References
- Abisha R., Krishnani K.K., Sukhdhane K., Verma A.K., Brahmane M., Chadha N.K. (2022). Sustainable development of climate-resilient aquaculture and culture-based fisheries through adaptation of abiotic stresses: a review. J. Water Clim. Change, 13: 2671–2689.
- Adegbeye M.J., Elghandour M.M., Monroy J.C., Abegunde T.O., Salem A.Z., Barbabosa-Pliego A., Faniyi T.O. (2019). Potential influence of Yucca extract as feed additive on greenhouse gases emission for a cleaner livestock and aquaculture farming-A review. J. Clean. Prod., 239: 118074.
- Ahmed M., Shuai C., Ahmed M. (2023). Analysis of energy consumption and greenhouse gas emissions trend in China, India, the USA, and Russia. Int. J. Environ. Sci. Technol., 20: 2683–2698.
- Ahmed N., Cheung W.W., Thompson S., Glaser M. (2017). Solutions to blue carbon emissions: Shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Policy, 82: 68–75.
- Aldy J.E., Halem Z.M. (2024). The evolving role of greenhouse gas emission offsets in combating climate change. Rev. Environ. Econ. Policy, 18: 212–233.
- Alonso A.A., Álvarez-Salgado X.A., Antelo L.T. (2021). Assessing the impact of bivalve aquaculture on the carbon circular economy. J. Clean. Prod., 279: 123873.
- Alvarado-Ramírez L., Santiesteban-Romero B., Poss G., Sosa-Hernández J.E., Iqbal H.M., Parra-Saldívar R., Bonaccorso A.D., Melchor-Martínez E.M. (2023). Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. Front. Chem. Eng., 4: 1072761.
- Andrade H.J., Vega A., Martínez-Salinas A., Villanueva C., Jiménez-Trujillo J.A., Betanzos-Simon J.E., Pérez E., Ibrahim M., Sepúlveda L.C.J. (2024). The carbon footprint of livestock farms under conventional management and silvopastoral systems in Jalisco, Chiapas, and Campeche (Mexico). Front. Sustain. Food Syst., 8: 1363994.
- Angel D., Jokumsen A., Lembo G. (2019). Aquaculture production systems and environmental interactions. In: Organic Aquaculture, Lembo G., Mente E. (eds). Springer International Publishing, Cham, pp. 103–118.
- Anika O.C., Nnabuife S.G., Bello A., Okoroafor E.R., Kuang B., Villa R. (2022). Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Sci. Technol., 5: 100072.
- Arifanti V.B., Kauffman J.B., Hadriyanto D., Murdiyarso D., Diana R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. For. Ecol. Manag., 432: 17–29.
- Arroyo V., Zyla K., Pacyniak G. (2017). New strategies for reducing transportation emissions and preparing for climate impacts. Fordham Urb. LJ., 44: 919.
- Aubin J., Papatryphon E., Van der Werf H.M.G., Chatzifotis S. (2009). Assessment of the environmental impact of carnivorous finfish production systems using life cycle assessment. J. Clean. Prod., 17: 354-361.
- Avadí A., Vázquez-Rowe I., Symeonidis A., Moreno-Ruiz E. (2020). First series of seafood datasets in ecoinvent: setting the pace for future development. Int. J. Life Cycle Assess., 25: 1333–1342.
- Avi-Yonah R.S., Uhlmann D.M. (2009). Combating global climate change: Why a carbon tax is a better response to global warming than cap and trade. Stan. Envtl. LJ., 28: 3.
- Awanthi M.G.G., Navaratne C.M. (2018). Carbon footprint of an organization: a tool for monitoring impacts on global warming. Procedia eng., 212: 729-735.
- Ayer N., Martin S., Dwyer R.L., Laurin L. (2016). Environmental performance of copper-alloy net-pens: life cycle assessment of Atlantic salmon grow-out in copper-alloy and nylon net-pens. Aquaculture, 453: 93–103.
- Babu S., Das A., Singh R., Mohapatra K.P., Kumar S., Rathore S.S., Yadav S.K., Yadav P., Ansari M.A., Panwar A.S., Wani O.A. (2023). Designing an energy efficient, economically feasible, and environmentally robust integrated farming system model for sustainable food production in the Indian Himalayas. Sustain. Food Technol., 1: 126–142.
- Badiola M., Mendiola D., Bostock J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng., 51: 26–35.
- Bahida A., Chadli H., Nhhala H., Nhhala I., Wahbi M., Erraioui H. (2022). Carbon Footprint Assessment of a Seabass Farm on the Mediterranean Moroccan Coast. Croat. J. Fish., 80(4): 165-178.
- Baldwin R. (2008). Regulation lite: the rise of emissions trading. Law Financ. Mark. Rev., 2: 262–278.
- Basto-Silva C., Guerreiro I., Oliva-Teles A., Neto B. (2019). Life cycle assessment of diets for gilthead seabream (Sparus aurata) with different protein/carbohydrate ratios and fishmeal or plant feedstuffs as main protein sources. Int. J. Life Cycle Assess., 24: 2023–2034.
- Behera U.K., France J. (2016). Integrated farming systems and the livelihood security of small and marginal farmers in India and other developing countries. Adv. Agron., 138: 235–282.
- Bergman K., Henriksson P.J.G., Hornborg S., Troell M., Borthwick L., Jonell M., Philis G., Ziegler F. (2020). Recirculating aquaculture is possible without major energy tradeoff: life cycle assessment of warmwater fish farming in Sweden. Environ. Sci. Technol., 54: 16062–16070.
- Bijay S., Singh Y. (2017) Management and use efficiency of fertilizer nitrogen in production of cereals in India; issues and strategies. J. Indian Nitrogen Manag., 10: 149–162.
- Blanchard J.L., Watson R.A., Fulton E.A., Cottrell R.S., Nash K.L., Bryndum-Buchholz A., Büchner M., Carozza D.A., Cheung W.W., Elliott J., Davidson L.N. (2017). Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol., 1: 1240–1249.
- Bohnes F.A., Laurent A. (2019). LCA of aquaculture systems: methodological issues and potential improvements. Int. J. Life Cycle Assess., 24: 324–337.
- Bordignon F., Sturaro E., Trocino A., Birolo M., Xiccato G., Berton M. (2022). Comparative life cycle assessment of rainbow trout (Oncorhynchus mykiss) farming at two stocking densities in a low-tech aquaponic system. Aquaculture, 556: 738264.
- Bosma R.H., Nguyen T.H., Siahainenia A.J., Tran H.T., Tran H.N. (2016). Shrimp‐based livelihoods in mangrove silvo‐aquaculture farming systems. Rev Aquac 8: 43–60.
- Bouillon S., Borges A.V., Castañeda‐Moya E., Diele K., Dittmar T., Duke N.C., Kristensen E., Lee S.Y., Marchand C., Middelburg J.J., Rivera‐Monroy V.H. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Glob. Biogeochem. Cycles, 22: 2007GB003052.
- Boyd C.E., McNevin A.A., Davis R.P. (2022). The contribution of fisheries and aquaculture to the global protein supply. Food Secur., 14: 805–827.
- Brennan L., Owende P. (2010). Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev., 14: 557–577.
- Broekhoff D., Gillenwater M., Colbert-Sangree T., Cage P. (2019). Securing climate benefit: a guide to using carbon offsets. Stockholm Environment Institute & Greenhouse Gas Management Institute, 60 pp.
