References
- Agunbiade M.O., Pohl C.H., Ashafa A.O.T. (2016). A Review of the application of biofloccualnts in wastewater treatment. Pol. J. Environ. Stud., 25: 1381–1389.
- Ahmad A.L., Yasin N.M., Derek C.J.C., Lim J.K. (2011). Optimization of microalgae coagulation process using chitosan. Chem. Eng. J., 173: 879–882.
- Akinwole A.O., Dauda A.B., Ololade A.O. (2016). Haematological response of Clarias gariepinus juveniles reared in treated wastewater after waste solids removal using alum or Moringa oleifera seed powder. Int. J. Aquacult., 6: 1–8.
- Allen C., Metternicht G., Wiedmann T. (2018). Initial progress in implementing the 546 Sustainable Development Goals (SDGs): a review of evidence from countries. Sustain. Sci., 13: 1453–1467.
- Almeida C.A., Souza M.T.F., DeFreitas T.K.F.S., Geraldino H.C.L., Garcia J.C. (2017). Vegetable residue of Chayote (Sechium edule SW.) as a natural coagulant for treatment of textile wastewater. Int. J. Energy Water Resour., 1: 37–46.
- Amini M., Dehghani M., Rostami S., Ghanbari M. (2022). Biodegradation of microplastics by marine bacteria: a review. Mar. Pollut. Bull., 163: 111756
- Anastasakis K., Kalderis D., Diamadopoulos E. (2009). Flocculation behavior of mallow and okra mucilage in treating wastewater. Desalination, 249: 786–791.
- Asadi Z., Abdi H., Nnaji M., Rajabi H., Aminzadeh O., Madadi K., Hajhashemi Y. (2021). Flocculation process and Increasing sedimentation of total suspended solids in clarifier. J. Chem. Lett., 2: 82–88.
- Avnimelech Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176: 227–235.
- Avnimelech Y. (2009). Biofloc Technology – A Practical Guide Book. Baton Rouge, LA: The World Aquaculture Society, p. 182.
- Awang N.A., Aziz H.A. (2012). Hibiscus rosa-sinensis leaf extract as coagulant aid in leachate treatment. Appl. Water Sci., 2: 293–298.
- Babarao T.D., Verma S. (2015). Coal washery wastewater treatment using natural coagulants and chemical precipitation, Int. J. Sci. Res., 4: 1877–1881.
- Basuvaraj M., Fein J., Liss S.N. (2015). Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc. Water Res., 82: 104–117.
- Bender J., Gould J.P., Vatcharapijarn Y., Young J.S., Phillips P. (1994). Removal of zinc and manganese from contaminated water with cyanobacteria mats. Water Environ. Res., 66: 679–683.
- Bender J., Lee R.F., Phillips P. (1995). Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation. J. Ind. Microbiol., 14: 113–118.
- Bongaarts J. (2021). FAO, IFAD, UNICEF, WFP and WHO The State of Food Security and Nutrition in the World 2020. Transforming food systems for affordable healthy diets FAO, 2020, 320 p, Popul. Dev. Rev., 47: 558–558.
- Carneiro-Marra L., Sad L., Silva-Batista D. (2019). Evaluation of mucilage and powder of Okra as bio-flocculant in water treatment. Revista Ion, 32: 53–58.
- Carpinteyro-Urban S., Vaca M., Torres L. (2012). Can vegetal biopolymers work as scoagulant-flocculant aids in the treatment of high-load cosmetic industrial wastewaters? Water Air Soil Pollut., 223: 4925–4936.
- Cescon A., Jiang J.Q. (2020). Filtration process and alternative filter media material in water treatment. Water, 12: 3377.
- Chahal C., van den Akker B., Young F., Franco C., Blackbeard J., Monis P. (2016). Pathogen and particle associations in wastewater: significance and implications for treatment and disinfection processes. Adv. Appl. Microbiol., 97: 63–119.
- Chang Q., Ali A., Su J., Wen Q., Bai Y., Gao Z. (2021). Simultaneous removal of nitrate, manganese, and tetracycline by Zoogloea sp. MFQ7: Adsorption mechanism of tetracycline by biological precipitation. Bioresour. Technol., 340: 125690.
- Chonde S., Raut P. (2017) Treatment of dairy wastewater by Moringa Oleifera seeds. World J. Pharm. Res., 6: 1484–1493.
