Have a personal or library account? Click to login
A stern concerning the issue of antimicrobial resistance in aquaculture – a review Cover

A stern concerning the issue of antimicrobial resistance in aquaculture – a review

Open Access
|Aug 2025

References

  1. Abdel-Latif H.M., Abdel-Daim M.M., Shukry M., Nowosad J., Kucharczyk D. (2022). Benefits and applications of Moringa oleifera as a plant protein source in Aquafeed: Rev. Aqua., 547: 737369.
  2. Abdel-Latif H.M., Yilmaz S., Kucharczyk D. (2023). Functionality and applications of phytochemicals in aquaculture nutrition. Front. Vet. Sci., 10: 1218542.
  3. Adel M., Lazado C.C., Safari R., Yeganeh S., Zorriehzahra, M.J. (2017). Aqualase, a yeast‐ based in‐feed probiotic, modulates intestinal microbiota, immunity and growth of rainbow trout Oncorhynchus mykiss. Aqua. Res., 48: 1815–1826.
  4. Agoba E.E., Adu F., Agyare C., Boamah V.E., Boakye Y.D. (2017). Antibiotic resistance patterns of bacterial isolates from hatcheries and selected fish farms in the Ashanti region of Ghana. J. Microbiol. Antimicrob., 9: 35–46.
  5. Ahmadifar E., Mohammadzadeh S., Kalhor N., Yousefi M., Moghadam M.S., Naraballobh W., Ahmadifar M., Hoseinifar S.H., Van Doan, H. (2022). Cornelian cherry (Cornus mas L.) fruit extract improves growth performance, disease resistance, and serum immune-and antioxidant-related gene expression of common carp (Cyprinus carpio). Aqua., 558: 738372.
  6. Ahmadifar E., Yousefi M., Karimi M., Fadaei Raieni R., Dadar M., Yilmaz S., Dawood M.A., Abdel-Latif H.M. (2021, a). Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: an overview. Rev. Fish. Sci. Aqua., 29: 478–511.
  7. Ahmadifar E., Pourmohammadi Fallah H., Yousefi M., Dawood M.A., Hoseinifar S.H., Adineh H., Yilmaz S., Paolucci M., Doan H.V. (2021, b). The gene regulatory roles of herbal extracts on the growth, immune system, and reproduction of fish. Animals, 11: 2167.
  8. Ahmadifar E., Sadegh T.H., Dawood M.A., Dadar M., Sheikhzadeh N. (2020). The effects of dietary Pediococcus pentosaceus on growth performance, hemato-immunological parameters and digestive enzyme activities of common carp (Cyprinus carpio). Aqua., 516: 734656.
  9. Alderman D.J., Hastings T.S. (1998). Antibiotic use in aquaculture: development of antibiotic resistance–potential for consumer health risks. Int. J. Food Sci. Technol., 33: 139–155.
  10. Amar E.C., Kiron V., Satoh S., Watanabe T. (2004). Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish Shellfish Immunol., 16: 527–537.
  11. Amos G.C., Gozzard E., Carter C.E., Mead A., Bowes M.J., Hawkey P.M., Zhang L., Singer A.C., Gaze W.H., Wellington E.M. (2015). Validated predictive modelling of the environmental resistome. ISME J., 9: 1467–1476.
  12. Angulo F.J., Johnson K.R., Tauxe R.V., Cohen M.L. (2000). Origins and consequences of antimicrobial-resistant nontyphoidal Salmonella: implications for the use of fluoroquinolones in food animals. Micro. Drug. Res., 6: 77–83.
  13. Antimicrobial Awareness Week (2021). How poor regulation threatens aquaculture. By T. Jawahar Abraham and Avishek Bardhan: https://www.downtoearth.org.in/blog/agriculture/antimicrobial-awareness-week-2021-how-poor-regulation-threatens-aquaculture-80240
  14. Armobin K., Ahmadifar E., Adineh H., Samani M.N., Kalhor N., Yilmaz S., Hoseinifar S.H., Van Doan H. (2023). Quercetin Application for Common Carp (Cyprinus carpio): I. Effects on Growth Performance, Humoral Immunity, Antioxidant Status, Immune‐Related Genes, and Resistance against Heat Stress. Aqua. Nutri., 1168262.
  15. Awad Y.M., Kim S.C., Abd El-Azeem S.A., Kim K.H., Kim K.R., Kim K., Jeon C., Lee S.S., Ok Y.S. (2014). Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environ. Earth Sci., 71: 1433–1440.
  16. Azimirad M., Meshkini S., Ahmadifard N., Hoseinifar S.H. (2016). The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish Shellfish Immunol., 54: 516–522.
  17. Baquero F., Martínez J.L., Cantón R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion Bio., 19: 260–265.
  18. Barrett H., Sun J., Gong Y., Yang P., Hao C., Verreault J., Zhang Y., Peng H. (2022). Triclosan is the predominant antibacterial compound in Ontario sewage sludge. Environ. Sci. Technol., 56: 14923–14936.
  19. Bebak-Williams J., Bullock G., Carson M.C. (2002). Oxytetracycline residues in a freshwater recirculating system. Aqua., 205: 221–230.
  20. Belton B., Bush S.R., Little D.C. (2018). Not just for the wealthy: Rethinking farmed fish consumption in the Global South. Glob. Food Security, 16: 85–92.
  21. Berendonk T.U., Manaia C.M., Merlin C., Fatta-Kassinos D., Cytryn E., Walsh F., Bürgmann H., Sørum H., Norström M., Pons M.N., Kreuzinger N. (2015). Tackling antibiotic resistance: the environmental framework. Nature Rev. Microbiol., 13: 310–317.
  22. Blancheton J.P., Attramadal K.J.K., Michaud L., d’Orbcastel E.R., Vadstein O. (2013). Insight into bacterial population in aquaculture systems and its implication. Aqua. Eng., 53: 30–39.
  23. Bojarski B., Kot B., Witeska M. (2020). Antibacterials in aquatic environment and their toxicity to fish. Pharma., 13: 189.