- Buck B.H., Troell M.F., Krause G., Angel D.L., Grote B., Chopin T. (2018). State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Front. Mar. Sci., 5: 165.
- Buder I. (2020) Greenhouse gases. In: Encyclopedia of Sustainable Management, Idowu S., Schmidpeter R., Capaldi N et al. (eds). Springer International Publishing, Cham, pp. 1–8.
- Burford M.A., Thompson P.J., McIntosh R.P., Bauman R.H., Pearson D.C. (2004). The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232: 525–537.
- Camargo J.A., Alonso A., Salamanca A. (2005). Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58: 1255–1267.
- Carlson M. (2023). Greenhouse gas emissions and carbon burial in a small pond. ISSN 1401-5765
- Carvalho A., Costa LC de O., Holanda M., Poersch L.H., Turan G. (2023). Influence of total suspended solids on the growth of the sea lettuce Ulva lactuca integrated with the Pacific white shrimp Litopenaeus vannamei in a biofloc system. Fishes, 8: 163.
- Castilla-Gavilán M., Guerra-García J.M., Hachero-Cruzado I., Herrera M. (2024). Understanding carbon footprint in sustainable land-based marine aquaculture: exploring production techniques. J. Mar. Sci. Eng., 12: 1192.
- Chang B.V., Liao C.S., Chang Y.T., Chao W.L., Yeh S.L., Kuo D.L., Yang C.W. (2019). Investigation of a farm-scale multitrophic recirculating aquaculture system with the addition of Rhodovulum sulfidophilum for milkfish (Chanos chanos) coastal aquaculture. Sustainability, 11: 1880.
- Chang C.C., Chang K.C., Lin W.C., Wu M.H. (2017). Carbon footprint analysis in the aquaculture industry: Assessment of an ecological shrimp farm. J. Clean. Prod., 168: 1101–1107.
- Cheah W.Y., Show P.L., Chang J.S., Ling T.C., Juan J.C. (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol., 184: 190–201.
- Chen Q., Li J., Xue S., Xu H., Jiang Z., Fang J., Mao Y. (2022). Strategies of carbon use and photosynthetic performance of the two seaweeds Gracilaria chouae and Gracilariopsis lemaneiformis under different conditions of the carbonate system. Algal Res., 64: 102713.
- Chen X., Samson E., Tocqueville A., Aubin J. (2015). Environmental assessment of trout farming in France by life cycle assessment: using bootstrapped principal component analysis to better define system classification. J. Clean. Prod. 87: 87–95.
- Chen Y., Xu C. (2020). Exploring new blue carbon plants for sustainable ecosystems. Trends Plant Sci., 25: 1067–1070.
- Choi Y.Y., Patel A.K., Hong M.E., Chang W.S., Sim S.J. (2019). Microalgae bioenergy with carbon capture and storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour. Technol. Rep., 7: 100270.
- Chung I.K., Beardall J., Mehta S., Sahoo D., Stojkovic S. (2011). Using marine macroalgae for carbon sequestration: a critical appraisal. J. Appl. Phycol. 23: 877–886.
- Čížková H., Květ J., Comín FA., Laiho R., Pokorný J., Pithart D. (2013). Actual state of European wetlands and their possible future in the context of global climate change. Aquat. Sci., 75: 3–26.
- Correa J.P., Montalvo-Navarrete J.M., Hidalgo-Salazar M.A. (2019). Carbon footprint considerations for biocomposite materials for sustainable products: A review. J. Clean. Prod., 208: 785–794.
- Cortés A., Casillas-Hernández R., Cambeses-Franco C., Bórquez-López R., Magallón-Barajas F., Quadros-Seiffert W., Feijoo G., Moreira M.T. (2021). Eco-efficiency assessment of shrimp aquaculture production in Mexico. Aquaculture, 544: 737145.
- Coulter L., Canadell P., Dhakal S. (2007). Carbon reductions and offsets. The GCP Report for the ESSP, The Global Carbon Project, Canberra, 33 pp.
- Cunha M.E., Quental-Ferreira H., Parejo A., Gamito S., Ribeiro L., Moreira M., Monteiro I., Soares F., Pousão-Ferreira P. (2019). Understanding the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds. Aquaculture, 512: 734297.
- Czerkauer-Yamu C., Frankhauser P. (2010). A multi-Scale (Multi-Fractal) approach for a systemic planning strategy from a regional to an architectural scale. In: REAL CORP 2010 (Competence Center of Urban and Regional Planning, Association for Promotion and Research of Urban Planning and Regional Development in the Information Society), Vienne, Austria (pp. http-programm).
- David L.H., Pinho S.M., Agostinho F., Costa J.I., Portella M.C., Keesman K.J., Garcia F. (2022). Sustainability of urban aquaponics farms: An emergy point of view. J. Clean. Prod., 331: 129896.
- Davis D.A. (2022). Feed and feeding practices in aquaculture. Woodhead publishing.
- da Silva M.G., Sampaio F.G., Taniwaki R.H., Barros N.O., Alvalá P.C., Bettanin V.C., Garofalo D.T., da Costa D.O., Ayer J.E.B., Gondek T.P., Packer A.P. (2021). Increase of methane emission linked to net cage fish farms in a tropical reservoir. Environ. Chall., 5: 100287.
- de Melo Júnior A.M., Kosten S., Duque V.L.D.C., Santos A.A., Amado A.M., Soranço L.C., Dreise J., Martins A.C., Nasário J., Barbosa A.P.D., Muzitano, I.S. (2025). Low carbon footprint of Nile tilapia farming with recirculation aquaculture. Resour. Conserv. Recycl., 217: 108201.
- Del Campo L.M., Ibarra P., Gutiérrez X., Takle H.R. (2010). Utilization of sludge from recirculation aquaculture systems. Nofima Marin, Norway, 63 pp.
- Diken G., Köknaroğlu H., Can İ. (2022). Small-scale rainbow trout cage farm in the inland waters of Turkey is sustainable in terms of carbon footprint (kg CO2e). Acta Aquat. Turc., 18: 131–145.
- Duarte C.M., Delgado-Huertas A., Marti E., Gasser B., San Martin I., Cousteau A., Neumayer F., Reilly-Cayten M., Boyce J., Kuwae T., Hori M. (2023). Carbon burial in sediments below seaweed farms. bioRxiv, 2023–01.
- Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marbà N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change, 3: 961–968.
- Duarte C.M., Wu J., Xiao X., Bruhn A., Krause-Jensen D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci., 4: 100.
- Duarte J.H., Fanka L.S., Costa J.A.V. (2016) Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour. Technol., 214: 159–165.
- Dumay J., Clément N., Morançais M., Fleurence J. (2013). Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresour. Technol., 131: 21–27.
- Dunbar M.B., Malta E., Brunner L., Hughes A., Ratcliff J., Johnson M., Jacquemin B., Michel R., Cunha M., Oliveira G. and Ferreira H. (2020). Defining integrated multi-trophic aquaculture: a consensus. Aquac. Eur., 45: 22–27.
- Ebeling J.M., Timmons M.B., Bisogni J.J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257: 346–358.
- Edwards, P., 2013. Review of small-scale aquaculture: definitions, characterization, numbers. Enhancing the contribution of small-scale aquaculture to food security, poverty alleviation and socio-economic development, p.37.