- Chutia A., Xavier K.M., Shamna N., Rani A.B. (2022). Application of bioflocculating agent in inoculum enhances quality of biofloc and influences growth, feed utilization and stress responses of GIFT tilapia reared in-situ. Aquaculture, 553: 738050.
- Cruz D., Pimentel M., Russo A., Cabral W. (2020). Charge neutralization mechanism efficiency in water with high color turbidity ratio using aluminium sulfate and flocculation index. Water, 12: 572.
- Czemierska M., Szcześ A., Jarosz-Wilkołazka A. (2015). Purification of wastewater by natural flocculants, BioTechnologia, 4: 272–278.
- Dauda A.B., Ajadi A., Tola-Fabunmi A.S., Akinwole A.O. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquacult. Fish., 4: 81–88.
- Daverey A., Tiwari N., Dutta K. (2019). Utilization of extracts of Musa paradisica (banana) peels and Dolichos lablab (Indian bean) seeds as low-cost natural coagulants for turbidity removal from water. Environ. Sci. Pollut. Res., 26: 34177–34183.
- de Paula H.M., de Oliveira Ilha M.S., Sarmento A.P., Andrade L.S. (2018). Dosage optimization of Moringa oleifera seed and traditional chemical coagulants solutions for concrete plant wastewater treatment. J. Clean. Prod., 174: 123–132.
- De Schryver P., Crab R., Defoirdt T., Boon N., Verstraete W. (2008). The basics of bioflocs technology: the added value for aquaculture. Aquaculture, 277: 125–137.
- Dehghani M., Alizadeh M.H. (2016). The effects of the natural coagulant Moringa oleifera and alum in wastewater treatment at the Bandar Abbas oil refinery. Environ. Health Eng. Manag., 3: 225–230.
- Deng Z., He Q., Manning A.J., Chassagne C. (2023). A laboratory study on the behavior of estuarine sediment flocculation as function of salinity, EPS and living algae. Mar. Geolo., 459: 107029.
- Deshmukh S.O., Hedaoo M.N. (2018). Wastewater treatment using bio-coagulant as cactus opuntia ficus indica. Int. J. Sci. Res. Dev., 6: 711–717.
- Devi A.C.A., Kurup B.M. (2015). Biofloc Technology: An overview and its application in animal food industry. Int. J. Fish. Aquacult. Sci., 5: 1–20.
- Eamrat R., Rujakom S., Pussayanavin T., Taweesan A., Witthayaphirom C., Kamei T. (2024). Optimizing biocoagulant aid from shrimp shells (Litopenaeus vannamei) for enhancing microplastics removal from aqueous solutions. Environ. Technol. Innov., 33: 103457.
- Ebeling J.M., Sibrell P.L., Ogden S.R., Summerfelt S.T. (2003). Evaluation of chemical coagulation–flocculation aids for the removal of suspended solids and phosphorus from intensive recirculating aquaculture effluent discharge. Aquacult. Eng., 29: 23–42.
- El Samrani A.G., Lartiges B.S., Villiéras F. (2008). Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res., 42: 951–960.
- Elcik H., Karadag D., Kara A.I., Cakmakci M. (2023). Microalgae biomass harvesting using chitosan flocculant: optimization of operating parameters by response surface methodology. Separations, 10: 507.
- Emerenciano M.G.C., Khanjani M.H., Sharifinia M., Miranda-Baeza A. (2025). Could biofloc technology (bft) pave the way toward a more sustainable aquaculture in line with the circular economy? Aquacult. Res., Article ID 1020045, 23 pages.
- FAO (2024). The state of food security and nutrition in the world 2024. Food and Agriculture Organization of the United Nations, Rome.
- Ferrari C.T.D.R.R., Genena A.K., Lenhard D.C. (2016). Use of natural coagulants in the treatment of food industry effluent replacing ferric chloride: a review. Científica, 44: 310–317.
- Gautam S., Saini G. (2020). Use of natural coagulants for industrial wastewater treatment. Glob. J. Environ. Sci. Manag., 6: 553–578.
- Gkotsis P.K., Batsari E.L., Peleka E.N., Tolkou A.K., Zouboulis A.I. (2017). Fouling control in a lab-scale MBR system: Comparison of several commercially applied coagulants. J. Environ. Manage., 203: 838–846.
- Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinson S., Thomas S.M., Toulmin C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327: 812–818.
- Gregory J. (2013). Flocculation Fundamentals. In: Tadros, T. (eds) Encyclopedia of Colloid and Interface Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20665-8_17
- Habib S.S., Batool A.I., Rehman M.F.U., Naz S. (2023). Evaluation and association of heavy metals in commonly used fsh feed with metals concentration in some tissues of O. niloticus cultured in biofoc technology and earthen pond system. Biol. Trace Elem. Res., 201: 3006–3016.
- Hargreaves J.A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacult. Eng., 34: 344–363.
- Harugade A., Sherje A.P., Pethe A. (2023). Chitosan: A review on properties, biological activities and recent progress in biomedical applications. React. Funct. Polym., 191: 105634.
- Hsu C.Y., Ajaj Y., Mahmoud Z.H., Ghadir G.K., Alani Z.K., Hussein M.M., Hussein S.A., Karim M.M., Al-khalidi A., Abbas J.K., Kareem A.H., kianfar E. (2024). Adsorption of heavy metal ions use chitosan/graphene nanocomposites: A review study. Results in Chemistry, 7: 101332.
- Huang T.L., Zhou S.L., Zhang H.H., Bai S.Y., He X.X., Yang X. (2015). Nitrogen removal characteristics of a newly isolated indigenous aerobic denitrifier from oligotrophic drinking water reservoir, Zoogloea sp. N299. Int. J. Mol. Sci., 16: 10038–10060.
- Huang Y., Wu J., Zhang P., Zhang X., Wang P. (2022). Biodegradation of microplastics by a marine bacterium, Pseudomonas sp. MB4. Environ. Sci. Tech., 56: 5638–564
- Jiménez-Ojeda Y.K., Collazos-Lasso L.F., Arias-Castellanos J.A. (2018). dynamics and use of nitrogen in biofloc technology-BFT. AACL Bioflux, 11: 1107–1129.
- Khanjani M.H., Alizadeh M. (2024). Effects of different salinity levels on performance of Nile tilapia fingerlings in a biofloc culture system. Ann. Anim. Sci., 24: 235–245.
- Khanjani M.H., Eslami, J., Emerenciano M.G.C., 2025a. Wheat flour as carbon source on water quality, growth performance, hemolymph biochemical and immune parameters of Pacific white shrimp (Penaeus vannamei) juveniles in biofloc technology (BFT), Aquacult. Rep., 40: 102623.
- Khanjani M.H., Mohammadi A. Emerenciano M.G.C. (2024b). Water quality in biofloc technology (BFT): an applied review for an evolving aquaculture. Aquacult. Int., 32: 9321–9374.
- Khanjani M.H., Mozanzadeh M.T., Gisbert E., Hoseinifar S.H. (2024c). Probiotics, prebiotics, and synbiotics in shrimp aquaculture: Their effects on growth performance, immune responses, and gut microbiome. Aquacult. Rep., 38: 102362
- Khanjani M.H., Sharifinia M. (2024). Feeding Nile tilapia with varying levels of biofloc: effect on growth performance, survival rate, digestive and liver enzyme activities, and mucus immunity. Aquacult. Int., 32: 8171–8194.
- Khanjani M.H., Sharifinia M., Akhavan-Bahabadi M., Emerenciano M.G.C. (2024a). Probiotics and phytobiotics as dietary and water supplements in biofloc aquaculture systems. Aquaculture Nutrition, Article ID 3089887.
- Khanjani M.H., Torfi Mozanzade M., Fóes G.K. (2022). Aquamimicry system: a sutiable strategy for shrimp aquaculture. Ann. Anim. Sci., 22: 1201–1210.
- Khanjani MH., Zahedi S., Sharifinia M., Hajirezaee S., Singh S.K. (2025b). Biological removal of nitrogenous waste compounds in the biofloc aquaculture system: a review. Ann. Anim. Sci., 25: 3–21.
- Kuhn D.D., Lawrence A.L., Boardman G.D., Patnaik S., Marsh L., Flick Jr.G.J. (2010). Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 303: 28–33.
- Kurniawan S.B., Imron M.F., Abdullah S.R.S., Othman A.R., Hasan H.A. (2023). Coagulation–flocculation of aquaculture effluent using biobased flocculant: From artificial to real wastewater optimization by response surface methodology. J. Water Process Eng., 53: 103869.