  24. Bondad‐Reantaso M.G., MacKinnon B., Karunasagar I., Fridman S., Alday‐Sanz V., Brun E., Le Groumellec M., Li, A., Surachetpong W., Karunasagar I., Hao B. (2023). Review of alternatives to antibiotic use in aquaculture. Rev. Aqua., 15: 1421–1451.
  25. Bostock J., McAndrew B., Richards R., Jauncey K., Telfer T., Lorenzen K., Little D., Ross L., Handisyde N., Gatward I., Corner R. (2010). Aquaculture: global status and trends. Philosophl Trans of the Royal Society B: Biol. Sci., 365: 2897–2912.
  26. Bruins M.R., Kapil S., Oehme F.W. (2000). Microbial resistance to metals in the environment. Ecotoxicol. Environ. Safety, 45: 198–207.
  27. Burridge L., Weis J.S., Cabello F., Pizarro J., Bostick K. (2010). Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aqua., 306: 7–23.
  28. Buschmann A.H., Tomova A., López A., Maldonado M.A., Henríquez L.A., Ivanova L., Moy F., Godfrey H.P., Cabello F.C. (2012). Salmon aquaculture and antimicrobial resistance in the marine environment. 42724.
  29. Cabello F.C. (2003). Antibiotics and aquaculture. An analysis of their potential impact upon the environment, human and animal health in Chile. Terram. Foundation.
  30. Cabello F.C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol., 8: 1137–1144.
  31. Cabello F.C., Godfrey H.P., Buschmann A.H., Dölz H.J. (2016). Aquaculture as yet another environmental gateway to the development and globalization of antimicrobial resistance. Lancet. Infect. Dis., 16: 127–133.
  32. Cabello F.C., Godfrey H.P., Tomova A., Ivanova L., Dölz H., Millanao A., Buschmann A.H. (2013). Antimicrobial use in aquaculture re‐examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol., 15: 1917–1942.
  33. Cao L., Naylor R., Henriksson P., Leadbitter D., Metian M., Troell M., Zhang W. (2015). China’s aquaculture and the world’s wild fisheries. Sci., 347: 133–135.
  34. Capone D.G., Weston D.P., Miller V., Shoemaker C. (1996). Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aqua., 145: 5–75.
  35. Chakraborty S.B., Hancz C. (2011). Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Rev. Aqua., 3: 103–119.
  36. Chamier B., Lorenz M.G., Wackernagel W. (1993). Natural transformation of Acinetobacter calcoaceticus by plasmid DNA adsorbed on sand and groundwater aquifer material. Appl. Environ. Microbiol., 59: 1662–1667.
  37. Chen B., Liang X., Huang X., Zhang T., Li X. (2013). Differentiating anthropogenic impacts on ARGs in the Pearl River Estuary by using suitable gene indicators. Water Res., 47: 2811–2820.
  38. Chen C.Q., Zheng L., Zhou J.L., Zhao H. (2017). Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China. Sci. Total Environ., 580: 1175–1184.
  39. Chen H., Liu S., Xu X.R., Liu S.S., Zhou G.J., Sun K.F., Zhao J.L., Ying G.G. (2015). Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: occurrence, bioaccumulation and human dietary exposure. Mar. Poll. Bull., 90: 181–187.
  40. Cherian T., Ragavendran C., Vijayan S., Kurien S., Peijnenburg W.J. (2023). A review on the fate, human health and environmental impacts, as well as regulation of antibiotics used in aquaculture. Environ. Advances, 100411.
  41. Chiu T.H., Kao L.Y., Chen M.L. (2013). Antibiotic resistance and molecular typing of Photobacterium damselae subsp. damselae, isolated from seafood. J. Appl. Microbiol., 114: 1184–1192.
  42. Choi M.H., Cech Jr J.J. (1998). Unexpectedly high mercury level in pelleted commercial fish feed. Environ. Toxicol. Chem. Int. J., 17: 1979–1981.
  43. Chuah L.O., Effarizah M.E., Goni A.M., Rusul G. (2016). Antibiotic application and emergence of multiple antibiotic resistance (MAR) in global catfish aquaculture. Current Environ. Health Rep., 3: 118–127.
  44. Citarasu T. (2010). Herbal biomedicines: a new opportunity for aquaculture industry. Aqua. Int., 18:403–414.
  45. Coyne R., Hiney M., O’Connor B., Kerry J., Cazabon D., Smith P. (1994). Concentration and persistence of oxytetracycline in sediments under a marine salmon farm. Aqua., 123: 31–42.
  46. Coyne R., Smith P., Moriarty C. (2001). The fate of oxytetracycline in the marine environment of a salmon cage farm.
  47. Cripps S.J., Bergheim A. (2000). Solids management and removal for intensive land-based aquaculture production systems. Aqua. Eng., 22: 33–56.
  48. D’Costa V.M., King C.E., Kalan L., Morar M., Sung W.W., Schwarz C., Froese D., Zazula G., Calmels F., Debruyne R., Golding G.B. (2011). Antibiotic resistance is ancient. Nature, 477: 457–461.
  49. Dawood M.A., Koshio S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aqua., 454: 243–251.
  50. Dawood M.A., Koshio S., Esteban M.Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aqua., 10: 950–974.
  51. Devarajan N., Laffite A., Graham N.D., Meijer M., Prabakar K., Mubedi J.I., Elongo V., Mpiana P.T., Ibelings B.W., Wildi W., Poté J. (2015). Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environ. Sci. Tech., 49: 6528–6537.
  52. Dharmaratnam A., Kumar R., Basheer V.S., Sood N., Swaminathan T.R., Jena J.K. (2017). Isolation and characterisation of virulent Serratia marcescens associated with a disease outbreak in farmed ornamental fish, Poecilia reticulata in Kerala, India. Indian J. Fish., 64: 71–79.