- Elkins P., Baker T. (2001). Carbon taxes and carbon emissions trading. J. Econ. Surv., 15: 325–376.
- Emerenciano M.G.C., Fitzsimmons K., Rombenso A.N., Miranda-Baeza A., Martins G.B., Lazzari R., Fimbres-Acedo Y.E., Pinho S.M. (2021). Biofloc technology (BFT) in tilapia culture. In: Biology and Aquaculture of Tilapia. CRC Press, pp. 258–293.
- Emerenciano M.G.C., Khanjani M.H., Sharifinia M., Miranda-Baeza A. (2025). Could Biofloc Technology (BFT) Pave the Way Toward a More Sustainable Aquaculture in Line With the Circular Economy?. Aquac. Res., 2025(1): 1020045.
- Encarnação P. (2016). Functional feed additives in aquaculture feeds. In: Aquafeed Formulation. Elsevier, pp. 217–237.
- Faizullah M.M., Rajagopalsamy C., Ahilan B., Daniel N. (2019). Application of biofloc technology (BFT) in the aquaculture system. J. Entomol. Zool. Stud., 7: 204–212.
- Farmer A.M. (2018). Phosphorus polluter and resource of the future. In: Phosphate Pollution: A Global Overview of the Problem. IWA Publishing, pp. 35–55.
- Farrant D.N., Frank K.L., Larsen A.E. (2021). Reuse and recycle: Integrating aquaculture and agricultural systems to increase production and reduce nutrient pollution. Sci. Total Environ., 785: 146859.
- Fatima A., Singh V.K., Babu S., Singh R.K., Upadhyay P.K., Rathore S.S., Kumar B., Hasanain M., Parween H. (2023). Food production potential and environmental sustainability of different integrated farming system models in northwest India. Front. Sustain. Food Syst., 7: 959464.
- Feng J.C., Sun L., Yan J. (2023). Carbon sequestration via shellfish farming: A potential negative emissions technology. Renew. Sustain. Energy Rev., 171: 113018.
- Ferdouse F., Holdt S.L., Smith R., Murua P., Yang Z. (2018). The global status of seaweed production, trade and utilization. Food and Agriculture Organization of the United Nations, Rome, Italy.
- Ficke A.D., Myrick C.A., Hansen L.J. (2007). Potential impacts of global climate change on freshwater fisheries. Rev. Fish. Biol. Fish., 17: 581–613.
- Fitzgerald Jr W. (2000). Integrated mangrove forest and aquaculture systems in Indonesia. In: Mangrove-Friendly Aquaculture Proceedings. pp. 21-34.
- Folke C., Kautsky N. (1992). Aquaculture with its environment: prospects for sustainability. Ocean Coast. Manag., 17: 5–24.
- Gao G., Clare A.S., Chatzidimitriou E. (2018). Effects of ocean warming and acidification, combined with nutrient enrichment, on chemical composition and functional properties of Ulva rigida. Food Chem., 258: 71–78.
- Gao G., Gao L., Jiang M. (2021). The potential of seaweed cultivation to achieve carbon neutrality and mitigate deoxygenation and eutrophication. Environ. Res. Lett., 17: 014018.
- García García B., Rosique Jiménez C., Aguado-Giménez F., García García J. (2019) Life cycle assessment of seabass (Dicentrarchus labrax) produced in offshore fish farms: Variability and multiple regression analysis. Sustainability, 11: 3523.
- Garibay‐Valdez E., Martínez‐Córdova L.R., Vargas‐Albores F. (2023). The biofouling process: The science behind a valuable phenomenon for aquaculture. Rev. Aquac., 15: 976–990.
- Gasco L., Finke M., Van Huis A. (2018). Can diets containing insects promote animal health? J. Insects Food Feed, 4: 1–4.
- Gephart J.A., Henriksson P.J., Parker R.W. (2021). Environmental performance of blue foods. Nature, 597: 360–365.
- Giamouri E., Zisis F., Mitsiopoulou C. (2023). Sustainable strategies for greenhouse gas emission reduction in small ruminants farming. Sustainability, 15: 4118.
- Gill P. (2024). Skill Development & Entrepreneurship Project Report. PhD Thesis, Global University.
- Glencross B.D., Huyben D., Schrama J.W. (2020). The application of single-cell ingredients in aquaculture feeds-a review. Fishes, 5: 22.
- González-Riopedre M., Márquez L., Sieiro M.P., Vázquez U., Maroto J., Barcia R., Moyano F.J. (2013). Use of purified extracts from fish viscera as an enzyme additive in feeds for juvenile marine fish. New additives and ingredients in the formulation of aquafeeds. Centro Tecnologico del Mar-Fundacion (CETMAR), Spain.
- Guerra-García J.M., Hachero-Cruzado I., González-Romero P. (2016). Towards integrated multi-trophic aquaculture: lessons from caprellids (Crustacea: Amphipoda). PLoS One, 11: e0154776.
- Guttman L., Van Rijn J. (2012). Isolation of bacteria capable of growth with 2-methylisoborneol and geosmin as the sole carbon and energy sources. Appl. Environ. Microbiol., 78: 363–370.
- Ha T.T.T., van Dijk H., Bush S.R. (2012). Mangrove conservation or shrimp farmer’s livelihood? The devolution of forest management and benefit sharing in the Mekong Delta, Vietnam. Ocean Coast Manag., 69: 185–193.
- Hachero-Cruzado I., Betancor M.B., Coronel-Dominguez A.J. (2024). Assessment of full-fat Tenebrio molitor as feed ingredient for Solea senegalensis: effects on growth performance and lipid profile. Animals, 14: 595.
- Hamilton S. (2013). Assessing the role of commercial aquaculture in displacing mangrove forest. Bull. Mar. Sci. 89: 585–601.
- Hargreaves J.A. (2013). Biofloc production systems for aquaculture. Southern Regional Aquaculture Centre, pp. 1-11.
- He P., Davy D., Sciortino J. (2018). Impact of climate change on fisheries and aquaculture: Synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627, Rome, Italy.
- He B., Liu Y., Zeng L., Wang S., Zhang D., Yu Q. (2019). Product carbon footprint across sustainable supply chain. J. Clean. Prod., 241: 118320.
- Heisterkamp I.M., Schramm A., De Beer D., Stief P. (2016). Direct nitrous oxide emission from the aquacultured Pacific white shrimp (Litopenaeus vannamei). Appl. Environ. Microbiol., 82: 4028–4034.
- Heisterkamp I.M., Schramm A., Larsen L.H., Svenningsen N.B., Lavik G., de Beer D., Stief P. (2013). Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environ. Microbiol., 15(7): 1943−1955.
- Henriksson P.J., Dickson M., Allah A.N. (2017). Benchmarking the environmental performance of best management practice and genetic improvements in Egyptian aquaculture using life cycle assessment. Aquaculture, 468: 53–59.
- Henriksson P.J., Heijungs R., Dao H.M., Phan L.T., de Snoo G.R., Guinée J.B. (2015). Product carbon footprints and their uncertainties in comparative decision contexts. PloS one, 10(3): e0121221.
- Hertwich E.G., Peters G.P. (2009). Carbon footprint of nations: A global, trade-linked analysis. Environ. Sci. Technol. 43: 6414–6420.
