö. (2021). The microbiological quality of various foods dried by applying different drying methods: a review. Eur. Food Res. Technol., 247: 1333–1343.
  10. Anaemene D., Fadupin G. (2022). Anti-nutrient reduction and nutrient retention capacity of fermentation, germination and combined germination-fermentation in legume processing. App. Food Res., 2: 100059.
  11. Anim-Jnr A.S., Ishaq S.B.Y., Sasu P., Gyimah S., Greathead H.M.R., Boesch C., Mabiki F.P., Emmambux M.N. (2025). Valorising mango, cashew apple, and papaya by-products for sustainable small ruminant production in low-income food deficit countries – a review. Front. Sust. Food Syst.
  12. Araújo A.R., Joaquim Bezerra C., Marcos Cláudio Pinheiro R., Maria do Socorro de Souza C., Luciano Cavalcante M., Rildson Melo F., Vandenberg Lira S. (2022). Dehydrated cashew apple in different grinding sizes to sheep. Acta Sci.. An. Sci., 44.
  13. Aslam N., Hassan S.A., Mehak F., Zia S., Bhat Z.F., Yıkmış S., Aadil R.M. (2024). Exploring the potential of cashew waste for food and health applications – a review. Future Foods, 9: 100319.
  14. Bassett T.J. (2017). Le boom de l’anacarde dans le bassin cotonnier du Nord ivoirien. Structures de marché et prix à la production. Afri. Cont., 263–264: 59–83.
  15. Benoit M., Mottet A. (2023). Energy scarcity and rising cost: Towards a paradigm shift for livestock. Agr. Sys., 205: 103585.
  16. Besharati M., Maggiolino A., Palangi V., Kaya A., Jabbar M., Eseceli H., De Palo P., Lorenzo J.M. (2022). Tannin in ruminant nutrition: review. Molecules, 27.
  17. Boateng M., Amoah K., Atuahene P., Frimpong Y., Okai D., Osei G. (2021). Effects of dried cashew (Anacardium occidentale L.) apple meal (DCAM) on the growth performance and internal organs of albino rats. Gh. J. Agri. Sci., 56: 14–21.
  18. Bojang B., Emang D. (2024). Can cashew value chain industry improve food security: an empirical study from the Gambia. Sust., 16: 6607.
  19. Bojang B., Gibba A. (2021). The global competitiveness of West African cashew exporters. Bul. J. Agr. Sc., 27: 1084–1092.
  20. Campos F.P., Nussio L.G., Sarmento P., Daniel J.L.P., Lima C.G. (2020). Effects of addition of different sources and doses of sugars on in vitro digestibilities of dry matter, fibre and cell wall monosaccharides of corn silage in ruminants. Animal, 14: 1667–1675.
  21. Cantalapiedra-Hijar G., Abo-Ismail M., Carstens G.E., Guan L.L., Hegarty R., Kenny D.A., McGee M., Plastow G., Relling A., Ortigues-Marty I. (2018). Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal, 12: s321–s335.
  22. Carr A.C., Maggini S. (2017). Vitamin C and immune function. Nutrition, 9.
  23. Castillo-Lopez E., Petri R.M., Ricci S., Rivera-Chacon R., Sener-Aydemir A., Sharma S., Reisinger N., Zebeli Q. (2021). Dynamic changes in salivation, salivary composition, and rumen fermentation associated with duration of high-grain feeding in cows. J. Dairy Sci., 104: 4875–4892.
  24. Chambial S., Dwivedi S., Shukla K.K., John P.J., Sharma P. (2013). Vitamin C in disease prevention and cure: an overview. Ind. J. Cli. Biochem., 28: 314–328.
  25. Cobellis G., Trabalza-Marinucci M., Yu Z. (2016). Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. J. Sci. Total Environ., 545–546: 556–568.
  26. Costa J.B., Rogério M.C.P., Carneiro M.S.S., Muniz L.C., Brasil E.P., Araújo A.R., Fontenele R.M., Batista N.J.M. (2021). Cashew nut meal as feed supplement for lambs. Animal, 15: 100203.