- Laksmi V., Janani R., Anju G., Roopa V. (2017). Comparative study of natural coagulants in removing turbidity from industrial wastewater. Int. J. Innov. Res. Sci. Eng. Technol., 6: 264–269.
- Lee C.S., Robinson J., Chong M.F. (2014). A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot., 92: 489–508.
- Li H., Wu S., Du C., Zhong Y., Yang C. (2020). Preparation, performances, and mechanisms of microbial flocculants for wastewater treatment. Int. J. Environ. Res. Public Health. 20, 17: 1360.
- Li J., Song X., Pan J., Zhong L., Jiao S., Ma Q. (2013). Adsorption and flocculation of bentonite by chitosan with varying degree of deacetylation and molecular weight. Int. J. Biol. Macromol., 62: 4–12.
- Liang Y., Deng L., Feng Z., Ouyang Q., Wu X., Quan W., Zhu Y., Ye H., Wu K., Luo H. (2023). A chitosan-based flocculation method for efficient recovery of high-purity bphycoerythrin from a low concentration of phycobilin in wastewater. Molecules, 28(8): 3600.
- Liao L., Zhang P. (2018). Preparation and characterization of polyaluminum titanium silicate and its performance in the treatment of low-turbidity water. Processes, 6 (8): 125.
- Lichtfouse E., Morin-Crini N., Fourmentin M., Zemmouri H., do Carmo Nascimento I.O., Queiroz L.M., Tadza M.Y.M., Picos-Corrales L.A., Pei H., Wilson L.D., Crini G. (2019). Chitosan for direct bioflocculation of wastewater. Environ. Chem. Lett., 17: 1603–1621.
- Lin J., Couperthwaite S.J., Millar G.J. (2017). Effectiveness of aluminium based coagulants for pre-treatment of coal seam water. Sep. Purif. Technol., 177: 207–222.
- Macczak P., Kaczmarek H., Ziegler-Borowska M. (2020). Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment. Materials 13(18): 3951.
- Majhi S.S., Singh S.K., Biswas P., Debbarma R., Parhi J., Ngasotter S., Gusheinzed Waikhom G., Meena D.K., Devi A.G., Mahanand S.S., Xavier K.A.M., Patel A.B. (2023). Effect of stocking density on growth, water quality changes and cost efficiency of butter catfish (Ompok bimaculatus) during seed rearing in a biofloc system. Fishes, 8(2): 61.
- Malik Q.H. (2018). Performance of alum and assorted coagulants in turbidity removal of muddy water. Appl. Water Sci., 8: 40.
- Mishra A., Bajpai M. (2005). Flocculation behavior of model textile wastewater treated with a food grade polysaccharide with a food grade polysaccharide. J. Hazard. Mater., 118: 213–217.
- Mishra V.K. (2016). Microbial Flocculants and its application in wastewater treatments: A review. J. Water Pollut. Purificat. Res., 3: 1–9.
- Montoya T., Borrás L., Aguado D., Ferrer J., Seco A. (2008). Detection and prevention of enhanced biological phosphorus removal deterioration caused by Zoogloea overabundance. Environ. Technol., 29: 35–42.
- Morin-Crini N., Lichtfouse E., Torri G., Crini G. (2019). Fundamentals and Applications of Chitosan. Sustainable Agriculture Reviews 35. Chitin and Chitosan: History, Fundamentals and Innovations, 35, Springer International Publishing AG, 49–123.
- Narmatha M., Sangavi S.K., Sripavithra G. (2017). Effluent treatment of Sago wastewater by using natural coagulants. Imp. J. Interndiscip. Res., 3: 53–59.
- Nduka J.K., Umeh C.T. (2021). Bioremediation of heavy metals contaminated aqueous solutions using Zoogloea layer, Moss and Mushroom cells. J. Bioremediat. Biodegrad., 12: 1000008.
- Nie X., Mubashar M., Zhang S., Qin Y., Zhang X. (2020). Current progress, challenges and perspectives in microalgae-based nutrient removal for aquaculture waste: A comprehensive review. J. Clean. Prod., 277: 124209.
- Padeniya U., Davis D.A., Wells D.E., Bruce T.J. (2022). Microbial interactions, growth, and health of aquatic species in biofloc systems. Water, 14: 4019.