- Hilborn R., Banobi J., Hall S.J. (2018). The environmental cost of animal source foods. Front. Ecol. Environ., 16: 329–335.
- Hill R., Bellgrove A., Macreadie P.I. (2015). Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr., 60: 1689–1706.
- Holanda M., Ravagnan E., Lara G., Santana G., Furtado P., Cardozo A., Wasielesky Jr W., Poersch L.H. (2023). Integrated multitrophic culture of shrimp Litopenaeus vannamei and tilapia Oreochromis niloticus in biofloc system: A pilot scale study. Front. Mar. Sci., 10: 1060846.
- Holmer M., Hansen P.K., Karakassis I., Borg J.A., Schembri P.J. (2008). Monitoring of environmental impacts of marine aquaculture. In: Aquaculture in the Ecosystem, Holmer M, Black K, Duarte CM et al. (eds). Springer Netherlands, Dordrecht, pp. 47–85.
- Hossain A., Senff P., Glaser M. (2022). Lessons for coastal applications of IMTA as a way towards sustainable development: A review Appl. Sci., 12: 11920.
- Hu Z., Lee J.W., Chandran K., Kim S., Sharma K., Brotto A.C., Khanal S.K. (2013). Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission. Bioresour, Technol., 130: 314–320.
- Huang M., Zhou Y., Tian H., Pan S., Yang X., Gao Q., Dong S. (2024). Rapidly increased greenhouse gas emissions by Pacific white shrimp aquacultural intensification and potential solutions for mitigation in China. Aquaculture, 587: 740825.
- Huang Y., Ciais P., Goll D.S., Goll D., i. Galobart J.S., Cresto-Aleina F., Zhang H. (2020). The shift of phosphorus transfers in global fisheries and aquaculture. Nat. Commun., 11: 355.
- Ibrahim L. A., Abu-Hashim M., Shaghaleh H., Elsadek E., Hamad A. A. A., Alhaj Hamoud Y. (2023). A Comprehensive review of the multiple uses of water in aquaculture-integrated agriculture based on international and national experiences. Water, 15(2): 367.
- Ion I.V., Popescu F., Coman G., Frătița M. (2022). Heat requirement in an indoor recirculating aquaculture system. Energy Rep., 8: 11707–11714.
- Iribarren D., Moreira M.T., Feijoo G. (2012). Life cycle assessment of aquaculture feed and application to the turbot sector. Int. J. Environ. Res. 4: 837-848.
- Jacob A., Ashok B., Alagumalai A., Chyuan O.H., Le P.T. (2021). Critical review on third generation micro algae biodiesel production and its feasibility as future bioenergy for IC engine applications. Energy Convers. Manag., 228: 113655.
- Jaiswal K.K., Dutta S., Banerjee I., Pohrmen C.B., Kumar V. (2023). Photosynthetic microalgae– based carbon sequestration and generation of biomass in biorefinery approach for renewable biofuels for a cleaner environment. Biomass Convers. Biorefinery, 13: 7403–7421.
- Jiang Y., Zhang Z., Friess D.A., Li Y., Zhang Z., Xin R., Li J., Zhang Q., Li Y. (2024). Restoring mangroves lost by aquaculture offers large blue carbon benefits. One Earth, 8: 101149.
- Johnston D., Van Trong N., Tuan T.T., Xuan T.T. (2000). Shrimp seed recruitment in mixed shrimp and mangrove forestry farms in Ca Mau Province, Southern Vietnam. Aquaculture, 184: 89–104.
- Jones A.R., Alleway H.K., McAfee D., Reis-Santos P., Theuerkauf S.J., Jones R.C. (2022). Climate-friendly seafood: The potential for emissions reduction and carbon capture in marine aquaculture. BioScience, 72: 123–143.
- Jose D.M., Divya P.R. (2022). A review on aquaculture important fish Chanos chanos, Forsskål 1775, the milkfish. J. Aquac. Trop., 37: 1–26.
- Kalvakaalva R., Prior S.A., Smith M., Runion G.B., Ayipio E., Blanchard C., Wall N., Wells D., Hanson T.R., Higgins B.T. (2022). Direct greenhouse gas emissions from a pilot-scale aquaponics system. J. ASABE, 65(6): 1211-1223.
- Kalhoro H., Zhou J., Hua Y., Ng W.K., Ye L., Zhang J., Shao Q. (2018). Soy protein concentrate as a substitute for fish meal in diets for juvenile Acanthopagrus schlegelii: effects on growth, phosphorus discharge and digestive enzyme activity. Aquac. Res., 49: 1896–1906.
- Kao C.Y., Chen T.Y., Chang Y.B., Chiu T.W., Lin H.Y., Chen C.D., Chang J.S., Lin C.S. (2014). Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour. Technol. 166: 485–493.
- Keffer J.E., Kleinheinz G.T. (2002). Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J. Ind. Microbiol. Biotechnol., 29: 275–280.
- Khanjani M.H., Eslami J., Emerenciano M.G.C. (2025). Wheat flour as carbon source on water quality, growth performance, hemolymph biochemical and immune parameters of Pacific white shrimp (Penaeus vannamei) juveniles in biofloc technology (BFT). Aquac. Rep., 40: 102623.
- Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2024a). Water quality in biofloc technology (BFT): an applied review for an evolving aquaculture. Aquac. Int., 32: 9321–9374.
- Khanjani M.H., Mozanzadeh M.T., Fóes G.K. (2022a). Aquamimicry system: a sutiable strategy for shrimp aquaculture – a review. Ann. Anim. Sci., 22(4): 1201-1210.
- Khanjani M.H., Sharifinia M., Akhavan-Bahabadi M., Emerenciano M.G.C. (2024b). Probiotics and phytobiotics as dietary and water supplements in biofloc aquaculture systems. Aquac. Nutr., 2024(1), p.3089887.
- Khanjani M.H., Zahedi S., Mohammadi A. (2022b). Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environ. Sci. Pollut. Res., 29: 67513–67531.
- Knowler D., Chopin T., Martínez‐Espiñeira R., Neori A., Nobre A., Noce A., Reid G. (2020). The economics of Integrated Multi‐Trophic Aquaculture: where are we now and where do we need to go? Rev. Aquac., 12: 1579–1594.
- Konstantinidis E., Perdikaris C., Gouva E., Nathanalides C., Bartzanas T., Anestis V., Ribaj S., Tzora A., Skoufos I. (2020). Assessing environmental impacts of sea bass cage farms in Greece and Albania using life cycle assessment. Int. J. Environ. Res., 14: 693-704.
- Kosten S., Almeida R.M., Barbosa I., Mendonça R., Muzitano I.S., Oliveira-Junior E.S., Vroom R.J., Wang H., Barros N. (2020). Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate aquaculture footprint. Sci. Total Environ., 748: 141247.
- Krause G., Le Vay L., Buck B.H., Costa-Pierce B.A., Dewhurst T., Heasman K.G., Nevejan N., Nielsen P., Nielsen K.N., Park K., Schupp M.F. (2022). Prospects of low trophic marine aquaculture contributing to food security in a net zero-carbon world. Front. Sustain. Food. Syst., 6: 875509.
- Krause-Jensen D., Lavery P., Serrano O., Marbà N., Masque P., Duarte C.M. (2018). Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biol. Lett., 14: 20180236.