  27. Cruz Reina L.J., Durán-Aranguren D.D., Forero-Rojas L.F., Tarapuez-Viveros L.F., Durán-Sequeda D., Carazzone C., Sierra R. (2022). Chemical composition and bioactive compounds of cashew (Anacardium occidentale) apple juice and bagasse from Colombian varieties. Heliyon, 8.
  28. Dakuyo R., Konaté K., Kaboré K., Sanou A., Konkobo F.A., Bazié D., Sama H., Dicko M.H. (2023). Ascorbic acid, pigments, anti-nutritional factors, and nutraceutical potential of Anacardium occidentale fruits as affected by temperature. Int. J. Food Propert., 26: 471–488.
  29. Danso-Abbeam G., Fosu S., Ogundeji A.A. (2021). Technical and resource-use efficiencies of cashew production in Ghana: implications on achieving sustainable development goals. Sci. Afr., 14: e01003.
  30. Dao T.P., Nguyen D.V., Nhi T., Tri Nhut P., Nhan N., Bach L.G., Nguyen V.H., Do V.Q., Muoi N., Tran T.T. (2021). Effects of tannin, ascorbic acid, and total phenolic contents of cashew (Anacardium occidentale L.) apples blanched with saline solution. Food Res., 5: 409–416.
  31. De Angelis A. (2025). Banana peels as an alternative livestock nutritional source: chemical composition and meta-analysis. Agri Res Tech: Open Access J., 1.
  32. de França Serpa J., de Sousa Silva J., Borges Reis C.L., Micoli L., Alexandre e Silva L.M., Canuto K.M., Casimiro de Macedo A., Ponte Rocha M.V. (2020). Extraction and characterization of lignins from cashew apple bagasse obtained by different treatments. Biom. Bioeng., 141: 105728.
  33. Diao Q., Zhang R., Fu T. (2019). Review of strategies to promote rumen development in calves. Animals, 9: 490.
  34. Dijkstra J. (1994). Production and absorption of volatile fatty acids in the rumen. Liv. Prod. Sci., 39: 61–69.
  35. Dijkstra J., Ellis J.L., Kebreab E., Strathe A.B., López S., France J., Bannink A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Tech., 172: 22–33.
  36. Fanimo A.O., Oduguwa O.O., Alade A.A. (2003). Growth performance, nutrient digestibility and carcass characteristics of growing rabbits fed cashew apple waste. Livest. Res. Rur. Dev., 15.
  37. FAOSTAT (2024). Food and Agriculture Organization. Retrieved October 25, 2024 from https://www.fao.org/faostat/en/#data/QCL/visualize
  38. Ferreira A.C.H., Rodriguez N.M., Neiva J.N.M., Pimentel P.G., Gomes S.P., Campos W.E., Lopes F.C.F. (2015). Nutritional evaluation of elephant-grass silages with different levels of by-products from the cashew juice industry. Rev. Bras. de Zoo., 44: 434–442.
  39. Fonseca N.V.B., Cardoso A.D.S., Granja-Salcedo Y.T., Siniscalchi D., Camargo K.D.V., Dornellas I.A., Silva M.L.C., Vecchio L.D.S.D., Grizotto R.K., Reis R.A. (2024). Effects of condensed tannin-enriched alternative energy feedstuff supplementation on performance, nitrogen utilization, and rumen microbial diversity in grazing beef cattle. Livest. Sci., 287: 105529.
  40. García-Rodríguez J., Saro C., Mateos I., González J.S., Carro M.D., Ranilla M.J. (2020). Effects of replacing extruded maize by dried citrus pulp in a mixed diet on ruminal fermentation, methane production, and microbial populations in Rusitec fermenters. Animals, 10: 1316.
  41. Gawankar M., Salvi B., Pawar C., Khanvilkar M., Salvi S., Dalvi N., Malshe K., Kadam D., Saitwal Y., Haldankar P. (2018). Technology development for cashew apple processing in Konkan region – a review. Ad. Agr. Res. Tech., 2: 40–47.