- Patel H., Vashi R.T. (2013). Comparison of naturally prepared coagulants for removal of cod and color from textile wastewater. Glob. NEST J., 15: 522–528.
- Patil C., Hugar M. (2015). Treatment of dairy wastewater by 576 S. Gautam and G. Saini natural coagulants. Int. Res. J. Eng. Technol., 2: 1120–1125.
- Pekkoh J., Chaichana C., Thurakit T., Phinyo K., Lomakool S., Ruangrit K., Duangjan K., Suwannarach N., Kumla J., Cheirsilp B., Srinuanpan S. (2022). Dual-bioaugmentation strategy to enhance the formation of algal-bacteria symbiosis biofloc in aquaculture wastewater supplemented with agricultural wastes as an alternative nutrient sources and biomass support materials. Bioresor. Technol., 359: 127469.
- Pellis A., Guebitz G.M., Nyanhongo G.S. (2022). Chitosan: Sources, Processing and Modification Techniques. Gels, 21, 8: 393.
- Picos-Corrales L.A., Sarmiento-Sánchez J.I., Ruelas-Leyva J.P., Crini G., Hermosillo-Ochoa E., Gutierrez-Montes J.A. (2020). Environment-friendly approach toward the treatment of raw agricultural wastewater and river water via flocculation using chitosan and bean straw flour as bioflocculants. ACS Omega, 5: 3943–3951.
- Piekarska K., Sikora M., Owczarek M., Józwik-Pruska J., Wisniewska-Wrona M. (2023). Chitin and Chitosan as Polymers of the Future—Obtaining, Modification, Life Cycle Assessment and Main Directions of Application. Polymers, 15: 793.
- Rahangdale D., Joshi N., Kumar A. (2019). Chitosan and Its Derivatives: A New Versatile Biopolymer for Various Applications. In: Jana, S., Jana, S. (eds) Functional Chitosan. Springer, Singapore. https://doi.org/10.1007/978-981-15-0263-7_1
- Ramavandi B., Farjadfard S. (2014). Removal of chemical oxygen demand from textile wastewater using a natural coagulant. Korean J. Chem. Eng., 31: 81–87.
- Rashid N., Rehman M.S.U., Han J.I. (2013b). Use of chitosan acid solutions to improve separation efficiency for harvesting of the microalga Chlorella vulgaris. Chem. Eng. J., 226: 238–242.
- Rashid N., Rehman S.U., Han J. (2013a). Rapid harvesting of freshwater microalgae using chitosan, Process Biochem., 48: 1107–1110.
- Ray A.J., Seaborn G., Vinatea, L., Browdy, C.L., Leffler, J.W. (2012). Effects of biofloc reduction on microbial dynamics in minimal‐exchange, superintensive shrimp, Litopenaeus vannamei, culture systems. J. World Aquacult. Soc., 43: 790–801.
- Renault F., Sancey B., Badot P.M., Crini G. (2009). Chitosan for coagulation/flocculation processes–an eco-friendly approach. Eur. Polym. J., 45: 1337–1348.
- Roussy J., Van Vooren M., Guibal E. (2005). Chitosan for the coagulation and flocculation of mineral colloids. J. Disper. Sci. Technol., 25: 663–677.
- Salehizadeh H., Shojaosadati S.A. (2001) Extracellular biopolymeric flocculants: recent trends and biotechnological importance. Biotechnol. Adv., 5: 371–385.
- Saravanan A., Thamarai P., Kumar P.S., Rangasamy G. (2022). Recent advances in polymer composite, extraction, and their application for wastewater treatment: A review. Chemosphere, 308: 136368.
- Sarparastzadeh H., Saeedi M., Naeimpoor F., Aminzadeh B. (2007). Pretreatment of municipal wastewater by enhanced chemical coagulation. Int. J. Environ. Res., 1: 104–113.
- Sears K., Alleman J.E., Barnard J.L., Oleszkiewicz J.A. (2006). Density and activity characterization of activated sludge flocs. J. Environ. Eng., 132:1235–1242.
- Shamsnejati S., Chaibakhsh N., Pendashteh A.R., Hayeripour S. (2015). Mucilaginous seed of Ocimum basilicum as a natural coagulant for textile wastewater treatment. Ind. Crop. Prod., 69: 40–47.
