References
- Abd El-Hack M.E., Kamal M., Altaie H.A., Youssef I.M., Algarni E.H., Almohmadi N.H., Swelum A.A. (2023 a). Peppermint essential oil and its nano-emulsion: Potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon, 234: 107309.
- Abd El-Hack M.E., Abdelnour S.A., Kamal M., Khafaga A.F., Shakoori A.M., Bagadood R.M., Świątkiewicz S. (2023 b). Lactoferrin: Antimicrobial impacts, genomic guardian, therapeutic uses and clinical significance for humans and animals. Biomed. Pharmacother., 164: 114967.
- Abd El-Hack M.E., Kamal M., Alqhtani A.H., Alreemi R.M., Alazragi R.S., Khojah H. Świątkiewicz S. (2023 c). Detoxification impacts of dietary probiotic and prebiotic supplements against aflatoxins: an updated knowledge –a review. Ann. Anim. Sci., 23: 1049–1060.
- Abd El-Hack M.E., Ashour E.A., Aljahdali N., Zabermawi N.M., Baset S.A., Kamal M., Bassiony S.S. (2024 a). Does the dietary supplementation of organic nano-zinc as a growth promoter impact broiler’s growth, carcass and meat quality traits, blood metabolites, and cecal microbiota? Poult. Sci., 103: 103550.
- Abd El-Hack M.E., Ashour E.A., Baset S.A., Kamal M., Swelum A.A., Suliman G.M., Bassiony S.S. (2024 b). Effect of dietary supplementation of organic selenium nanoparticles on broiler chickens’ growth performance and carcass traits. Biol. Trace Elem. Res., 202: 3760–3766.
- Adeyeye S.A., Oloruntola O.D., Ayodele S.O., Falowo A.B., Agbede J.O. (2020). Wild sunflower and goat weed leaf meals composite-mix supplementation in broiler chickens: effects on performance, health status and meat. Acta Fytotech. Zootech., 23: 205–212.
- Ahmadi F., Ebrahimnezhad Y., Sis N.M., Ghalehkandi J.G. (2013). The effects of zinc oxide nanoparticles on performance, digestive organs, and serum lipid concentrations in broiler chickens during starter period. Int. J. Biosci., 3: 23–29.
- Ahmadi M., Ahmadian A., Seidavi A.R. (2018). Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broiler chickens. Poult. Sci. J., 6: 99–108.
- Aikpitanyi K.U., Egweh N.O. (2020). Haematological and biochemical profile of broiler chickens fed diets containing ginger and black pepper additives. Nigerian J. Anim. Sci., 22: 114–125.
- Al-Quwaie D.A. (2023). The influence of bacterial selenium nanoparticles biosynthesized by Bacillus subtilus DA20 on blood constituents, growth performance, carcass traits, and gut microbiota of broiler chickens. Poult. Sci., 102: 102848.
- Aparna N., Karunakaran R. (2016). Effect of selenium nanoparticles supplementation on oxidation resistance of broiler chicken. Indian J. Sci. Technol., 9: 1–5.
- Ashour E.A., Aldhalmi A.K., Ismail I.S., Kamal M., Elolimy A.A., Swelum A.A., Abd El-Hack M.E. (2024 a). The effect of using Echinacea extract as an immune system stimulant and antioxidant on blood indicators, growth efficiency, and carcass characteristics in broiler chickens to produce a healthy product. Poult. Sci., 104392.
- Ashour E.A., Aldhalmi A.K., Kamal M., Salem S.S., Mahgoub S.A., Alqhtani A.H., Swelum A.A. (2024 b). The efficacy of artichoke leaf extract conjugated with organic zinc nanoparticles on growth, carcass traits and blood biochemical parameters of broilers. Poult. Sci., 104521.
- Au A., Mojadadi A., Shao J.Y., Ahmad G., Witting P.K. (2023). Physiological benefits of novel selenium delivery via nanoparticles. Int. J. Mol. Sci., 24: 6068.
- Chantziaras I., Boyen F., Callens B., Dewulf J. (2014). Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J. Antimicrob. Chemother., 69: 827–834.
- Chen G.S., Wu J.F., Li C. (2014). Effect of different selenium sources on production performance and biochemical parameters of broilers. J. Anim. Physiol. Anim. Nutr., 98: 747–754.
- Ciftci M., Simsek U.G., Yuce A., Yilmaz O., Dalkilic B. (2010). Effects of dietary antibiotic and cinnamon oil supplementation on antioxidant enzyme activities, cholesterol levels and fatty acid compositions of serum and meat in broiler chickens. Acta Vet. Brno, 79: 33–40.
- Ebeid T.A., Zeweil H.S., Basyony M.M., Dosoky W.M., Badry H. (2013). Fortification of rabbit diets with vitamin E or selenium affects growth performance, lipid peroxidation, oxidative status, and immune response in growing rabbits. Livest. Sci., 155: 323–331.
- Eid Y.Z., Zomara M., Tawfeek F.A. (2022). Effect of the biologically produced nano selenium dietary supplementation on growth performance, carcass characteristics, blood parameters, and economic efficiency in broiler chickens. Alex. J. Vet. Sci., 73: 47–55.
- El-Abbasy M.M., Aldhalmi A.K., Ashour E.A., Bassiony S.S., Kamal M., Alqhtani A.H., Swelum A.A. (2024). Enhancing broiler growth and carcass quality: Impact of diets enriched with Moringa oleifera leaf powder conjugated with zinc nanoparticles. Poult. Sci., 104519.
- Elkhateeb F.S., Ghazalah A.A., Lohakare J., Abdel-Wareth A.A. (2024). Selenium nanoparticle inclusion in broiler diets for enhancing sustainable production and health. Sci. Rep., 14: 18557.
- El-Maddawy Z.K., El-Sawy A.E.S.F., Ashoura N.R., Aboelenin S.M., Soliman M.M., Ellakany H.F., El-Shall N.A. (2022). Use of zinc oxide nanoparticles as anticoccidial agents in broiler chickens along with its impact on growth performance, antioxidant status, and hematobiochemical profile. Life, 12: 74.
- El-Ratel I.T., Amara M.M., Beshara M.M., El Basuini M.F., Fouda S.F., El-Kholy K.H., Mekawy A. (2024). Effects of supplemental vitamin A on reproduction and antioxidative status of aged laying hens, and their offspring’s growth, blood indices and immunity. Poult. Sci., 103: 103453.
- Gangadoo S., Dinev I., Chapman J., Hughes R.J., Van T.T.H., Moore R.J., Stanley D. )2018(. Selenium nanoparticles in poultry feed modify gut microbiota and increase the abundance of Faecalibacterium prausnitzii. Appl. Microbiol. Biotechnol., 102: 1455–1466.
- Gangadoo S., Dinev I., Willson N.L., Moore R.J., Chapman J., Stanley D. (2020). Nanoparticles of selenium as high bioavailable and non-toxic supplement alternatives for broiler chickens. Environ. Sci. Pollut. Res., 27: 16159–16166.
- Gaweł S., Wardas M., Niedworok E., Wardas P. (2004). Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad. Lek., 57: 453–455.
- Gupta C., Khusro A., Salem A.Z. (2019). Susceptibility of poultry-associated bacterial pathogens to Momordica charantia fruits and evaluation of in vitro biological properties. Microb. Pathog., 132: 222–229.
- Guruprasad K.P., Subramanian A., Singh V.J., Sharma R.S.K., Gopinath P.M., Sewram V., Satyamoorthy K. (2012). Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells. BMC Compleme. Altern. Med., 12: 1–9.
- Hartemann P., Hoet P., Proykova A., Fernandes T., Baun A., Jong W. De, Wijnhoven S. (2015). Nanosilver: Safety, health and environmental effects and role in antimicrobial resistance. Mater. Today, 18: 122–123.
- Hu C.H., Li Y.L., Xiong L., Zhang H.M., Song J., Xia M.S. (2012). Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim. Feed Sci. Technol., 177: 204–210.
- Iyaode I.I., Ibrahim H.O., Uwade F., Shittu M.W. (2020). Haematology and serum biochemistry of broiler strains (Cobbs and Arbor-acre) fed ginger (Zingiber officinale). GSC Biol. Pharm. Sci., 11: 320–326.
- Kamal M., Youssef I.M., Khalil H.A., Ayoub M.A., Hashem N.M (2022). Multifunctional role of chitosan in farm animals: a comprehensive review. Ann. Anim. Sci., 23: 69–86.
- Kamal M., Aljahdali N., Jaber F.A., Majrashi K.A., Kishk W.H., Khalil H.A., Abdel-Khalek A.M., Ayoub M.A., Abd El-Hack M.E. (2023a). Influence of dietary chitosan supplementation on ovarian development and reproductive performance of New Zealand White rabbit. Ann. Anim. Sci., 23: 757–764.
- Kamal M., Kishk W.H., Khalil H.A., Abdel-Khalek A.M., Ayoub M.A., Swelum A.A., Alqhtani A.H., Ba-Awadh H.A., Abd El-Hack M.E. (2023 b). Effect of dietary chitosan supplementation on productive and physiological performance parameters of growing New Zealand white rabbits. Int. J. Biol. Macromol., 230: 123166.
- Khan I., Zaneb H., Masood S., Ashraf S., Rehman H.F., Tahir S.K., Shah M. (2021). Supplementation of selenium nanoparticles-loaded chitosan improves production performance, intestinal morphology, and gut microflora in broiler chickens. J. Poult. Sci., 59: 272–281.
- Khan M.T., Niazi A.S., Arslan M., Azhar M., Asad T., Raziq F., Khan H.U. (2023). Effects of selenium supplementation on the growth performance, slaughter characteristics, and blood biochemistry of naked neck chicken. Poult. Sci., 102: 102420.
- Khusro A., Aarti C., Preetamraj J.P., Panicker S.G. (2013). Antibacterial activity of different solvent extracts of garlic against new strains of pathogenic bacteria: An in vitro study. Int. J. Appl. Biol. Pharm. Technol., 4: 316–321.
- Mahmoud H.E.D., Ijiri D., Ebeid T.A., Ohtsuka A. (2016). Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. J. Poult. Sci., 53: 274–283.
- Mawa S., Husain K., Jantan I. (2013). Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evid. Based Complement. Alternat. Med., 974256.
- Mopuri R., Ganjayi M., Meriga B., Koorbanally N.A., Islam M.S. (2018). The effects of Ficus carica on the activity of enzymes related to metabolic syndrome. J. Food Drug Anal., 26: 201–210.
- Nabi F., Arain M.A., Hassan F., Umar M., Rajput N., Alagawany M., Liu J. (2020). Nutraceutical role of selenium nanoparticles in poultry nutrition: a review. World Poult. Sci. J., 76: 459–471.
- Nabizadeh A. (2012). The effect of inulin on broiler chicken intestinal microflora, gut morphology, and performance. Anim. Feed Sci., 21: 725–374.
- NRC (1994). National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA.
- Oke O.E., Emeshili U.K., Iyasere O.S., Abioja M.O., Daramola J.O., Ladokun A.O., Adejuyigbe A.E. (2017). Physiological responses and performance of broiler chickens offered olive leaf extract under a hot humid tropical climate. J. Appl. Poult. Res., 26: 376–382.
- Opyd P.M., Jurgoński A., Juśkiewicz J., Milala J., Zduńczyk Z., Król B. (2017). Nutritional and health-related effects of a diet containing apple seed meal in rats: the case of amygdalin. Nutrients, 9: 1091.
- Osowe C.O., Olowu O.P.A., Adu O.A., Oloruntola O.D., Chineke C.A. (2021). Proximate and mineral composition, phytochemical analysis, and antioxidant activity of fig trees (Ficus spp.) leaf powder. Asian J. Biochem. Genet. Mol. Biol., 9: 19–29.