  53. Dias C., Mota V., Martinez-Murcia A., Saavedra M.J. (2012). Antimicrobial resistance patterns of Aeromonas spp., Isolated from ornamental fish. J. Aqua. Res. Dev., 3: 3.
  54. Dixon B.A., Issvoran G. (1993). Antibacterial drug resistance in Aeromonas spp. isolated from domestic goldfish and koi from California. J. World Aqua. Society, 24: 102–104.
  55. Done H.Y., Halden R.U. (2015). Reconnaissance of 47 antibiotics and associated microbial risks in seafood sold in the United States. J. Hazard Materials, 282: 10–17.
  56. ECDC (European Centre for Disease Prevention and Control). Antimicrobial resistance surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2017.
  57. Economou V., Gousia P. (2015). Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug. Resist., 8: 49.
  58. EMA/AMEG (European Medicines Agency – Antimicrobial Advice Ad Hoc Expert Group). Answers to the requests for scientific advice on the impact on public health and animal health of the use of antibiotics in animals. EMA: 2014. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Other/2014/07/WC500170253.pdf (access 17.08.02).
  59. EMA/AMEG (European Medicines Agency – Antimicrobial Advice Ad Hoc Expert Group). Updated advice on the use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health. 2016. (EMA/CVMP/CHMP/231573/2016).
  60. European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA), and European Medicines Agency (EMA). “ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food‐producing animals: Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report.” EFSA Journal 15, no. 7 (2017): e04872.
  61. European Commission (2011). Action plan against the rising threats from antimicrobial resistance. Communication from the Commission to the European Parliament and the Council, 15.
  62. European Council (2001 a). Directive 2001/82/EC of the European Parliament and of the Council of 6th November 2001 on the Community code relating to veterinary medicinal products. Off. J. Eur. Community, L-311 2004, 1–66.
  63. European Council (2001 c). EC Health and Consumer Protection Directorate General. Guidelines on the Assessment of Additives in Animal Nutrition: Additives other than Micro-Organisms and Enzymes; European Council: Brussels, Belgium.
  64. FAO (2020). The State of World Fisheries and Aquaculture–Sustainability in action. Rome. https://doi.org/10.4060/ca9229en.
  65. Faramarzi M., Kiaalvandi S., Iranshahi F. (2011). The effect of probiotics on growth performance and body composition of common carp (Cyprinus carpio). J. Anim. Vet. Adv., 10: 2408–2413.
  66. Feng Y., Lu Y., Chen Y., Xu J., Jiang J. (2023). Microbial community structure and antibiotic resistance profiles in sediments with long-term aquaculture history. J. Environ. Manage., 341: 118052.
  67. Food and Agricultural Organization of the United Nations and World Health Organization (2001). Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; World Health Organization: Geneva, Switzerland.
  68. Food and Agriculture Organization, 2019. Aquaculture Development. 8. Recommendations for Prudent and Responsible Use of Veterinary Medicines in Aquaculture. FAO Technical Guidelines for Responsible Fisheries.
  69. Furushita M., Shiba T., Maeda T., Yahata M., Kaneoka A., Takahashi Y., Torii K., Hasegawa T., Ohta M. (2003). Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl. Environ. Microbiol., 69: 5336–5342.
  70. Gauthier D.T. (2015). Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Vet. J., 203: 27–35.
  71. Gbylik-Sikorska M., Posyniak A., Mitrowska K., Gajda A., BłądekT., Śniegocki T., Żmudzki J. (2014). Occurrence of veterinary antibiotics and chemotherapeutics in fresh water, sediment, and fish of the rivers and lakes in Poland. J. Vet. Res., 58: 399–404.
  72. Gelfand I., Barak Y., Even‐Chen Z., Cytryn E., Van Rijn J., Krom M.D., Neori A. (2003). A novel zero discharge intensive seawater recirculating system for the culture of marine fish. J. World Aqua. Society, 34: 344–358.
  73. Gillor O., Etzion A., Riley M.A. (2008). The dual role of bacteriocins as anti-probiotics. Appl. Micro. Bio., 81: 591–606.
  74. Gravningen K., Sorum H., Horsberg T.E. (2019). The future of therapeutic agents in aquaculture. Revue Scientifique et Technique (International Office of Epizootics) 38: 641–651.
  75. Guardiola F. A., Cuesta A., Meseguer J., Esteban M.Á. (2018). Molecular and functional immune responses in fish: Role of plant bioactive compounds. Front. Immunol., 9: 1816.
  76. Gudding R., Van Muiswinkel W.B. (2013). A history of fish vaccination: science-based disease prevention in aquaculture. Fish Shellfish Immunol., 35: 1683–1688.
  77. Gullberg E., Cao S., Berg O.G., Ilbäck C., Sandegren L., Hughes D., Andersson D.I. (2011). Selection of resistant bacteria at very low antibiotic concentrations. PLoS Path, 7: 1002158.
  78. Haenen O.L., Evans J.J., Berthe F. (2013). Bacterial infections from aquatic species: potential for and prevention of contact zoonoses. Revue. Sci. Tech., (International Office of Epizootics) 32: 497–507.
  79. Hai N.V., Buller N., Fotedar R. (2010). Effect of customized probiotics on the physiological and immunological responses of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896) challenged with Vibrio harveyi. J. Appl. Aqua., 22: 321–336.
  80. Hammad A.M., Shimamoto T., Shimamoto T. (2014). Genetic characterization of antibiotic resistance and virulence factors in Enterococcus spp. from Japanese retail ready-to-eat raw fish. Food Microbiol., 38: 62–66.
  81. Handbook on Fisheries Statistics (2021–22). Department of Fisheries Ministry of Fisheries, Animal Husbandry & Dairying Government of India, New Delhi 1–120.
  82. Harikrishnan R., Balasundaram C., Heo M.S. (2010). Herbal supplementation diets on hematology and innate immunity in goldfish against Aeromonas hydrophila. Fish Shellfish Immunol., 28: 354–361.
  83. Harikrishnan R., Balasundaram C., Heo M.S. (2011). Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aqua., 317: 1–15.
