Have a personal or library account? Click to login
Microbial Activities Integration Among Aquaculture Systems for Better Sustainability – A Review Cover

Microbial Activities Integration Among Aquaculture Systems for Better Sustainability – A Review

Open Access
|Jan 2026

Figures & Tables

Specific role of Bacillus bacteria in wastewater treatments

Bacteria strainConditionSpecific role of bacteriaReference
Bacillus megateriumWater quality for major carpsModulation of DOHura et al., 2018
mixture of BacillusWater quality for tilapia Hainfellner et al., 2018
mixture of BacillusDuring transport of fish Gomes et al., 2008; Zink et al., 2011
mixture of BacillusTilapia pondsRemoval of TDSElsabagh et al., 2018
B. megateriumFish pond Hura et al., 2018
B. cereus PB88Shrimp culture Barman et al., 2018
B. subtilis HS1European seabass larvae culture Md et al., 2015
B. megateriumCarp cultureModulation of alkalinity and pHHura et al., 2018
BacillusTilapia ponds Elsabagh et al., 2018
mixture of BacillusPhosphate reductionReddy et al., 2018
mixture of Bacillus Lalloo et al., 2007
Commercial probioticShrimp ponds Wang et al., 2005
B. velezensisCatfish ponds Thurlow et al., 2019

Different species used in IMTA and their efficiency of wastewater treatment

Species in IMTA systemEfficiency of wastewater treatmentReferences
BivalvesBio controllers for fish farm effluents (POM and eutrophication)MacDonald et al., 2011; Handa et al., 2012; Lander et al., 2013; Granada et al., 2016
Can extract up to 23% OM, and 88% suspended solid waste which was up to 33% organic N; it reduced the chlorophyll a up to 96% and 88% bacteria in the systemNederlof et al., 2022
Reduce the suspended solids load and nitrogenous and phosphorous Reserved 58% of TAN-N and 41% of PO4–MacDonald et al., 2011
P excreted by the fish (only with an assimilation efficiency of 87%)Fang et al., 2017; Nederlof et al., 2022
Sea cucumbersConsume up to 70% of the deposited organic matterGranada et al., 2016
Reduced the accumulation of both organic carbon and phytopigmentsSlater and Carton, 2009
Assimilation efficiencies of sea cucumbers in integrated systems are highly inconstant (14 to 88%)Nederlof et al., 2022
Have higher removal rate of OM 0.1–20%, 3–10% organic C, 7–16% organic N, and 21–25% organic P (from the aquaculture waste fed directly or from sediments enriched with aquaculture waste)Yokoyama, 2013; Nederlof et al., 2022
PolychaetesAnnelids can perform biofiltration, aerate the sediment, positively impact biogeochemical reactions, and contribute to waste controlBrown et al., 2011; Granada et al., 2016; Galasso et al., 2020; Nederlof et al., 2020
The ability to filter, accumulate, and remove from bacterial waste groups, including human potential pathogens and vibriosStabili et al., 2010
Receiving wastewater from a sea bream recirculation system by the addition in settling tankBischoff et al., 2009
SeaweedsAbsorb the nutrients entering the water column and, thus, reduce eutrophication and contribute in bioremediationChopin, 2006; Barrington et al., 2009; Nederlof et al., 2022; Samocha et al., 2015
Significantly affected the microbial community’s structure and make-up, releasing algal growth and morphogenesis-promoting factorsGhaderiardakani et al., 2019
Concentration of PO4 –P was reduced by 93.5%, NH4 –N by 34%, and NO3 –N by 100%Marinho-Soriano et al., 2009
SpongesFiltering organic matterMuller et al., 2009; Granada et al., 2016; Gokalp et al., 2019, 2021; Varamogianni-Mamatsi et al., 2022
Produce interesting bio-commercial products
Introduce biomedical agents, biosilica, biosintering, and collagen
Removing DOM
Remediate organic pollution from aquaculture cagesLedda et al., 2014; Gokalp et al., 2019
High efficiency of removing bacteria (12.3 × 104 cells ml−1 with a maximum retention efficiency of 61%) when used in marine environmental bioremediationStabili et al., 2006
Remove pathogenic bacteria, achieving removal of 60.0–90.2% of faecal coliform bacteria, 37.6–81.6% of pathogenic Vibrio spp., and 45.1–83.9% of the total bacteria in a 1.5-m3 turbot (Scophthalmus maximus) aquaculture systemZhang et al., 2010
Accumulate, remediate, and metabolize halophilic Vibrio spp., heterotrophic bacteria, total culturable bacteria, faecal coliforms, and faecal StreptococciLongo et al., 2010