- Sheikh M.S., Vij R., Dharaniraj B. (2016). Abattoir wastewater treatment using Cicer arentinum seed powder as natural coagulant. J. Chem. Pharm. Sci., 9: 2610–2612.
- Sheng Y., Zhang Q., Sheng Y., Li C., Wang H. (2006). Screening and flocculating properties of bioflocculant-producing microorganisms. J. Uni. Sci. Technol. Bei. Min. Met. Mat., 13: 289–292.
- Shukri Z.N.A., Chik C.E.N.C.E., Hossain S., Othman R., Endut A., Lananan F., Terkula I.B., Kamaruzzan A.S., Rahim A.I.A., Draman A.S., Kasan N.A. (2022). A novel study on the effectiveness of bioflocculant-producing bacteria Bacillus enclensis, isolated from biofloc-based system as a biodegrader in microplastic pollution. Chemosphere, 308: 136410.
- Suresh A., Grygolowicz-Pawlak E., Pathak S., Poh L.S., bin Abdul Majid M., Dominiak D., Bugge T.V., Gao X., Ng W.J. (2018). Understanding and optimization of the flocculation process in biological wastewater treatment processes: A review. Chemosphere, 210: 401–416.
- Van der Goot A.J., Pelgrom P.J., Berghout J.A., Geerts M.E., Jankowiak L., Hardt N.A., Keijer J., Schutyser M.A.I., Nikiforidis C.V., Boom R.M. (2016). Concepts for further sustainable production of foods. J. Food Eng., 168: 42–51.
- Verma A.K., Bhunia P., Dash R.R. (2012). Supremacy of magnesium chloride for decolourisation of textile wastewater: a comparative study on the use of different coagulants. Int. J. Environ. Sci. Dev., 3: 118–123.
- Vidal R.R.L., Moraes J.S. (2019). Removal of organic pollutants from wastewater using chitosan: a literature review. Int. J. Environ. Sci. Technol., 16: 1741–1754.
- Wei Y., Lu J., Dong X., Hao J., Yao C. (2017). Coagulation performance of a novel polyferric-acetate (PFC) coagulant in phosphate-kaolin synthetic water treatment. Korean J. Chem. Eng., 34: 2641–2647.
- Wu J., Wang G., Li Z., Yu E., Xie J., Zheng Z. (2017). Extraction of flocculants from a strain of Bacillus thuringiensis and analysis of their properties. Aquacult. Fish., 2: 179–184.
- Xavier M., Wasielesky J.W., Hostins B., Bequé E., Krummenauer D. (2022). The use of a flocculant additive and its effect on biofloc formation, nitrification, and zootechnical performance during the culture of Pacific white shrimp Penaeus vannamei (Boone, 1931) in a BFT system. Lat. Am. J. Aquat. Res., 50: 181–196.
- Xia L., Li Y., Huang R., Song S. (2017). Effective harvesting of microalgae by coagulation– flotation. R. Soc. Open Sci., 4: 170867.
- Yang Y., Ali A., Su J., Xu L., Wang X., Liang E. (2022). Simultaneous removal of nitrate, tetracycline, and Pb (II) by iron oxidizing strain Zoogloea sp. FY6: Performance and mechanism. Bioresour. Technol., 360: 127569.
- Ying T.E.N.G., Wei C.H.E.N. (2019). Soil microbiomes—a promising strategy for contaminated soil remediation: a review. Pedosphere, 29: 283–297.
- Younis A.M., Aly-Eldeen M.A., Elkady E.M. (2019). Effect of different molecular weights of chitosan on the removal efficiencies of heavy metals from contaminated water. Egypt. J. Aquat. Biol. Fish., 23: 149–158.
- Yunos F.H.M., Nasir N.M., Jusoh H.H.W., Khatoon H., Lam S.S., Jusoh A. (2017). Harvesting of microalgae (Chlorella sp.) from aquaculture bioflocs using an environmental-friendly chitosan-based bio-coagulant. Int. Biodeterior. Biodegrad., 124: 243–249.
- Zhang S., Zheng H., Tang X., Sun Y., Wu Y., Zheng X., Sun Q. (2019). Evaluation a self-assembled anionic polyacrylamide flocculant for the treatment of hematite wastewater: Role of microblock structure. J. Taiwan Inst. Chem. Eng., 95: 11–20.