- Osowe C.O., Olanrewaju A., Adu O.A., Oloruntola O.D., Chineke C.A. (2023). Performance, haematological and serum indices of broiler chicken fed fig leaf powder and vitamin C supplemented diets. World J. Adv. Res. Rev., 17: 898–906.
- Payne R.L., Southern L.L. (2005). Comparison of inorganic and organic selenium sources for broilers. Poult. Sci., 84: 898–902.
- Prasoon S., Naik J., Malathi V., Nagaraja C.S., Narayanaswami H.D. (2018). Effects of dietary supplementation of inorganic, organic, and nano selenium on antioxidant status of Giriraja chicken. Int. J. Curr. Microbiol. Appl. Sci., 7: 2399–2412.
- Rehman H.F.U., Zaneb H., Masood S.Y., Yousaf M.S., Hayat K., Majeed K.A., Rehman H. (2022). Effect of selenium nanoparticles and mannan oligosaccharide supplementation on growth performance, stress indicators, and intestinal microarchitecture of broilers reared under high stocking density. Animals, 12: 2910.
- Sandhu A.K., Islam M., Edirisinghe I., Burton-Freeman B. (2023). Phytochemical composition and health benefits of figs (fresh and dried): a review of literature from 2000 to 2022. Nutrients, 15: 2623.
- Sarrigeorgiou I., Stivarou T., Tsinti G., Patsias A., Fotou E., Moulasioti V., Lymberi V. (2023). Levels of circulating IgM and IgY natural antibodies in broiler chicks: Association with genotype and farming systems. Biology, 12: 304.
- Soni N., Mehta S., Satpathy G., Gupta R.K. (2014). Estimation of nutritional, phytochemical, antioxidant, and antibacterial activity of dried fig (Ficus carica). J. Pharmacogn. Phytochem., 3: 158–165.
- Tufan T., Arslan C., Sari M., Kaplan O. (2015). Effect of black cumin (Nigella sativa L.) seeds or black cumin oil addition to Japanese quail diets on growth performance, carcass traits, and some blood parameters. Kafkas Univ. Vet. Fak. Derg., 21: 593–599.
- Tufan T., Bolacali M., İrak K., Arslan C., Özcan C., Kaplan O., Irmak M. (2023). Dietary fig seeds improve the growth performance and antioxidant capacity of quail. S. Afr. J. Anim. Sci., 53: 302–314.
- Wang H.F., Zhong X.H., Shi W.Y., Guo B. (2011). Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in chickens infected with avian infectious bronchitis virus. Afr. J. Biotechnol., 10: 9213–9217.
- Wang Z.G., Pan X.J., Peng Z.Q., Zhao R.Q., Zhou G.H. (2009). Methionine and selenium yeast supplementation of the maternal diets affects color, water-holding capacity, and oxidative stability of their male offspring meat at the early stage. Poult. Sci., 88: 1096–1101.
- Wickramasuriya S.S., Park I., Lee Y., Lillehoj H.S. (2023). Effect of dietary organic selenium on growth performance, gut health, and coccidiosis response in broiler chickens. Animals, 13: 1560.
- Woods S.L., Sobolewska S., Rose S.P., Whiting I.P., Blanchard A., Ionescu C., Pirgozliev V. (2020). Effect of feeding different sources of selenium on growth performance and antioxidant status of broilers. Br. Poult. Sci., 61: 274–280.
- Yang W., Li J., Yao Z., Li M. (2024). A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and prospects. Sci. Total Environ., 171757.
- Yoon I., Werner T.M., Butler J.M. (2007). Effect of source and concentration of selenium on growth performance and selenium retention in broiler chickens. Poult. Sci., 86: 727–730.
- Young D.S., Friedman R.B. (2001). Effects of disease on clinical laboratory tests. 1. AACC Press., 2001.
- Zheng S., Zhao J., Xing H., Xu S. (2019). Oxidative stress, inflammation, and glycometabolism disorder-induced erythrocyte hemolysis in selenium-deficient exudative diathesis broilers. J. Cell Physiol., 234: 16328–16337.