  42. Gbohaïda V., Mossi I., Adjou E.S., Agbangnan P., Yehouenou B.B., Sohounhloué D.C. (2015). Morphological and physicochemical characterizations of cashew apples from Benin for their use as raw material in bioethanol production. Int. J. Pharm. Sci. Rev. Res., 35: 7–11.
  43. Gerpacio A.L., Castillo L.S. (1979). Nutrient composition of some Philippine feedstuffs. Extension Division, Department of Animal Science, College of Agriculture, University of the Philippines at Los Baños. Laguna, 117.
  44. Harper K.J., McNeill D.M. (2015). The role iNDF in the regulation of feed intake and the importance of its assessment in subtropical ruminant systems (the role of iNDF in the regulation of forage intake). Agriculture, 5: 778–790.
  45. Huang H., Lechniak D., Szumacher-Strabel M., Patra A.K., Kozłowska M., Kolodziejski P., Gao M., Ślusarczyk S., Petrič D., Cieslak A. (2022). The effect of ensiled paulownia leaves in a high-forage diet on ruminal fermentation, methane production, fatty acid composition, and milk production performance of dairy cows. J. Anim. Sci. Biotech., 13: 104.
  46. Huang P.H., Cheng Y.T., Lu W.C., Chiang P.Y., Yeh J.L., Wang C.C., Liang Y.S., Li P.H. (2024). Changes in nutrient content and physicochemical properties of Cavendish bananas var. Pei Chiao during ripening. Horticulturae, 10: 384.
  47. Jatuwong K., Suwannarach N., Kumla J., Penkhrue W., Kakumyan P., Lumyong S. (2020). Bioprocess for production, characteristics, and biotechnological applications of fungal phytases. Front. Microbiol., 11: 188.
  48. Khade S.B., Khillare R.S., Dastagiri M.B. (2021). Global livestock development: Policies and vision. Ind. J. Anim. Sci., 91: 770–779.
  49. Kiatti D.D., Vastolo A., Koura B.I., Vitaglione P., Cutrignelli M.I., Calabrò S. (2023). The chemical characteristics and in vitro degradability of pineapple by-products as potential feed for ruminants. Animals, 13: 3238.
  50. Kiatti D.D., Koura B.I., Vastolo A., Chiacchio M.F., Vitaglione P., Dossa L.H., Cutrignelli M.I., Calabrò S. (2024). Sustainable ruminant nutrition in West Africa by in vitro characterization of cashew apple by-products. Heliyon, 10.
  51. Kim E.T., Guan le L., Lee S.J., Lee S.M., Lee S.S., Lee I.D., Lee S.K., Lee S.S. (2015). Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australas J. Anim. Sci., 28: 530–537.
  52. Kim T., Bae M., Lee J., Ghassemi Nejad J., Lee H. (2024). Dietary supplementation of phytoncide and soybean oil increases milk conjugated linoleic acid and depresses methane emissions in Holstein dairy cows. Sci. Rep., 14: 5439.
  53. Kircher M., Pfefferle W. (2001). The fermentative production of L-lysine as an animal feed additive. Chemosphere, 43: 27–31.
  54. Króliczewska B., Pecka-Kiełb E., Bujok J. (2023). Strategies used to reduce methane emissions from ruminants: controversies and issues. Agriculture, 13: 602.
  55. La Van Kinh V.V.D., Phuong D.D. (1997). Chemical composition of cashew apple and cashew apple waste ensiled with poultry litter. Livest. Res. Rural Dev., 9: 1–8.
  56. Leite A.K., Fonteles T.V., Miguel T.B., da Silva G.S., de Brito E.S., Alves Filho E.G., Fernandes F.A., Rodrigues S. (2021). Atmospheric cold plasma frequency imparts changes on cashew apple juice composition and improves vitamin C bioaccessibility. Food Res. Int., 147: 110479.
  57. Li M., Hassan F., Peng L., Xie H., Liang X., Huang J., Huang F., Guo Y., Yang C. (2022). Mulberry flavonoids modulate rumen bacteria to alter fermentation kinetics in water buffalo. PeerJ, 10: e14309.