  84. Hatha A.A.M., Nifty J. (2012). Prevalence, distribution and drug resistance of motile aeromonads in freshwater ornamental fishes. Indian J. Fish., 59: 161–164.
  85. He Y., Jin L., Sun F., Hu Q., Chen L. (2016). Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from fresh shrimps in Shanghai fish markets, China. Environ. Sci. Poll. Res., 23: 15033–15040.
  86. Henriksson P.J., Rico A., Troell M., Klinger D.H., Buschmann A.H., Saksida S., Chadag M.V., Zhang W. (2018). Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain. Sci., 13: 1105–1120.
  87. Hoa P.T.P., Managaki S., Nakada N., Takada H., Shimizu A., Anh D.H., Viet P.H., Suzuki S. (2011). Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Sci. Total Environ., 409: 2894–2901.
  88. Holmström K., Graslund S., Wahlstrom A., Poungshompoo S., Bengtsson B.E., Kautsky N. (2003). Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int. J. Food Sci. Technol., 38: 255–266.
  89. Hoseinifar S.H., Sun Y.Z., Wang A., Zhou Z. (2018). Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol., 9: 2429.
  90. Hoseinifar S.H., Sun Y.Z., Zhou Z., Van Doan H., Davies S.J., Harikrishnan R. (2020). Boosting immune function and disease bio-control through environment-friendly and sustainable approaches in finfish aquaculture: herbal therapy scenarios. Rev. Fish. Sci. Aqua., 28: 303–321.
  91. Huerta B., Marti E., Gros M., López P., Pompêo M., Armengol J., Barceló D., Balcázar J.L., Rodríguez-Mozaz S., Marcé R. (2013). Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci. Total Environ., 456: 161–170.
  92. Imperial I.C., Ibana J.A. (2016). Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front. Microbiol., 7: 1983.
  93. Iwashita M.K.P., Nakandakare I.B., Terhune J.S., Wood T., Ranzani-Paiva M.J.T. (2015). Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish Shellfish Immunol., 43: 60–66.
  94. Jacobs L., Chenia H.Y. (2007). Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. Int. J. Food Microbiol., 114: 295–306.
  95. Jagoda S.D.S., Wijewardana T.G., Arulkanthan A., Igarashi Y., Tan E., Kinoshita S., Watabe S., Asakawa S. (2014). Characterization and antimicrobial susceptibility of motile aeromonads isolated from freshwater ornamental fish showing signs of septicaemia. Dis. Aquatic Organis., 109: 127–137.
  96. Kerry J., Coyne R., Gilroy D., Hiney M., Smith P. (1996). Spatial distribution of oxytetracycline and elevated frequencies of oxytetracycline resistance in sediments beneath a marine salmon farm following oxytetracycline therapy. Aqua., 145: 31–39.
  97. Kolter R., Van Wezel G.P. (2016). Goodbye to brute force in antibiotic discovery? Nature Microbiol., 1: 1–2.
  98. Korkea‐Aho T.L., Papadopoulou A., Heikkinen J., Von Wright A., Adams A., Austin B., Thompson K.D. (2012). Pseudomonas M162 confers protection against rainbow trout fry syndrome by stimulating immunity. J. Appl. Microbiol., 113: 24–35.
  99. Kozasa M. (1986). Toyocerin (Bacillus toyoi) as growth promoter for animal feeding. Microb. Aliment. Nutri., 4: 121–135.
  100. Krkošek M. (2010). Host density thresholds and disease control for fisheries and aquaculture. Aqua. Environ. Int., 1: 21–32.
  101. Kumar R., Swaminathan T.R., Kumar R.G., Dharmaratnam A., Basheer V.S., Jena, J.K. (2015). Mass mortality in ornamental fish, Cyprinus carpio koi caused by a bacterial pathogen, Proteus hauseri. Acta Tropica, 149: 128–134.
  102. Kumar S., Lekshmi M., Parvathi A., Nayak B.B., Varela M.F. (2016). Antibiotic resistance in seafood‐borne pathogens. Foodborne Path. Anti. Res., 397–415.
  103. Kümmerer K. (2009). Antibiotics in the aquatic environment–a review–part I. Chemother., 75: 417–434.
  104. Kundu G.K., Alauddin M., Akter M.S., Khan M.S., Islam M.M., Mondal G., Islam D., Mohanta L.C., Huque A. (2017). Metal contamination of commercial fish feed and quality aspects of farmed tilapia (Oreochromis niloticus) in Bangladesh. Bio. Communi. (BRC), 3: 345–353.
  105. Lazado C.C., Caipang C.M.A., Brinchmann M.F., Kiron V. (2011). In vitro adherence of two candidate probiotics from Atlantic cod and their interference with the adhesion of two pathogenic bacteria. Vet. Microbiol., 148: 252–259.
  106. Lazado C.C., Caipang C.M.A., Estante E.G. (2015). Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol., 45: 2–12.
  107. Levy S.B., Marshall B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medi., 10: 122–S129.
  108. Lewbart G.A. (2001). Bacteria and ornamental fish. In Seminars in Avian and Exotic Pet Medicine, 10: 48–56.
  109. Li S., Zhang S., Ye C., Lin W., Zhang M., Chen L., Li J., Yu X. (2017). Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes. Marine Poll. Bull., 118: 289–296.
  110. Lieke T., Meinelt T., Hoseinifar S.H., Pan B., Straus D.L., Steinberg C.E. (2020). Sustainable aquaculture requires environmental‐friendly treatment strategies for fish diseases. Rev. Aqua., 12: 943–965.
  111. Linares J.F., Gustafsson I., Baquero F., Martinez J.L., (2006). Antibiotics as intermicrobial signaling agents instead of weapons. Proceedings National Acad. Sci., 103: 19484–19489.
  112. Little D., Edwards P. (2003). Integrated livestock-fish farming systems. Food & Agriculture Organization of the United Nations: Rome, Italy.