- Kumar R., Monobrullah M., Bhatt B.P., Raizada A., Sen A.R., Samal S.K., Kumar M. (2023). Productivity, energy use efficiency, economics and CO2 emission from integrated fish-duck farming in floodplain wetland ecosystems of eastern India. Indian J. Fish., 70: 73-81.
- Kurniawan S., Yuliwati E., Ariyanto E., Morsin M., Sanudin R., Nafisah S. (2023). Greywater treatment technologies for aquaculture safety. J. King. Saud. Univ-Eng. Sci., 35: 327–334.
- Kuyumcu M.E., Tutumlu H., Yumrutaş R. (2016). Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank. Energy Convers. Manag., 121: 349–357.
- Lagutkina L.Y., Ponomarev S. (2018). Organic aquaculture as promising trend of the fish industry development. Agric. Biol., 53: 326–336.
- Lakra, W.S. and Krishnani, K.K., 2022. Circular bioeconomy for stress-resilient fisheries and aquaculture. In Biomass, biofuels, biochemicals (pp. 481-516). Elsevier.
- Lal R. (2008). Carbon sequestration. Philos. Trans. R Soc. B Biol. Sci., 363: 815–830.
- Lauderdale C.V., Aldrich H.C., Lindner A.S. (2004). Isolation and characterization of a bacterium capable of removing taste-and odor-causing 2-methylisoborneol from water. Water Res., 38: 4135–4142.
- Lee J., Taherzadeh O., Kanemoto K. (2021). The scale and drivers of carbon footprints in households, cities and regions across India. Glob. Environ. Change, 66: 102205.
- Le Guillard C., Bergé J.P., Donnay-Moreno C., Cornet J., Ragon J.Y., Fleurence J., Dumay J. (2023). Optimization of R-phycoerythrin extraction by ultrasound-assisted enzymatic hydrolysis: A comprehensive study on the wet seaweed Grateloupia turuturu. Mar. Drugs, 21: 213.
- Le Strat Y., Ruiz N., Fleurence J., Pouchus Y.F., Déléris P., Dumay J. (2022). Marine fungal abilities to enzymatically degrade algal polysaccharides, proteins and lipids: A review. J. Appl. Phycol., 34: 1131–1162.
- Legarda E.C., da Silva D., Miranda C.S., Pereira P.K., Martins M.A., Machado C., de Lorenzo M.A., Hayashi L., do Nascimento Vieira F. (2021). Sea lettuce integrated with Pacific white shrimp and mullet cultivation in biofloc impact system performance and the sea lettuce nutritional composition. Aquaculture, 534: 736265.
- Li Y., Zhang Q., Liu Y. (2018). Rabbitfish-an emerging herbivorous marine aquaculture species. In: Aquaculture in China, Gui J.F., Tang Q., Li Z., et al. (eds), 1st edn. Wiley, pp. 329–334.
- Li H., Zhou X., Gao L., Liang J., Liu H., Li Y., Chen L., Guo Y., Liang, S. (2025). Carbon footprint assessment and reduction strategies for aquaculture: A review. J. World Aquacult. Soc., 56(1): e13117.
- Liang Q., Yuan M., Xu L., Lio E., Zhang F., Mou H., Secundo F. (2022). Application of enzymes as a feed additive in aquaculture. Mar. Life. Sci. Technol., 4: 208–221.
- Little D., Edwards P. (2003). Integrated livestock-fish farming systems. Food & Agriculture Organization, Rome, Italy.
- Little D.C., Young J.A., Zhang W., Newton R.W., Al Mamun A., Murray F.J. (2018). Sustainable intensification of aquaculture value chains between Asia and Europe: A framework for understanding impacts and challenges. Aquaculture, 493: 338–354.
- Liu J., Gui F., Zhou Q., Cai H., Xu K., Zhao S. (2023). Carbon footprint of a large yellow croaker mariculture models based on life-cycle assessment. Sustainability, 15: 6658.
- Liu Y., Rosten T.W., Henriksen K., Hognes E.S., Summerfelt S., Vinci B. (2016). Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquac. Eng., 71: 1–12.
- Liu Y., Zhang J., Wu W., Hognes E.S., Summerfelt S., Vinci B. (2022). Effects of shellfish and macro-algae IMTA in north China on the environment, inorganic carbon system, organic carbon system, and sea–air CO2 fluxes. Front. Mar. Sci., 9: 864306.
- Lovell H.C. (2010). Governing the carbon offset market. WIREs. Clim. Change, 1: 353–362.
- Lozano-Muñoz I., Castellaro G., Bueno G., Wacyk J. (2022). Herbivorous fish (Medialuna ancietae) as a sustainable alternative for nutrition security in Northern Chile. Sci. Rep., 12: 1619.
- Lu C., Yu Z., Zhang J., Cao P., Tian H., Nevison C. (2022). Century‐long changes and drivers of soil nitrous oxide (N2O) emissions across the contiguous United States. Glob. Change Biol., 28(7): 2505-2524.
- Lušić D., Tadić R. (2008). The Role of IFOAM AgriBioMediterraneo Organization in development of the organic agriculture on the Mediterranean. Agron. Glas. Glas. Hrvat. Agron. Druš., 70: 291–298.
- MacLeod M.J., Hasan M.R., Robb D.H., Mamun-Ur-Rashid M. (2020). Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep., 10: 11679.
- Majumdar P., Pegu C., Kumar B., Das B.K. (2018). Future aspects of integrated fish farming. Acta Sci. Agric., 212: 45–47.
- Manan H., Kasan N.A., Ikhwanuddin M., Kamaruzzan A.S., Jalilah M., Fauzan F., Suloma A., Amin-Safwan A. (2024). Biofloc technology in improving shellfish Aquaculture production – a review. Ann. Anim. Sci., 24: 983–993.
- Mao Y., Yang H., Zhou Y., Ye N., Fang J. (2009). Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China. J. Appl. Phycol., 21: 649–656.
- Martins C.I.M., Eding E.H., Verdegem M.C., Heinsbroek L.T., Schneider O., Blancheton J.P., d’Orbcastel E.R., Verreth, J.A.J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng., 43: 83–93.
- Metcalf G.E., Weisbach D. (2009). The design of a carbon tax. Harv. Envtl. Rev., 33: 499.
- Miao Y., Yang L., Chen F., Chen J. (2024). Mapping the Landscape of Carbon-Neutral City Research: Dynamic Evolution and Emerging Frontiers. Sustainability, 16(16): 6733.
- Mirzoyan N., Tal Y., Gross A. (2010). Anaerobic digestion of sludge from intensive recirculating aquaculture systems. Aquaculture, 306: 1–6.
- Mitsch W.J., Bernal B., Nahlik A.M., Mander Ü., Zhang L., Anderson C.J., Jørgensen S.E., Brix, H. (2013). Wetlands, carbon, and climate change. Landsc. Ecol., 28: 583–597.
- Morris E.P., Flecha S., Figuerola J., Costas E., Navarro G., Ruiz J., Rodriguez P., Huertas, E. (2013). Contribution of Doñana wetlands to carbon sequestration. PloS One, 8: e71456.
- Mugwanya M., Dawood M.A., Kimera F., Sewilam H. (2021). Biofloc systems for sustainable production of economically important aquatic species: A review. Sustainability, 13: 7255.