  58. Liao S.F., Wang T., Regmi N. (2015). Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond. SpringerPlus, 4: 147.
  59. Liu Y., Zhu J., Liu Z., Zhi Y., Mei C., Wang H. (2025). Flavonoids as promising natural compounds for combating bacterial infections. Int. J. Mol. Sci., 26: 2455.
  60. Liu Z., de Souza T.S.P., Holland B., Dunshea F., Barrow C., Suleria H.A.R. (2023). Valorization of food waste to produce value-added products based on its bioactive compounds. Processes, 11.
  61. Lobo V., Patil A., Phatak A., Chandra N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev., 4: 118–126.
  62. Lopes L.G., Silva M.H., Figueiredo A., Canuto K.M., Brito E.S., Ribeiro P.R.V., Souza A.S.Q., Barioni-Júnior W., Esteves S.N., Chagas A.C.S. (2018). The intake of dry cashew apple fibre reduced fecal egg counts in Haemonchus contortus-infected sheep. Exp. Para., 195: 38–43.
  63. Lowor S., Agyente-Badu C. (2009). Mineral and proximate composition of cashew apple (Anarcadium occidentale L.) juice from Northern Savannah, Forest and Coastal Savannah regions in Ghana. Am. J. Food Tech., 4.
  64. Lu C.D. (1988). Grazing behavior and diet selection of goats. Small Rumin. Res., 1: 205–216.
  65. Martello H.F., De Paula N.F., Teobaldo R.W., Zervoudakis J.T., Fonseca M.A., Cabral L.S., Rocha J.K.L., Mundim A.T., Moraes E.H.B.K. (2020). Interaction between tannin and urea on nitrogen utilization by beef cattle grazing during the dry season. Livest. Sci., 234: 103988.
  66. Meneguelli T.S., Kolba N., Misra A., Dionísio A.P., Pelissari Kravchychyn A.C., Da Silva B.P., Stampini Duarte Martino H., Hermsdorff H.H., Tako E. (2023). Intra-amniotic administration of cashew nut (Anacardium occidentale L.) soluble extract improved gut functionality and morphology in vivo (Gallus gallus). Nutrition, 15.
  67. Mok C.H., Urschel K.L. (2020). Invited review – amino acid requirements in horses. Asian-Australas J. Anim. Sci., 33: 679–695.
  68. Moss A.F., Chrystal P.V., Cadogan D.J., Wilkinson S.J., Crowley T.M., Choct M. (2021). Precision feeding and precision nutrition: a paradigm shift in broiler feed formulation? Anim. Biosci., 34: 354–362.
  69. Mothé C., Oliveira N., Freitas J., Mothé M. (2017). Cashew tree gum: a scientific and technological review. Int. J. Env. Agric. Biotech., 2: 681–688.
  70. Moutia I., Lakatos E., Kovács A.J. (2024). Impact of dehydration techniques on the nutritional and microbial profiles of dried mushrooms. Foods, 13: 3245.
  71. Nikbakht Nasrabadi M., Sedaghat Doost A., Mezzenga R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118: 106789.
  72. Nwosu C.D., Adejumo O.A., Udoha W.N. (2016). Cashew apple utilization in Nigeria: challenges and prospects. J. Stored Prod. Post-harv. Res., 7.
  73. Ohene-Adjei S., Chaves A.V., McAllister T.A., Benchaar C., Teather R.M., Forster R.J. (2008). Evidence of increased diversity of methanogenic archaea with plant extract supplementation. Microb. Ecol., 56: 234–242.
  74. Ojediran T.K., Olorunlowu S.A., Oyekola O., Olagoke O.C., Emiola I.A. (2024 a). Cashew apple: nutritional composition, nutritive value and potentials as commercial feedstuff for livestock. Aceh J. Anim. Sci., 9: 128–137.
  75. Ojediran T., Olorunlowu S., Adeboye Z., Emiola I. (2024 b). Effects of graded levels of corn and cob meal on carcass parameters, organ weight, villi morphometric, and sensory properties of Topigs Norsvin TN70 weaned pigs. J. Micro. Biotech. Food Sci., 14: e10831.