  113. Liu Y.Y., Wang Y., Walsh T.R., Yi L.X., Zhang R., Spencer J., Doi Y., Tian G., Dong B., Huang X., Yu L.F. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet. Infect. Dis., 16: 161–168.
  114. Lubieniecki K.P., Botwright N.A., Taylor R.S., Evans B.S., Cook M.T., Davidson W.S. (2015). Expression analysis of sex-determining pathway genes during development in male and female Atlantic salmon (Salmo salar). Physiol. Gen., 47: 581–587.
  115. Lulijwa R., Rupia E.J., Alfaro A.C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev. Aqua., 12: 640–663.
  116. Mahdhi A., Kamoun F., Messina C., Santulli A., Bakhrouf A. (2012). Probiotic properties of Brevibacillus brevis and its influence on sea bass (Dicentrarchus labrax) larval rearing. African J. Microbiol. Res., 6: 6487–6495.
  117. Marti E., Variatza E., Balcazar J.L. (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol., 22: 36–41.
  118. Martínez J.L. (2003). Recent advances on antibiotic resistance genes. Recent Advan. Mar. Biol., 10: 13–32.
  119. Martínez J.L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Sci., 321: 365–367.
  120. Martínez J.L., Coque T.M., Baquero F. (2015). What is a resistance gene? Ranking risk in resistomes. Nature Rev. Microbiol., 13: 116–123.
  121. Martínez-Antequera F.P., López-Ruiz R., Martos-Sitcha J.A., Mancera J.M., Moyano F.J. (2023). Assessing differences in the bioaccessibility of phenolics present in two wine byproducts using an in-vitro model of fish digestion. Front. Vet. Sci., 10: 1151045.
  122. Miller R.A., Harbottle H. (2018). Antimicrobial drug resistance in fish pathogens. Antimicrobial resistance in bacteria from livestock and companion animals, 501–520.
  123. Ministry of Fisheries, Animal Husbandry & Dairying, Department of Fisheries, Government of India, D.O.No.33035/4/2002-Fy (t-2)/(Trade) (E-2356) dated 6.6.2022.
  124. Miranda C.D., Tello A., Keen P.L. (2013). Mechanisms of antimicrobial resistance in fin fish aquaculture environments. Front. Microbiol., 4: 233.
  125. Modanloo M., Soltanian S., Akhlaghi M., Hoseinifar S.H. (2017). The effects of single or combined administration of galactooligosaccharide and Pediococcus acidilactici on cutaneous mucus immune parameters, humoral immune responses and immune related genes expression in common carp (Cyprinus carpio) fingerlings. Fish Shellfish Immunol., 70: 391–397.
  126. Molés G., Carrillo M., Mañanós E., Mylonas C.C., Zanuy S. (2007). Temporal profile of brain and pituitary GnRHs, GnRH-R and gonadotropin mRNA expression and content during early development in European sea bass (Dicentrarchus labrax L.). General Comp. Endocrinol., 150: 75–86.
  127. Mulchandani R., Wang Y., Gilbert M., Van Boeckel T.P. (2023). Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Glob. Pub. Health, 3: 0001305.
  128. Muñoz-Atienza E., Gómez-Sala B., Araújo C., Campanero C., Del Campo R., Hernández P.E., Herranz C., Cintas L.M. (2013). Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol., 13: 1–22.
  129. Murray C.J., Ikuta K.S., Sharara F., Swetschinski L., Aguilar G.R., Gray A., Han C., Bisignano C., Rao P., Wool E., Johnson S.C. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399: 629–655.
  130. Musto J., Kirk M., Lightfoot D., Combs B.G., Mwanri L. (2006). Multi-drug resistant Salmonella Java infections acquired from tropical fish aquariums, Australia 2003-04. Commun. Dis. Intell., 30: 222.
  131. Muziasari W.I., Pärnänen K., Johnson T.A., Lyra C., Karkman A., Stedtfeld R.D., Tamminen M., Tiedje J., Virta M. (2016). Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiol., 92: 052.
  132. Narayanan S.V., Joseph T.C., Peeralil S., Koombankallil R., Vaiyapuri M., Mothadaka M.P., Lalitha K.V. (2020). Tropical shrimp aquaculture farms harbour pathogenic Vibrio parahaemolyticus with high genetic diversity and Carbapenam resistance. Mar. Poll. Bull., 160: 111551.
  133. Neela F.A., Banu M.N.A., Rahman M.A., Rahman M.H., Alam M.F. (2015). Occurrence of antibiotic resistant bacteria in pond water associated with integrated poultry-fish farming in Bangladesh. Sains. Malaysi., 44: 371–377.
  134. Nguyen H.N.K., Van T.T.H., Nguyen H.T., Smooker P.M., Shimeta J., Coloe P.J. (2014). Molecular characterization of antibiotic resistance in Pseudomonas and Aeromonas isolates from catfish of the Mekong Delta, Vietnam. Vet. Microbiol., 171: 397–405.
  135. Nonaka L., Maruyama F., Miyamoto M., Miyakoshi M., Kurokawa K., Masuda M. (2012). Novel conjugative transferable multiple drug resistance plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from marine aquaculture environment. Microb. Environ., 27: 263–272.
  136. Normanno G., Parisi A., Addante N., Quaglia N.C., Dambrosio A., Montagna C., Chiocco D. (2006). Vibrio parahaemolyticus, Vibrio vulnificus and microorganisms of fecal origin in mussels (Mytilus galloprovincialis) sold in the Puglia region (Italy). Int. J. Food Microbiol., 106: 219–222.
  137. Norwegian Ministries. Norwegian Government’s National Strategy against Antimicrobial Resistance (2015–2020). Norwegian Ministry of Health and Care Services; Publication number: I-1164. Available online: https://www.regjeringen.no/contentassets/5eaf66ac392143b3b2054aed90b85210/antibiotic-resistanceengelsk-lavopploslig-versjon-for-nett-10-09-15
  138. O’Neill J. (2014). Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. The Review on Antimicrobial Resistance. Rev. Anti. Res., 1–20.