- Mungkung R., Phillips M., Castine S., Beveridge M., Chaiyawannakarn N., Nawapakpilai S., Waite R. (2014). Exploratory analysis of resource demand and the environmental footprint of future aquaculture development using life cycle assessment. WorldFish, Malaysia.
- Munguti J.M., Kirimi J.G., Obiero K.O., Ogello E.O., Kyule D.N., Liti D.M., Musalia L.M. (2020). Aqua-feed wastes: Impact on natural systems and practical mitigations-A review. J. Agric. Sci., 13: 111.
- Murdiyarso D., Purbopuspito J., Kauffman J.B., Warren M.W., Sasmito S.D., Donato D.C., Manuri S., Krisnawati H., Taberima S., Kurnianto S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Change, 5: 1089–1092.
- Nations U. (2007). The world’s mangroves 1980-2005. FAO Forestry Paper, 153: 1–77.
- Nederlof M.A.J., Verdegem M.C.J., Smaal A.C., Jansen H.M. (2022). Nutrient retention efficiencies in integrated multi‐trophic aquaculture. Rev. Aquac., 14: 1194–1212.
- Nellemann C., Corcoran E. (2009). Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment. UNEP/Earthprint.
- Nhu T.T., Le Q.H., ter Heide P., Bosma R., Sorgeloos P., Dewulf J., Schaubroeck T. (2016). Inferred equations for predicting cumulative exergy extraction throughout cradle-to-gate life cycles of Pangasius feeds and intensive Pangasius grow-out farms in Vietnam. Resour. Conserv. Recycl., 115: 42–49.
- Nijdam D., Rood T., Westhoek H. (2012). The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy, 37: 760–770.
- Nilsson J., Martin M. (2022). Exploratory environmental assessment of large-scale cultivation of seaweed used to reduce enteric methane emissions. Sustain Prod. Consum., 30: 413–423.
- Nobre A.M., Robertson-Andersson D., Neori A., Sankar K. (2010). Ecological–economic assessment of aquaculture options: comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds. Aquaculture, 306: 116–126.
- Ogello E., Schindler L., Chan C.Y., Tran N., Obiero K.O., Outa N., Muthoka M., Kyule D., Atieno J. (2024). Exploring future scenarios for advancing low emission development in Kenyan aquatic food systems, WorldFish, Penang, Malaysia. https://hdl.handle.net/10568/163447.
- Ogello E.O., Outa N.O., Obiero K.O., Kyule D.N., Munguti J.M. (2021). The prospects of biofloc technology (BFT) for sustainable aquaculture development. Sci. Afr., 14: e01053.
- Ogunkalu O. (2019). Effects of feed additives in fish feed for improvement of aquaculture. Eurasian J. Food Sci. Technol., 3: 49–57.
- Onyeaka H., Miri T., Obileke K., Hart A., Anumudu C., Al-Sharify Z.T. (2021). Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Sci. Technol., 1: 100007.
- Pacana A., Siwiec, D. (2024). Procedure for Aggregating Indicators of Quality and Life-Cycle Assessment (LCA) in the Product-Improvement Process. Processes, 12(4): 811.
- Pandey D., Agrawal M., Pandey J.S. (2011). Carbon footprint: current methods of estimation. Environ. Monit. Assess., 178: 135–160.
- Paramesh V., Kumar P., Shamim M., Ravisankar N., Arunachalam V., Nath A.J., Mayekar T., Singh R., Prusty A.K., Rajkumar R.S., Panwar A.S. (2022). Integrated farming systems as an adaptation strategy to climate change: Case studies from diverse agro-climatic zones of India. Sustainability, 14: 11629.
- Pendleton L., Donato D.C., Murray B.C., Crooks S., Jenkins W.A., Sifleet S., Craft C., Fourqurean J.W., Kauffman J.B., Marbà N., Megonigal P. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE, 7: e43542.
- Perdikaris C., Paschos I. (2010). Organic aquaculture in Greece: a brief review. Rev. Aquac., 2: 102–105.
- Pereira A.G., Fraga-Corral M., Garcia-Oliveira P., Otero P., Soria-Lopez A., Cassani L., Cao H., Xiao J., Prieto M.A., Simal-Gandara J. (2022). Single-cell proteins obtained by circular economy intended as a feed ingredient in aquaculture. Foods, 11: 2831.
- Pereira L., Pardal M.A. (2024). Oceanography: relationships of the oceans with the continents, their biodiversity and the atmosphere. BoD–Books on Demand, University of Coimbra, Portugal.
- Philis G., Ziegler F., Gansel L.C., Jansen M.D., Gracey E.O., Stene A. (2019). Comparing life cycle assessment (LCA) of salmonid aquaculture production systems: Status and perspectives. Sustainability, 11: 2517.
- Pires J.C., Martins F.G., Alvim-Ferraz M.C., Simões M. (2011). Recent developments on carbon capture and storage: An overview. Chem. Eng. Res. Des., 89: 1446–1460.
- Poli M.A., Legarda E.C., de Lorenzo M.A., Pinheiro I., Martins M.A., Seiffert W.Q., do Nascimento Vieira F. (2019). Integrated multitrophic aquaculture applied to shrimp rearing in a biofloc system. Aquaculture, 511: 734274.
- Ponce M., Anguís V., Fernández-Díaz C. (2024). Assessing the role of ulvan as immunonutrient in Solea senegalensis. Fish Shellfish Immunol., 146: 109399.
- Pouil S., Besson M., Phocas F., Aubin J. (2024). Assessing the environmental impacts of conventional and organic scenarios of rainbow trout farming in France. J. Clean. Prod., 456: 142296.
- Primavera J.H. (2006). Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag., 49: 531–545.
- Primavera J.H., Garcia L.M.B., Castanos M.T., Surtida M.B. (2000). Mangrove-friendly aquaculture: Proceedings of the workshop on mangrove-friendly aquaculture organized by the SEAFDEC Aquaculture Department, January 11-15, 1999, Iloilo City, Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center.
- Quang Tran H., Van Doan H., Stejskal V. (2022). Environmental consequences of using insect meal as an ingredient in aquafeeds: A systematic view. Rev. Aquac., 14: 237–251.
- Radonjič G., Tompa S. (2018). Carbon footprint calculation in telecommunications companies– The importance and relevance of scope 3 greenhouse gases emissions. Renew. Sustain. Energy Rev., 98: 361-375.
- Rather M.A., Ahmad I., Shah A., Hajam Y.A., Amin A., Khursheed S., Ahmad I., Rasool S. (2024). Exploring opportunities of Artificial Intelligence in aquaculture to meet increasing food demand. Food Chem., X: 101309.
- Raul C., Pattanaik S.S., Prakash S., Sreedharan K., Bharti S. (2020). Greenhouse gas emissions from aquaculture systems. World Aquac., 57: 57–61.
- Ray N.E., Maguire T.J., Al-Haj A.N., Henning M.C., Fulweiler, R.W. (2019). Low greenhouse gas emissions from oyster aquaculture. Environ. Sci. Technol., 53(15): 9118-9127.
- Richards D.R., Friess D.A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci., 113: 344–349.
- Robb D.H.F., Crampton V.O. (2013). On-farm feeding and feed management: perspectives from the fish feed industry. In: On-Farm Feeding and Feed Management in Aquaculture, Hasan M.R., New M.B. (eds). FAO Fisheries and Aquaculture Technical Paper No. 583. Rome, FAO, pp. 489–518.