The predominant bacteria in different aquaculture waters

Bacteria populationWater typeReferences
Proteobacteria, Bacteroidetes and VerrucomicrobiaMarine water, cucumber (Apostichopus japonicas)Zhou et al., 2022
Proteobacteria, Cyanobacteria, Actinomycetes and BacteroidesWater and sediment of fish pondsLiu et al., 2020
Proteobacteria, Fusobacteriota, Actinobacteriotam Myxococcota, Desulfobacterota and ProteobacteriaWater and sediment of striped catfish (Pangasianodon hypophthalmus) pondsTruong et al., 2022
Proteobacteria and BacteroidetesFresh water farmClols-Fuentes et al., 2024
ß-Proteobacteria, α-Proteobacteria, and ActinobacteriaSaline-alkali water carp cultureHuang et al., 2014
BacteroidetesFresh water shrimp pondTang et al., 2015
Bacteroidetes, α-Proteobacteria, and γ-ProteobacteriaCirculating culture system of flounderMatos et al., 2011
Proteobacteria, Bacteroidetes, and ActinobacteriaGrass carp (Ctenopharyngodon idellus) farming pondsZhang et al., 2016; Zhou et al., 2013

Main bacteria in nitrification and denitrification process in aquatic water

No.ProcessOrganism involvedReferences
1. Nitrification1.1. Bacterial autotrophic ammonia oxidationNitrosomonas europaea, N. eutropha, Nitrosospira multiformis, Nitrosococcus oceanus, N. halophilus, Nitrosolobus sp., Nitrosovibrio sp.Yin et al., 2018; Preena et al., 2021
1.2. Bacterial heterotrophic ammonia oxidationAlcaligenes faecalis, Pseudomonas putida, Paracoccus denitrificans, Thermus, Azoarcus, Bacillus licheniformisYusoff et al., 2011
1.3. Archaeal ammonia oxidationNitrosopumilus maritimus, N. adriaticus, N. piranensis, N. koreensis, Nitrosotalea devanterraYin et al., 2018
1.4. Nitrite oxidationNitrobacter winogradskyi, Nitrospira, Nitrococcus mobilus, Nitrospina gracilisSu et al., 2023
1.5. Complete ammonia oxidation to nitrate (Comammox)Nitrospira sp.
1.6. Anaerobic ammonia oxidation (Anammox)Planctomyces, Gemmata, Isosphaera, Candidatus brocadia, Candidatus kuenenia, and Candidatus anammoxoglobusStrous et al., 2006
2. Denitrification2.1.1. Nitrite reductionAlcaligenes faecalis, Paracoccus denitrificans, sp. halodenitrificans, Pseudomonas aeruginosa, sp. stutzeri, Thiobacillus denitrifcans, Azospirillum brasilenseSchreier et al., 2010; Song et al., 2011
2.1. Bacterial heterotrophic denitrification
2.1.2. Nitric oxide reductionAlcaligenes faecalis, Pseudomonas stutzeri, Paracoccus halodenitrificans and Paracoccus denitrificansSchreier et al., 2010; Song et al., 2011
2.1.3. Nitrous oxide reductionAlcaligenes sp., Azospirillum sp., Bacillus sp., Pseudomonas sp., Thiobacillus versutus, Thiosphaera pantotrophaLow et al., 2012; Preena et al., 2021
2.2 Bacterial autotrophic denitrificationRhodobacter sp., Thiomicrospira sp., Hydrogenophaga sp., Thiothrix sp., Thiobacillus denitrificans and Sulfurimonas denitrificansChen et al., 2018; Shao et al., 2010; Preena et al., 2021
3. Fungal denitrificationAspergillus nigerSankaran et al., 2010; Preena et al., 2021
4. Archaeal denitrificationHalobacterium denitrificans, Pyrobaculum aerophilum and Haloferax denitrificansLi et al., 2018; Preena et al., 2021
5. Dissimilatory nitrate reduction to ammoniaFirmicutes and ProteobacteriaWang et al., 2024; Preena et al., 2021
DOI: https://doi.org/10.2478/aoas-2025-0036 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 157 - 172
Submitted on: Jan 7, 2025
|
Accepted on: Mar 13, 2025
|
Published on: Jan 30, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2026 Mohamed R. Soaudy, Abdallah Ghonimy, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 3.0 License.