  139. O’Neill J. (2015). Antimicrobials in agriculture and the environment: reducing unnecessary use and waste. Rev. Antimicrob. Res., 1–41.
  140. O’Neill J. (2016). Review on antimicrobial resistance: tackling drug-resistant infections globally: final report and recommendations.
  141. Olaitan A.O., Morand S., Rolain J.M. (2014). Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front. Microbiol., 5: 643.
  142. Parker R.B. (1974). Probiotics, the other half of the antibiotic story. Animal Nutri. Health, 29: 4–8.
  143. Pei R., Kim S.C., Carlson K.H., Pruden A. (2006). Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res., 40: 2427–2435.
  144. Penders J., Stobberingh E.E. (2008). Antibiotic resistance of motile aeromonads in indoor catfish and eel farms in the southern part of The Netherlands. Int. J. Anti. Agents, 31: 261–265.
  145. Pérez‐Sánchez T., Ruiz‐Zarzuela I., de Blas I., Balcázar J.L. (2014). Probiotics in aquaculture: a current assessment. Rev. Aqua., 6: 133–146.
  146. Petersen A., Andersen J.S., Kaewmak T., Somsiri T., Dalsgaard A. (2002). Impact of integrated fish farming on antimicrobial resistance in a pond environment. Appl. Environ. Microbiol., 68: 6036–6042.
  147. Poirel L., Rodriguez-Martinez J.M., Mammeri H., Liard A., Nordmann P. (2005). Origin of plasmid-mediated quinolone resistance determinant QnrA. Anti. Agents Chemo., 49: 3523–3525.
  148. Preena P.G., Arathi D., Raj N.S., Arun Kumar T.V., Arun Raja S., Reshma R.N., Raja Swaminathan T. (2020). Diversity of antimicrobial‐resistant pathogens from a freshwater ornamental fish farm. Let. Appl. Microbiol., 71: 108–116.
  149. Preena P.G., Dharmaratnam A., Raj N.S., Kumar T.V.A., Raja S.A., Swaminathan T.R. (2019). Antibiotic susceptibility pattern of bacteria isolated from freshwater ornamental fish, guppy showing bacterial disease. Biologia, 74: 1055–1062.
  150. Quesada S.P., Paschoal J.A.R., Reyes F.G.R. (2013). Considerations on the aquaculture development and on the use of veterinary drugs: special issue for fluoroquinolones—a review. J. Food Sci., 78: 1321–1333.
  151. Reading B.J., Sullivan C.V. (2011). The reproductive organs and processes Vitellogenesis in fishes. Encyclop. Fish Physiol., 635–646.
  152. Rebouças R.H., de Sousa O.V., Lima A.S., Vasconcelos F.R., de Carvalho P.B. dos Fernandes Vieira R.H.S. (2011). Antimicrobial resistance profile of Vibrio species isolated from marine shrimp farming environments (Litopenaeus vannamei) at Ceará, Brazil. Environ. Res., 111: 21–24.
  153. Rengpipat S., Phianphak W., Piyatiratitivorakul S. Menasveta P. (1998). Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aqua., 167: 301–313.
  154. Resende J.A., Borges M.L., Pacheco K.D., Ribeiro I.H., Cesar D.E., Silva V.L., Diniz C.G., Apolônio A.C.M. (2017). Antibiotic resistance in potentially bacteriocinogenic probiotic bacteria in aquaculture environments. Aqua. Res., 48: 2113–2119.
  155. Reverter M., Sarter S., Caruso D., Avarre J.C., Combe M., Pepey E., Pouyaud L., Vega-Heredía S., De Verdal H., Gozlan R.E. (2020). Aquaculture at the crossroads of global warming and antimicrobial resistance. Nature Communi., 11: 1–8.
  156. Reverter M., Tapissier-Bontemps N., Sarter S., Sasal P. (2021). Bioactive compounds as immunostimulants in aquaculture: An overview. Aqua. Reports, 19: 100568.
  157. Rhodes G., Huys G., Swings J., Mcgann P., Hiney M., Smith P., Pickup R.W. (2000). Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn 1721 in dissemination of the tetracycline resistance determinant tetA. Appl. Environ. Microbiol., 66: 3883–3890.
  158. Ringø E., Olsen R.E., Gifstad T.Ø., Dalmo R.A., Amlund H., Hemre G.I., Bakke A.M. (2010). Prebiotics in aquaculture: a review. Aqua. Nutri., 16: 117–136.
  159. Ringø E.Z.Z.V., Zhou Z., Vecino J.G., Wadsworth S., Romero J., Krogdahl Å., Olsen R.E., Dimitroglou A., Foey A., Davies S., Owen M. (2016). Effect of dietary components on the gut microbiota of aquatic animals. A never‐ending story?. Aqua. Nutri., 22: 219–282.
  160. Rivas A.J., Lemos M.L., Osorio C.R. (2013). Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front. Microbiol., 4: 283.
  161. Romero J., Feijoó C.G., Navarrete P. (2012). Antibiotics in aquaculture–use, abuse and alternatives. Health Environ. Aqua., 159: 159–198.
  162. Ryu S.H., Park S.G., Choi S.M., Hwang Y.O., Ham H.J., Kim S.U., Lee Y.K., Kim M.S., Park G.Y., Kim K.S., Chae Y.Z. (2012). Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood. Int. J. Food Microbiol., 152: 14–18.
  163. Saavedra J., Grandón M., Villalobos-González J., Bohle H., Bustos P., Mancilla M. (2018). Isolation, functional characterization and transmissibility of p3PS10, a multidrug resistance plasmid of the fish pathogen Piscirickettsia salmonis. Front. Microbiol., 9: 923.
  164. Saavedra M.J., Guedes-Novais S., Alves A., Rema P., Tacão M., Correia A., Martínez-Murcia A. (2004). Resistance to β-lactam antibiotics in Aeromonas hydrophila isolated from rainbow trout (Onchorhynchus mykiss). Int. Microbiol., 7: 207–211.