- Robb D.H., MacLeod M., Hasan M.R., Soto D. (2017). Greenhouse gas emissions from aquaculture: a life cycle assessment of three Asian systems. FAO Fisheries and Aquaculture Technical Paper No. 609, FAO, Rome, Italy.
- Rong F., Liu H., Zhu J., Qin G., (2025). Carbon footprint of shrimp (Litopenaeus vannamei) cultured in recirculating aquaculture systems (RAS) in China. J. Clean. Prod., 145606.
- Rutegwa M., Gebauer R., Veselỳ L., Regenda J., Strunecký O., Hejzlar J., Drozd B. (2019). Diffusive methane emissions from temperate semi-intensive carp ponds. Aquac. Environ. Interact., 11: 19–30.
- Sabu E.A. (2022). Bioremediation of aquaculture effluent through the development of marine bacteria and phytoplankton consortia. PhD Thesis, Goa University.
- Sah, D., Devakumar A.S. (2018). The carbon footprint of agricultural crop cultivation in India. Carbon Manag., 9(3): 213-225.
- Sahoo A.K., Pattanaik P., Haldar D., Mohanty U.C. (2019). Integrated farming system: A climate smart agriculture practice for food security and environment resilience. Int. J. Trop. Agric., 37: 193–201.
- Santos A.A.O., Aubin J., Corson M.S., Valenti W.C., Camargo A.F. (2015). Comparing environmental impacts of native and introduced freshwater prawn farming in Brazil and the influence of better effluent management using LCA. Aquaculture, 444: 151–159.
- Sapcota D., Begum K. (2022). Integrated duck farming. In: Duck Production and Management Strategies Jalaludeen A., Churchil R.R., Baéza E. (eds). Springer Nature Singapore, Singapore, pp. 247–264.
- Sathoria P., Roy B. (2022). Sustainable food production through integrated rice-fish farming in India: A brief review. Renew. Agric. Food Syst., 37: 527–535.
- Schmittou H.R. (2024). Cage culture. In: Tilapia. CRC Press, pp. 313–346.
- Schoor M., Arenas-Salazar A.P., Torres-Pacheco I., Guevara-González R.G., Rico-García E. (2023). A review of sustainable pillars and their fulfillment in agriculture, aquaculture, and aquaponic production. Sustainability, 15: 7638.
- Seneviratne S.I., Rogelj J., Séférian R., et al (2018). The many possible climates from the Paris Agreement’s aim of 1.5°C warming. Nature, 558: 41–49.
- Shepherd C.J., Monroig O., Tocher D.R. (2017). Future availability of raw materials for salmon feeds and supply chain implications: The case of Scottish farmed salmon. Aquaculture, 467: 49–62.
- Shree V., Nautiyal H., Goel V. (2021). Carbon footprint estimation for academic building in India. LCA Based Carbon Footprint Assessment, pp.55-70.
- Sicuro B. (2019). An overview of organic aquaculture in Italy. Aquaculture, 509: 134–139.
- Siikamäki J., Sanchirico J.N., Jardine S. (2012). Blue carbon: global options for reducing emissions from the degradation and development of coastal ecosystems. Washington, DC: Resources for the Future. https://doi.org/10.1073/pnas.1200519109.
- Silvenius F., Grönroos J., Kankainen M., Kurppa S., Mäkinen T., Vielma J. (2017). Impact of feed raw material to climate and eutrophication impacts of Finnish rainbow trout farming and comparisons on climate impact and eutrophication between farmed and wild fish. J. Clean. Prod., 164: 1467–1473.
- Sirakov I., Velichkova K., Slavcheva-Sirakova D. (2019). The effect of yarrow (Achillea millefolium) supplemented diet on growth performance, biochemical blood parameters and meat quality of rainbow trout (Oncorhynchus mykiss w.) and growth of lettuce (Lactuca sativa) cultivated in aquaponic recirculation system. J. Hyg. Eng. Des., 28-32.
- Soares D.C., Henry-Silva G.G. (2019). Emission and absorption of greenhouse gases generated from marine shrimp production (Litopeneaus vannamei) in high salinity. J. Clean. Prod., 218: 367–376.
- Soeder D.J. (2021). Fossil fuels and climate change. In: Fracking and the Environment. Springer International Publishing, Cham, pp. 155–185.
- Sogari G., Oddon S.B., Gasco L., Van Huis A., Spranghers T., Mancini S. (2023). Recent advances in insect-based feeds: from animal farming to the acceptance of consumers and stakeholders. Animal, 17: 100904.
- Song J., Wang Y., Huang L., Peng Y., Tan K., Tan K. (2024). The effects of bivalve aquaculture on carbon storage in the water column and sediment of aquaculture areas. Sci. Total Environ., 937: 173538.
- Song X., Liu Y., Pettersen J.B., Brandão M., Ma X., Røberg S., Frostell B. (2019). Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China. J. Ind. Ecol., 23: 1077–1086.
- Strand Ø., Jansen H.M., Jiang Z., Sharma N., Pallavicini A., Rosani U. (2019). Goods and services of marine bivalves. In: Perspectives on Bivalves Providing Regulating Services in Integrated Multi-Trophic Aquaculture Aad C.S., Joao G.F., et al. (eds). pp. 209–230.
- Su Z., Qiu G., Yang P., Yang H., Liu W., Tan L., Zhang L., Sun D., Huang J., Tang K.W. (2025). Conversion of earthen aquaculture ponds to integrated mangrove-aquaculture systems significantly reduced the emissions of CH4 and N2O. J. Hydol., 652: 132692.
- Subasinghe R., Soto D., Jia J. (2009). Global aquaculture and its role in sustainable development. Rev. Aquac., 1: 2–9.
- SubhashreeDevasena S., Padmavathy P., Manimekalai D., Rani V. (2022). Carbon footprint in aquaculture–A review. J. Res. Environ. Earth Sci., 8: 64-73.
- Sun Y., Hou H., Dong D., Zhang J., Yang X., Li X., Song X. (2023). Comparative life cycle assessment of whiteleg shrimp (Penaeus vannamei) cultured in recirculating aquaculture systems (RAS), biofloc technology (BFT) and higher-place ponds (HPP) farming systems in China. Aquaculture, 574: 739625.
- Tamburini E., Fano E.A., Castaldelli G., Turolla E. (2019). Life cycle assessment of oyster farming in the Po Delta, Northern Italy. Resources, 8: 170.
- Tewatia R.K., Chanda T.K. (2017). Trends in fertilizer nitrogen production and consumption in India. In: The Indian Nitrogen Assessment. Elsevier, pp. 45–56.
- Thomas N., Lucas R., Bunting P., Hardy A., Rosenqvist A., Simard M. (2017). Distribution and drivers of global mangrove forest change, 1996–2010. PloS One, 12: e0179302.
- Tilman D., Clark M. (2014). Global diets link environmental sustainability and human health. Nature, 515: 518–522.
- Tiwari T., Kaur G.A., Singh P.K., Balayan S., Mishra A., Tiwari A. (2024). Emerging bio-capture strategies for greenhouse gas reduction: Navigating challenges towards carbon neutrality. Sci. Total Environ., 929: 172433.