  76. Ojediran T., Olorunlowu S.A., Akere S., Olayeni T., Emiola I. (2025). Feeding value of varying levels of corn and cob meal on weaned pigs. Acta Univ. Agric. Sil. Mend. Brun., 73: 129–139
  77. Ojo M.A. (2022). Tannins in foods: nutritional implications and processing effects of hydrothermal techniques on underutilized hard-to-cook legume seeds – a review. Prev. Nutr. Food Sci., 27: 14–19.
  78. Okonkwo K.C., Obua B.E., Ifenkwe U.B., Malau-Aduli A.E.O. (2022). Growth performance, carcass characteristics and cost implications of supplementing turkey poults with toasted Bambara nut by-products. Vet. Anim. Sci., 16: 100250.
  79. Okpanachi U., Attah S., Shaahu D.T. (2015). A comparative study between vitamins and amino acid profile of sun-dried red and yellow cashew pulp. Agric. Food Sci., 237–242.
  80. Okpanachi U., Ayoade J., Tuleun C. (2016 a). Composition and anti-nutritional factors (phyto-nutrients) present in both red and yellow varieties of sun-dried cashew pulp. Amer. J. Food Sci. H., 2: 45–48.
  81. Okpanachi U., Oyewole B., Egbu C., Ganiyu Y. (2016 b). Effects of feeding sun-dried yellow cashew pulp based diets on performance, dry matter and nutrient digestibility of West African dwarf goats. Anim. Vet. Sci., 4: 7–12.
  82. Okpanachi U., Okpanachi G.A.C., Kaye J., Agu C.I., Odah E. (2019). Haematological profile and serum biochemistry of West African dwarf goats fed sun-dried yellow cashew pulp based diets. J. App. Sci., 19: 319–324.
  83. Olagaray K.E., Bradford B.J. (2019). Plant flavonoids to improve productivity of ruminants – a review. Anim. Feed Sci. Tech., 251: 21–36.
  84. Oliveira M.E., Oliveira G.S., Maia G.A., Moreira R.D., Monteiro A.C. (2002). Major free amino acids in cashew apple juice: behaviour during the harvest season. Rev. Bras. de Frut., 24: 133–137.
  85. Oliveira N.N., Mothé C.G., Mothé M.G., de Oliveira L.G. (2020). Cashew nut and cashew apple: a scientific and technological monitoring worldwide review. J. Food Sci. Technol., 57: 12–21.
  86. Olubode O.O., Joseph-Adekunle T.T., Hammed L.A., Olaiya A.O. (2018). Evaluation of production practices and yield enhancing techniques on productivity of cashew (Anacardium occidentale L.). Fruits, 73: 75–100.
  87. Oluwatosin S., Olayemi C., Isiaka A. (2022). Nutritional evaluation of dried cashew apple in broiler chickens diets. Inn. Cas., 70.
  88. Oskoueian E., Abdullah N., Oskoueian A. (2013). Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed. Res. Int., 1–8.
  89. Oviedo-Rondón E.O., Toscan A., Fagundes N.S., Vidal J.K., Barbi J., Thiery P. (2024). Soybean meal nutrient composition, amino acid digestibility, and energy content according to the country of origin and year of harvest evaluated via NIRS. J. Appl. Poultry Res., 33: 100448.
  90. Patra A.K., Saxena J. (2009). The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev., 22: 204–219.
  91. Pimentel G.P., Pereira E., Queiroz A., Mizubuti I., Regadas Filho G., Maia I. (2011). Intake, apparent nutrient digestibility and ingestive behavior of sheep fed cashew nut meal. Rev. Bras. Zootec., 40: 1128–1133.
  92. Raboy V. (2000). Low-phytic-acid grains. Food Nutr. Bull., 21: 423–427.
  93. Radojčin M., Pavkov I., Bursać Kovačević D., Putnik P., Wiktor A., Stamenković Z., Kešelj K., Gere A. (2021). Effect of selected drying methods and emerging drying intensification technologies on the quality of dried fruit: a review. Process, 9: 132.
  94. Ramdani D., Hernaman I., Nurmeidiansyah A.A., Heryadi D., Nurachma S. (2019). Potential use of banana peels waste at different ripening stages for sheep feeding on chemical, tannin, and in vitro assessments. IOP Conference Series: Earth and Environmental Science, 334: 012003.
  95. Rashid Z., Mirani Z.A., Zehra S., Gilani S.M.H., Ashraf A., Azhar A., Al-Ghanim K.A., Al-Misned F., Al-Mulahim N., Mahboob S., Galani S. (2020). Enhanced modulation of gut microbial dynamics affecting body weight in birds triggered by natural growth promoters administered in conventional feed. Saudi J. Biol. Sci., 27: 2747–2755.
  96. Rico R., Bulló M., Salas-Salvadó J. (2016). Nutritional composition of raw fresh cashew (Anacardium occidentale L.) kernels from different origin. Food Sci. Nutr., 4: 329–338.
  97. Roy A., Khan A., Ahmad I., Alghamdi S., Rajab B.S., Babalghith A.O., Alshahrani M.Y., Islam S., Islam M.R. (2022). Flavonoids a bio-active compound from medicinal plants and its therapeutic applications. Biomed. Res. Int.
  98. Russell J., Wilson D. (1996). Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci., 79: 1503–1509.
  99. Sahie L., Doudjo S., Koné K., Assidjo E., Yao B. (2023). Some processing steps and uses of cashew apples: a review. Food Nutr. Sci., 14: 38–57.
  100. Sakhawat R., Asifa K., Aqsa H., Anwar A., Muhammad Faisal M. (2022). Food Dehydration Recent Advances and Approaches. In: A Comprehensive Review of the Versatile Dehydration Processes, Jelena D.J. (ed.). IntechOpen.
  101. Samtiya M., Aluko R.E., Dhewa T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod. Proc. Nutr., 2: 6.
  102. Santoso B., Kilmaskossu A., Sambodo P. (2007). Effects of saponin from Biophytum petersianum Klotzsch on ruminal fermentation, microbial protein synthesis and nitrogen utilization in goats. Anim. Feed Sci. Tech., 137: 58–68.
  103. Schumann C., Sitzenstock S., Erz L., Knoche M. (2020). Decreased deposition and increased swelling of cell walls contribute to increased cracking susceptibility of developing sweet cherry fruit. Planta, 252: 96.
  104. Sedó Molina G.E., Ras G., Barone G., Fernández-Varela R., Felix da Silva D., Jacobsen C., Duedahl-Olesen L., Bech Hansen E., Heiner Bang-Berthelsen C. (2024). Multiphasic and mixture lactic acid bacteria screening approach for the removal of antinutrients and off-flavors present in a pea, oat and potato blend. Food Res. Int., 197: 115200.
  105. Seradj A.R., Abecia L., Crespo J., Villalba D., Fondevila M., Balcells J. (2014). The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim. Feed Sci. Tech., 197: 85–91.
  106. Singh S.S., Abdullah S., Pradhan R.C., Mishra S. (2019). Physical, chemical, textural, and thermal properties of cashew apple fruit. J. Food Proc. Eng., 42: e13094.
  107. Souza H.A., Moraes E.H., Oliveira A.S., Batista E.D., Santos K.R., Sousa J.N., Ortelan J.C., Lamag A., Moraes K.A.K. (2020). Cashew processing product as alternative energy feedstuff for grazing beef cattle under tropical conditions. Livest. Sci., 236: 104022.
  108. Sreekutty P., Senthil M.S., Dildeep V., Biju C., Balusamy C. (2019). Chemical composition of cashew apple waste. Shanlax Int. J. Vet. Sci., 5: 1.
  109. Stypinski J.D., Weiss W.P., Carroll A.L., Kononoff P.J. (2024). Effect of acid detergent lignin concentration for diets formulated to be similar in neutral detergent fibre content on energy utilization in lactating Jersey cows. J. Dair. Sci., 107: 5699–5708.
  110. Szulc P., Nowak B., Ul Hassan M., Lechniak D., Slusarczyk S., Bocianowski J., Szumacher-Strabel M., Patra A., Cieslak A. (2023). Potential of Paulownia leaves silage in lamb diet to improve ruminal fermentation and fatty acid profile − an in vitro study. Ann. Anim. Sci., 24.
  111. Tai A.V., Tuan B., Van T., Trach N. (2020). Use of cashew apple fruit silage in the cattle fattening diet. Livest. Res. Rur. Dev., 35. Talasila U., Shaik K.B. (2015). Quality, spoilage and preservation of cashew apple juice: A review. J. Food Sci. Tech., 52: 54–62.
  112. Tan B.L., Norhaizan M.E., Liew W.P.P., Sulaiman Rahman H. (2018). Antioxidant and oxidative stress: a mutual interplay in age-related diseases [Review]. Front. Pharm., 9.
  113. Tayengwa T., Mapiye C. (2018). Citrus and winery wastes: promising dietary supplements for sustainable ruminant animal nutrition, health, production, and meat quality. Sustainability, 10: 3718.
  114. Thornton P.K. (2010). Livestock production: recent trends, future prospects. Philos. Trans R. Soc. Lond. B. Biol. Sci., 365: 2853–2867.
  115. Tsiplakou E., Hadjigeorgiou I., Sotirakoglou K., Zervas G. (2011). Differences in mean retention time of sheep and goats undercontrolled feeding practices. Small Rumin. Res., 95: 48–53.
  116. United Nations (2017). World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. Retrieved October 25, 2024 from https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100
  117. van Walraven N., Stark A.H. (2024). From food waste to functional component: Cashew apple pomace. Crit. Rev. Food Sci. Nutr., 64: 7101–7117.
  118. Vasta V., Daghio M., Cappucci A., Buccioni A., Serra A., Viti C., Mele M. (2019). Invited review: Plant polyphenols and rumen micro-biota responsible for fatty acid biohydrogenation, fibre digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci., 102: 3781–3804.
  119. Veena B., Shweatha E. (2024). Formulation of cashew apple-based products for nutrition-centric sustainability. Int. J. Sci. Res. Arch., 12: 2169–2178.
  120. Wang G.Y., Qin S.L., Zheng Y.N., Geng H.J., Chen L., Yao J.H., Deng L. (2023). Propionate promotes gluconeogenesis by regulating mechanistic target of rapamycin (mTOR) pathway in calf hepatocytes. Anim. Nutr., 15: 88–98.
  121. Wang Z., Yin L., Liu L., Lan X., He J., Wan F., Shen W., Tang S., Tan Z., Yang Y. (2022). Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats. Front. Vet. Sci., 9: 1004841.
  122. Weimer P.J. (2022). Degradation of cellulose and hemicellulose by ruminal microorganisms. Microorganis, 10: 2345.
  123. Wild K.J., Siegert W., Windisch W.M., Südekum K.H., Rodehutscord M. (2021). Meta-analysis-based estimates of efficiency of calcium utilisation by ruminants. Animal, 15: 100315.
  124. Xue F., Zhou Z., Ren L., Meng Q. (2011). Influence of rumen-protected lysine supplementation on growth performance and plasma amino acid concentrations in growing cattle offered the maize stalk silage/maize grain-based diet. Anim. Feed Sci. Tech., 169: 61–67.
  125. Yanza Y.R., Irawan A., Jayanegara A., Ramadhani F., Respati A.N., Fitri A., Hidayat C., Niderkorn V., Cieslak A., Szumacher-Strabel M., Hidayat R., Tanuwiria U.H. (2024). Saponin extracts utilization as dietary additive in ruminant nutrition: a meta-analysis of in vivo studies. Animals, 14: 1231.
DOI: https://doi.org/10.2478/aoas-2025-0071 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1193 - 1209
Submitted on: Feb 2, 2025
Accepted on: Jun 5, 2025
Published on: Oct 24, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Segun Olorunlowu, Taiwo Ojediran, Sammad Olayiwola, Festus Adejoro, Busola Ola, Pola Sidoruk, Julia Sznajder, Jakub Szczesny, Yulianri Rizki Yanza, Maciej Gogulski, Sylwester Ślusarczyk, Min Gao, Amlan Kumar Patra, Geberemariyam Terefe, Ryszard Steppa, Adam Cieślak, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.