  165. Sadeghi F., Ahmadifar E., Shahriari Moghadam M., Ghiyasi M., Dawood M.A., Yilmaz, S. (2021). Lemon, Citrus aurantifolia, peel and Bacillus licheniformis protected common carp, Cyprinus carpio, from Aeromonas hydrophila infection by improving the humoral and skin mucosal immunity, and antioxidative responses. J. World Aqua. Society, 52: 124–137.
  166. Sahoo P.K., Swaminathan T.R., Abraham T.J., Kumar R., Pattanayak S., Mohapatra A., Rath S.S., Patra A., Adikesavalu H., Sood N., Pradhan P.K. (2016). Detection of goldfish haematopoietic necrosis herpes virus (Cyprinid herpesvirus-2) with multi-drug resistant Aeromonas hydrophila infection in goldfish: First evidence of any viral disease outbreak in ornamental freshwater aquaculture farms in India. Acta Tropica, 161: 8–17.
  167. Santos L., Ramos F. (2016). Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends Food Sci. Tech., 52: 16–30.
  168. Schlenk D., Gollon J.L., Griffin B.R. (1998). Efficacy of copper sulfate for the treatment of ichthyophthiriasis in channel catfish. J. Aqua. Animal Health, 10: 390–396.
  169. Schreier H.J., Mirzoyan N., Saito K. (2010). Microbial diversity of biological filters in recirculating aquaculture systems. Current Opinion Biol., 21: 318–325.
  170. Seiler C., Berendonk T.U. (2012). Heavy metal driven coselection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol., 3: 399.
  171. Silva Y.J., Costa L., Pereira C., Cunha Â., Calado R., Gomes N.C., Almeida A. (2014). Influence of environmental variables in the efficiency of phage therapy in aquaculture. Micro. Biol., 7: 401–413.
  172. Silvester R., Pires J., Van Boeckel T.P., Madhavan A., Balakrishnan Meenakshikutti A., Hatha, M. (2019). Occurrence of β-lactam resistance genes and plasmid-mediated resistance among Vibrios isolated from Southwest Coast of India. Microb. Drug Resist., 25: 1306–1315.
  173. Sivaraman G.K., Rajan V., Vijayan A., Elangovan R., Prendiville A., Bachmann T.T. (2021). Antibiotic resistance profiles and molecular characteristics of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae isolated from shrimp aquaculture farms in Kerala, India. Front. Microbiol., 12. doi:10.3389/fmicb.2021.622891
  174. Sivaraman G.K., Sudha S., Muneeb K.H., Shome B., Holmes M., Cole J. (2020). Molecular assessment of antimicrobial resistance and virulence in multi drug resistant ESBL-producing Escherichia coli and Klebsiella pneumoniae from food fishes, Assam, India. Microb. Path., 149: 104581.
  175. Smith P. (2008). Antimicrobial resistance in aquaculture. Revue scientific et technique (International Office of Epizootics), 27: 243–264.
  176. Smith P., Alday-Sanz V., Matysczak J., Moulin G., Lavilla-Pitogo C.R., Prater D. (2013). Monitoring and surveillance of antimicrobial resistance in microorganisms associated with aquatic animals. Rev. Sci. Tech. Int. Epiz., 32: 583–593.
  177. Sorroza L., Padilla D., Acosta F., Román L., Grasso V., Vega J., Real F. (2012). Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum. Vet. Microbiol., 155: 369–373.
  178. Sørum H. (2005). Antimicrobial drug resistance in fish pathogens. Anti. Resist. Bact. Animal Origin, 213–238.
  179. Sørum H. (2008). Antibiotic resistance associated with veterinary drug use in fish farms. In Improve Farmed Fish Quality and Safety, 157–182.
  180. Sousa M., Torres C., Barros J., Somalo S., Igrejas G., Poeta P. (2011). Gilthead seabream (Sparus aurata) as carriers of SHV-12 and TEM-52 extended-spectrum beta-lactamases-containing Escherichia coli isolates. Foodborne Path. Dis., 8: 1139–1141.
  181. Sreedharan K., Philip R., Singh I.S.B. (2011). Isolation and characterization of virulent Aeromonas veronii from ascitic fluid of oscar Astronotus ocellatus showing signs of infectious dropsy. Dis. Aquat. Org., 94: 29–39.
  182. Sreedharan K., Philip R., Singh I.S.B. (2012). Virulence potential and antibiotic susceptibility pattern of motile aeromonads associated with freshwater ornamental fish culture systems: a possible threat to public health. Brazilian J. Microbiol., 43: 754–765.
  183. Stalder T., Barraud O., Casellas M., Dagot C., Ploy M.C. (2012). Integron involvement in environmental spread of antibiotic resistance. Front. Microbiol., 3: 119.
  184. Sugita H., Takahashi J., Deguchi Y. (1992). Production and consumption of biotin by the intestinal microflora of cultured freshwater fishes. Bio, Biotechnol. Biochem., 56: 1678–1679.
  185. Tal Y., Schreier H.J., Sowers K.R., Stubblefield J.D., Place A.R., Zohar Y. (2009). Environmentally sustainable land-based marine aquaculture. Aqua., 286: 28–35.
  186. Tamminen M., Karkman A., Lohmus A., Muziasari W.I., Takasu H., Wada S., Suzuki S., Virta M. (2011). Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. Environ. Sci. Technol., 45: 386–391.
  187. Telke A.A., Rolain J.M. (2015). Functional genomics to discover antibiotic resistance genes: The paradigm of resistance to colistin mediated by ethanolamine phosphotransferase in Shewanella algae MARS 14. Int. J. Anti. Agents, 46: 648–652.
  188. Tendencia E.A., de la Peña L.D. (2001). Antibiotic resistance of bacteria from shrimp ponds. Aqua., 195: 193–204.
  189. Thornber K., Verner‐Jeffreys D., Hinchliffe S., Rahman M.M., Bass D., Tyler C.R. (2020). Evaluating antimicrobial resistance in the global shrimp industry. Rev. Aqua., 12: 966–986.