- Tolentino-Pablico G., Bailly N., Froese R., Elloran C. (2009). Seaweeds preferred by herbivorous fishes. In: Nineteenth International Seaweed Symposium, Borowitzka M.A., Critchley A.T., Kraan S., et al. (eds). Springer Netherlands, Dordrecht, pp. 483–488.
- Tripathi S., Hussain T. (2022). Water and wastewater treatment through ozone-based technologies. In: Development in Wastewater Treatment Research and Processes. Elsevier, pp. 139–172.
- Tsai W-H. (2020). Carbon emission reduction-Carbon tax, carbon trading, and carbon offset. Energies, 13: 6128.
- Tukker A., Pollitt H., Henkemans M. (2020). Consumption-based carbon accounting: sense and sensibility. Clim. Policy, 20: S1–S13.
- Valdovinos-García E.M., Barajas-Fernández J., Olán-Acosta M de los Á., Petriz-Prieto M.A., Guzmán-López A., Bravo-Sánchez M.G. (2020). Techno-economic study of CO2 capture of a thermoelectric plant using microalgae (Chlorella vulgaris) for production of feedstock for bioenergy. Energies 13: 413.
- Van Kessel M.A.H.J., Mesman R.J., Arshad A., Metz J.R., Spanings F.T., van Dalen S.C., van Niftrik L., Flik G., Wendelaar Bonga S.E., Jetten M.S., Klaren P.H. (2016). Branchial nitrogen cycle symbionts can remove ammonia in fish gills. Environ. Microbiol. Rep., 8: 590–594.
- Vasdravanidis C., Alvanou M.V., Lattos A., Papadopoulos D.K., Chatzigeorgiou I., Ravani M., Liantas G., Georgoulis I., Feidantsis K., Ntinas G.K., Giantsis, I.A. (2022). Aquaponics as a promising strategy to mitigate impacts of climate change on rainbow trout culture. Animals, 12: 2523.
- Velichkova K., Sirakov I., Valkova E. (2020). The effect of sweet flag (Acorus calamus L.) supplemented diet on growth performance, biochemical blood parameters and meat quality of rainbow trout (Oncorhynchus mykiss W.) and growth of lettuce (Lactuca sativa L.) cultivated in aquaponic recirculation system. Aquac. Aquar. Conserv. Legis., 13: 3840–3848.
- Verma A.K., Chandrakant M.H., John V.C., Peter R.M., John I.E. (2023). Aquaponics as an integrated agri-aquaculture system (IAAS): Emerging trends and future prospects. Technol. Forecast. Soc. Change, 194: 122709.
- Wallenius A.J., Dalcin Martins P., Slomp C.P., Jetten M.S. (2021). Anthropogenic and environmental constraints on the microbial methane cycle in coastal sediments. Front. Microbiol., 12: 631621.
- Wang C., Jin Y., Ji C., Zhang N.A., Song M., Kong D., Liu S., Zhang X., Liu X., Zou J., Li S. (2018a). An additive effect of elevated atmospheric CO2 and rising temperature on methane emissions related to methanogenic community in rice paddies. Agric. Ecosyst. Environ., 257: 165–174.
- Wang L., Wang Y., Du H., Zuo J., Li R.Y.M., Zhou Z., Bi F., Garvlehn M.P. (2019). A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study. Appl. Energy, 249: 37–45.
- Wang S., Wan L., Li T., Luo B., Wang C. (2018b). Exploring the effect of cap-and-trade mechanism on firm’s production planning and emission reduction strategy. J. Clean. Prod., 172: 591–601.
- Wang X., Broch O.J., Forbord S., Handå A., Skjermo J., Reitan K.I., Vadstein O., Olsen Y. (2014). Assimilation of inorganic nutrients from salmon (Salmo salar) farming by the macroalgae (Saccharina latissima) in an exposed coastal environment: implications for integrated multi-trophic aquaculture. J. Appl. Phycol., 26: 1869–1878.
- Wright A.C., Fan Y., Baker G.L. (2018). Nutritional value and food safety of bivalve molluscan shellfish. J. Shellfish Res., 37: 695–708.
- Wright L.A., Kemp S., Williams I. (2011). Carbon footprinting’: towards a universally accepted definition. Carbon Manag., 2: 61–72.
- Wu P., Xia B., Zhao X. (2014). The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete–a review. Renew. Sustain. Energy Rev., 37: 360–369.
- Yang L., An D., Cui Y., Jia X., Yang D., Li W., Wang Y., Wu, L. (2024). Carbon footprint of fresh sea cucumbers in China: Comparison of three aquaculture technologies. J. Clean. Prod., 469: 143249.
- Yang P., Bastviken D., Lai D.Y.F., Jin B.S., Mou X.J., Tong C., Yao Y.C. (2017). Effects of coastal marsh conversion to shrimp aquaculture ponds on CH4 and N2O emissions. Estuar. Coast Shelf Sci., 199: 125–131.
- Yang P., Lai D.Y., Yang H., Lin Y., Tong C., Hong Y., Tian Y., Tang C., Tang K.W. (2022). Large increase in CH4 emission following conversion of coastal marsh to aquaculture ponds caused by changing gas transport pathways. Water Res., 222: 118882.
- Yang Y., Zhao T., Wang Y., Shi Z. (2015). Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012. Environ. Impact Assess. Rev., 55: 45–53.
- Yuan J., Xiang J., Liu D., Kang H., He T., Kim S., Lin Y., Freeman C. and Ding W. (2019). Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat. Clim. Change., 9: 318–322.
- Zajdband, A.D., 2011. Integrated agri-aquaculture systems. In Genetics, biofuels and local farming systems (pp. 87-127). Dordrecht: Springer Netherlands.
- Zhang R., Chen T., Wang Y., Short M. (2023). Systems approaches for sustainable fisheries: A comprehensive review and future perspectives. Sustain. Prod. Consum., 41: 242-252.
- Zhang W., Li J., Li G., Guo S. (2020a). Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China. Energy, 196: 117117.
- Zhang Y., Lu R., Qin C., Nie G. (2020b). Precision nutritional regulation and aquaculture. Aquac. Rep., 18: 100496.
- Zhang Z., Liu H., Jin J., Zhu X., Han D., Xie S. (2024). Towards a low-carbon footprint: Current status and prospects for aquaculture. Water Biol. Secur., 3: 100290.
- Zhang Y., Tang K.W., Yang P., Yang H., Tong C., Song C., Tan L., Zhao G., Zhou X., Sun, D. (2022). Assessing carbon greenhouse gas emissions from aquaculture in China based on aquaculture system types, species, environmental conditions and management practices. Agric. Ecosyst. Environ., 338: 108110.
- Zhao D., Pan L., Huang F., Wang C., Xu W. (2016). Effects of different carbon sources on bioactive compound production of biofloc, immune response, antioxidant level, and growth performance of Litopenaeus vannamei in zero‐water exchange culture tanks. J. World Aquac. Soc., 47: 566–576.
- Zhao F., Wu J. (2024). The Role of Shellfish Aquaculture in Coastal Habitat Restoration. Int. J. Mar. Sci., 14: 275.
- Zimmermann S., Kiessling A., Zhang J. (2023). The future of intensive tilapia production and the circular bioeconomy without effluents: Biofloc technology, recirculation aquaculture systems, BIO‐RAS, partitioned aquaculture systems and integrated multitrophic aquaculture. Rev. Aquac., 15: 22–31.