  190. Van Hai N. (2015). The use of medicinal plants as immunostimulants in aquaculture: A review. Aqua., 446: 88–96.
  191. Van Hai N., Buller N., Fotedar R. (2009). The use of customised probiotics in the cultivation of western king prawns (Penaeus latisulcatus Kishinouye, 1896). Fish Shellfish Immunol., 27: 100–104.
  192. Venter J.C., Remington K., Heidelberg J.F., Halpern A.L., Rusch D., Eisen J.A., Wu D., Paulsen I., Nelson K.E., Nelson W., Fouts D.E. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Sci., 304: 66–74.
  193. Verner-Jeffreys D.W., Welch T.J., Schwarz T., Pond M.J., Woodward M.J., Haig S.J., Rimmer G.S., Roberts E., Morrison V., Baker-Austin C. (2009). High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PloS one, 4: 8388.
  194. Verschuere L., Rombaut G., Sorgeloos P., Verstraete W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev., 64: 655–671.
  195. Vine N.G., Leukes W.D., Kaiser H. (2006). Probiotics in marine larviculture. FEMS Microbiol. Rev., 30: 404–427.
  196. Wang H., Ren L., Yu X., Hu J., Chen Y., He G., Jiang Q. (2017). Antibiotic residues in meat, milk and aquatic products in Shanghai and human exposure assessment. Food Cont., 80: 217–225.
  197. Watts J.E., Schreier H.J., Lanska L., Hale M.S. (2017). The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar. Drugs, 15: 158.
  198. Wei R., Ge F., Huang S., Chen M., Wang R. (2011). Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82: 1408–1414.
  199. Wellington E.M., Boxall A.B., Cross P., Feil E.J., Gaze W.H., Hawkey P.M., Johnson-Rollings A.S., Jones D.L., Lee N.M., Otten W., Thomas C.M. (2013). The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect. Dis., 13: 155–165.
  200. White P. (2013). Environmental consequences of poor feed quality and feed management. FAO Fish and Aqua. Tech. Paper, 583: 553–564.
  201. Wiedenbeck J., Cohan F.M. (2011). Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev., 35: 957–976.
  202. World Health Organization (2014). Antimicrobial resistance: global report on surveillance. World Health Organization.
  203. World Health Organization (2019). Critically important antimicrobials for human medicine.
  204. Xiong W., Sun Y., Zhang T., Ding X., Li Y., Wang M., Zeng Z. (2015). Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China. Microbiol. Ecol., 70: 425–432.
  205. Yan L., Boyd K.G., Grant Burgess J. (2002). Surface attachment induced production of antimicrobial compounds by marine epiphytic bacteria using modified roller bottle cultivation. Mar. Biotechnol., 4: 356–366.
  206. Yang J., Wang C., Shu C., Liu L., Geng J., Hu S., Feng J. (2013). Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. Microbiol. Ecol., 65: 975–981.
  207. Yilmaz S., Çelik E.Ş., Ergün S., Ahmadifar E., Abdel-Latif H.M. (2023). Effects of dietary walnut (Juglans regia) leaves extract on immunity, gene expression responses, and disease resistance in Oreochromis niloticus. Fish Shellfish Immunol., 135: 108656.
  208. Yousefi M., Hoseini S.M., Kulikov E.V., Seleznev S.B., Petrov A.K., Babichev N.V., Kochneva M.V., Davies S.J. (2022). Effects of dietary Hyssop, Hyssopus officinalis, extract on physiological and antioxidant responses of rainbow trout, Oncorhynchus mykiss, juveniles to thermal stress. Front. Vet. Sci., 9: 1042063.
  209. Yu M.C., Li Z.J., Lin H.Z., Wen G.L., Ma S. (2009). Effects of dietary medicinal herbs and Bacillus on survival, growth, body composition, and digestive enzyme activity of the white shrimp Litopenaeus vannamei. Aqua. Int., 17: 377–384.
  210. Zellweger R.M., Carrique-Mas J., Limmathurotsakul D., Day N.P.J., Thwaites G.E., Baker S. (2017). Southeast Asia Antimicrobial Resistance Network. A current perspective on antimicrobial resistance in Southeast Asia. J. Anti. Chemo., 72: 2963–2972.
  211. Zeng K.J., Doi Y., Patil S., Huang X., Tian G.B. (2016). Emergence of the plasmid-mediated mcr-1 gene in colistin-resistant Enterobacter aerogenes and Enterobacter cloacae. Anti. Agents Chemo., 60: 3862–3863.
  212. Zhao J., Chen M., Quan C.S., Fan S.D. (2015). Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens. J. Fish Dis., 38: 771–786.
  213. Zhou L.J., Ying G.G., Zhao J.L., Yang J.F., Wang L., Yang, B., Liu S. (2011). Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Poll., 159: 1877–1885.
  214. Zhu Y.G., Zhao Y.I., Li B., Huang C.L., Zhang S.Y., Yu S., Chen Y.S., Zhang T., Gillings M.R., Su J.Q. (2017). Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiol., 2: 1–7.
  215. Zohar Y., Tal Y., Schreier H.J., Steven C.R., Stubblefield J., Place A.R. (2005). Commercially feasible urban recirculating aquaculture: addressing the marine sector. Urban Aqua., 159–171.
  216. Zokaeifar H., Balcázar J.L., Saad C.R., Kamarudin M.S., Sijam K., Arshad A., Nejat N. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol., 33: 683–689.
DOI: https://doi.org/10.2478/aoas-2025-0060 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: Oct 21, 2024
Accepted on: May 13, 2025
Published on: Aug 20, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Akalesh, Kantaraja Chindera, Vineeth Rajan, T. Raja Swaminathan, S. Visnuvinayagam, George Ninan, S.R. Radhika Rajasree, Collins Sones, Xunli Zhang, Gopalan Krishnan Sivaraman, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT