References
- Ahmad I., Babitha Rani A.M., Verma A.K., Maqsood M. (2017). Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquacult. Int., 25: 1215–1226.
- Ahn J.H., Kim S., Park H., Rahm B., Pagilla K., Chandran K. (2010). N2O emissions from activated sludge processes, 2008− 2009: results of a national monitoring survey in the United States. Environ. Sci. Tech., 44: 4505–4511.
- Amin S.A., Green D.H., Hart M.C., Küpper F.C., Sunda W.G., Carrano C.J. (2009). Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Nat. Acad. Sci., 106: 17071–17076.
- Avnimelech Y., Kochba M. (2009). Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287: 163–168.
- Avnimelech Y. (2006). Bio-filters: the need for an new comprehensive approach. Aquacult. Eng., 34: 172–178.
- Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147.
- Bai X.M., He L.S., Li B.C., Meng R., Meng F.L., Huang C.H., Dong J., Li G. (2013). Application of combined aquatic plants to control eutrophic water in baiyangdian lake. Wetl. Sci., 11: 495–498.
- Bandi M.T.R., Zugravu A.G., Turek A.,Rahoveanu D.N.M. (2020). Water quality in aquaponic integrated systems: An overview of the literature.
- Barman P., Bandyopadhyay P., Kati A., Paul T., Mandal A.K., Mondal K.C., Mohapatra P.K.D., (2018). Characterization and strain improvement of aerobic denitrifying EPS producing bacterium Bacillus cereus PB88 for shrimp water quality management. Waste Biomass Valorization, 9: 1319–1330.
- Barrington K., Chopin T., Robinson S. (2009). Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper., 529: 7–46.
- Bischoff A.A., Fink P., Waller U. (2009). The fatty acid composition of Nereis diversicolor cultured in an integrated recirculated system: possible implications for aquaculture. Aquaculture, 296: 271–276.
- Bossier P., Ekasari J. (2017). Biofloc technology application in aquaculture to support sustainable development goals. Microbial Biotech., 10: 1012–1016.
- Brito L.O., Chagas A.M., da Silva E.P., Soares R.B., Severi W., Gálvez A.O. (2016). Water quality, V ibrio density and growth of P acific white shrimp L itopenaeus vannamei (B oone) in an integrated biofloc system with red seaweed G racilaria birdiae (G reville). Aquacult. Res., 47: 940–950.
- Brown N., Eddy S., Plaud S. (2011). Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virens. Aquaculture, 322: 177–183.
- Burford M.A., Thompson P.J., McIntosh R.P., Bauman R.H., Pearson D.C. (2004). The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232: 525–537.
- Cao K., Zhi R., Zhang G. (2020). Photosynthetic bacteria wastewater treatment with the production of value-added products: a review. Bioresource Tech., 299: 122648.
- Cao W., Wang Y., Sun L., Jiang J., Zhang Y. (2016). Removal of nitrogenous compounds from polluted river water by floating constructed wetlands using rice straw and ceramsite as substrates under low temperature conditions. Ecol. Eng., 88: 77–81.
- Cecconet D., Devecseri M., Callegari A., Capodaglio A.G. (2018). Effects of process operating conditions on the autotrophic denitrification of nitrate-contaminated groundwater using bioelectrochemical systems. Sci. Total Environ., 613: 663–671.
- Chen F., Leng Y., Lu Q., Zhou W. (2021). The application of microalgae biomass and bio-products as aqua feed for aquaculture. Algal Res., 60: 102541.
- Chen F.M., Li X., Gu C.W., Huang Y., Yuan Y. (2018). Selectivity control of nitrite and nitrate with the reaction of S0 and achieved nitrite accumulation in the sulfur autotrophic denitrification process. Bioresour. Technol., 266: 211–219.
- Chen F., Xiao Y., Wu X., Zhong Y., Lu Q., Zhou W. (2020). Replacement of feed by fresh microalgae as a novel technology to alleviate water deterioration in aquaculture. RSC Adv., 10: 20794–20800.
- Chen J.Z., Meng S.L., Hu H.D., Qu J.H., Fan L.M. (2010). Effect of ipo- moea aquatica cultivation on artificial floating rafts on water quality of intensive aquaculture ponds. J. Ecol. Rural Environ., 26: 155–159.
- Chopin T. (2013). Aquaculture, integrated multi-trophic (IMTA). In: Sustainable Food Production, Meyers R.A. (ed.). Springer: New York, NY, USA, pp. 184–205.
- Chopin T. (2010). Integrated multi-trophic aquaculture.
- Chow F., Macchiavello J., Cruz S.S., Fonck E., Olivares J. (2001). Utilization of Gracilaria chilensis (Rhodophyta: Gracilariaceae) as a biofilter in the depuration of effluents from tank cultures of fish, oysters, and sea urchins. J. World Aquacult. Soc., 32: 215–220.
- Clols‐Fuentes J., Nguinkal J.A., Unger P., Kreikemeyer B., Palm H.W. (2024). Bacterial communities from two freshwater aquaculture systems in Northern Germany. Environ. Microbiol. Rep., 16: 70062.
- Crab R., Avnimelech Y., Defoirdt T., Bossier P., Verstraete W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270: 1–14.
- Crab R., Defoirdt T., Bossier P., Verstraete W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356: 351–356.
- Croft M.T., Lawrence A.D., Raux-Deery E., Warren M.J., Smith A.G. (2005). Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 438: 90–93.
- Deng Y., Ni F. (2013). Review of ecological floating bed restoration in polluted water. J. Water Res. Protect., 5.
- Deng Y., Chen F., Liao K., Xiao Y., Chen S., Lu Q., Li J., Zhou W. (2021). Microalgae for nutrient recycling from food waste to aquaculture as feed substitute: a promising pathway to eco-friendly development. J. Chem. Technol. Biotechnol., 96: 2496–2508.
- Deswati D., Safni S., Khairiyah K., Yani E., Yusuf Y., Pardi H. (2022). Biofloc technology: water quality (pH, temperature, DO, COD, BOD) in a flood & drain aquaponic system. Int. J. Environ. Analyt. Chem., 102: 6835–6844.
- Ebeling J.M., Timmons M.B., Bisogni J.J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257: 346–358.
- El-Husseiny O.M., Goda A.M.A.S., Mabroke R.S., Soaudy M. (2018). Complexity of carbon sources and the impact on biofloc integrity and quality in tilapia (Oreochromis niloticus) tanks. AACL Bioflux, 11.
- Elsabagh M., Mohamed R., Moustafa E.M., Hamza A., Farrag F., Decamp O., Dawood M.A., Eltholth M. (2018). Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquacult. Nutr., 24: 1613–1622.
- Emparan Q., Harun R., Danquah M.K. (2019). Role of phycoremediation for nutrient removal from wastewaters: A review. Appl. Ecol. Environ. Res., 17.
- Fang J., Jiang Z., Jansen H.M., Hu F., Fang J., Liu Y., Gao Y., Du M. (2017). Applicability of Perinereis aibuhitensis Grube for fish waste removal from fish cages in Sanggou Bay, PR China. J. Ocean Univ. China, 16: 294–304.
- Filep R.M., Diaconescu S., Marin M., Bădulescu L., Nicolae C.G. (2016). Case study on water quality control in an aquaponic system. Current Trends Natural Sci., 5: 06–09.
- Galasso H.L., Lefebvre S., Aliaume C., Sadoul B., Callier M.D. (2020). Using the dynamic energy budget theory to evaluate the bioremediation potential of the polychaete Hediste diversicolor in an integrated multi-trophic aquaculture system. Ecol. Mod., 437: 109296.
- Gao F., Li C., Yang Z.H., Zeng G.M., Feng L.J., Liu J.Z., Liu M., Cai H.W. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol. Eng., 92: 55–61.
- Gao J., Gao D., Liu H., Cai J., Zhang J., Qi Z. (2018). Biopotentiality of high efficient aerobic denitrifier Bacillus megaterium S379 for intensive aquaculture water quality management. J. Environ. Manag., 222: 104–111.
- Ghaderiardakani F., Califano G., Mohr J.F., Abreu M.H., Coates J.C., Wichard T. (2019). Analysis of algal growth-and morphogenesis-promoting factors in an integrated multi-trophic aquaculture system for farming Ulva spp. Aquacult. Environ. Inter., 11: 375–391.
- Gichana Z.M., Liti D., Waidbacher H., Zollitsch W., Drexler S., Waikibia J. (2018). Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation. Aquacult. Int., 26: 1541–1572.
- Gobler C.J., Burson A., Koch F., Tang Y., Mulholland M.R. (2012). The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by Cochlodinium polykrikoides in New York estuaries (USA). Harmful Algae., 17: 64–74.
- Gökalp M., Mes D., Nederlof M., Zhao H., Merijn de Goeij J., Osinga R. (2021). The potential roles of sponges in integrated mariculture. Rev. Aquac., 13: 1159–1171.
- Gökalp M., Wijgerde T., Sarà A., De Goeij J.M., Osinga R. (2019). Development of an integrated mariculture for the collagen-rich sponge Chondrosia reniformis. Marine Drugs., 17: 29.
- Gomes L.C., Brinn R.P., Marcon J.L., Dantas L.A., Brand˜ao F.R., de Abreu J., McComb D.M., Baldisserotto B. (2008). Using Efinol®L during transportation of marbled hatchetfish, Carnegiella strigata (Günther). Aquac. Res., 39: 1292–1298.
- Gorito A.M., Ribeiro A.R., Gomes C.R., Almeida C.M.R., Silva A.M. (2018). Constructed wetland microcosms for the removal of organic micropollutants from freshwater aquaculture effluents. Sci. Total Environ., 644: 1171–1180.
- Granada L., Sousa N., Lopes S., Lemos M.F. (2016). Is integrated multitrophic aquaculture the solution to the sectors’ major challenges? – a review. Rev. Aquac., 8: 283–300.
- Hagopian D.S., Riley J.G. (1998). A closer look at the bacteriology of nitrification. Aquacult. Eng., 18: 223–244.
- Hahn M.W. (2006). The microbial diversity of inland waters. Curr. Opin. Biotech., 17: 256–261.
- Hainfellner P., Cardozo M.V., Borzi M.M., Almeida C.C., Jos´e L., Pizauro L., Schocken-Iturrino R.P., Costa G.N., de ´Avila F.A. )2018). Commercial probiotic increases survival rate and water quality in aquariums with high density of Nile tilapia larvae (Oreochromis niloticus). Int. J. Probiotics Prebiotics., 13: 139–142.
- Hamlin H.J., Michaels J.T., Beaulaton C.M., Graham W.F., Dutt W., Steinbach P., Losordo T.M., Schrader K.K., Main K.L. (2008). Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture. Aquacult. Eng., 38: 79–92.
- Han P., Lu Q., Fan L., Zhou W. (2019). A review on the use of microalgae for sustainable aquaculture. Appl. Sci., 9: 2377.
- Handå A., Ranheim A., Olsen A.J., Altin D., Reitan K.I., Olsen Y., Reinertsen H. (2012). Incorporation of salmon fish feed and feces components in mussels (Mytilus edulis): Implications for integrated multi-trophic aquaculture in cool-temperate North Atlantic waters. Aquaculture, 370: 40–53.
- Hargreaves J.A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacult. Eng., 34: 344–363.
- Hena S., Gutierrez L., Croue J.P. (2021). Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: a review. J. Hazard. Mater., 403: 124041.
- Hernández D., Riaño B., Coca M., García-González M.C. (2013). Treatment of agro-industrial wastewater using microalgae–bacteria consortium combined with anaerobic digestion of the produced biomass. Biores. Tech., 135: 598–603.
- Hoang M.N., Nguyen P.N., Bossier P. (2020). Water quality, animal performance, nutrient budgets and microbial community in the biofloc-based polyculture system of white shrimp, Litopenaeus vannamei and gray mullet, Mugil cephalus. Aquaculture, 515.
- Holanda M., Santana G., Furtado P., Rodrigues R.V., Cerqueira V.R., Sampaio L.A., Wasielesky Jr W., Poersch L.H. (2020). Evidence of total suspended solids control by Mugil liza reared in an integrated system with pacific white shrimp Litopenaeus vannamei using biofloc technology. Aquacult. Rep., 18: 100479.
- Hu M.H., Yuan J., Yang X.E. (2010). Eutrophication purification and resource utilization by aquatic vegetables. J. Lake Sci., 22: 416–420.
- Huang J., Liu Z., Li Y., Wang J. (2014). Bacterial diversity in saline-alkali ponds rearing common carp (Cyprinus carpio) as revealed by 16S rRNA gene sequences. Biologia, 69: 727–734.
- Hura M.U.D., Zafar T., Borana K., Prasad J.R., Iqbal J. (2018). Effect of commercial probiotic Bacillus megaterium on water quality in composite culture of major carps. Int. J. Curr. Agric. Sci., 8: 268–273.
- Jia J.P.J.L., Wang Y.J., Li Y., Li X.H., Wu W.B., Fu S.S., Yuan Q.S. (2021). Study on nitrogen removal from low C/N wastewater bydenitrification microbial fuel cell. Environ. Pollut. Contro. l43: 937–941.
- Jones A.B., Preston N.P., Dennison W.C. (2002). The efficiency and condition of oysters and macroalgae used as biological filters of shrimp pond effluent. Aquacult. Res., 33: 1–19.
- Jusoh A., Nasir N.M., Yunos F.H.M., Jusoh H.H.W., Lam S.S. (2020). Green technology in treating aquaculture wastewater. In: AIP Conference Proceedings. AIP Publishing LLC, 2197: 020001.
- Kadlec R.H. (1995). Overview: surface flow constructed wetlands. Water Sci. Technol., 32: 1–12.
- Khanjani M.H., Alizadeh M., Sharifinia M. (2020). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquacult. Nutr., 26: 328–337.
- Khanjani M.H., Sajjadi M.M., Alizadeh M., Sourinejad I. (2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquacult. Res., 48: 1491–1501.
- Knight R.L., Payne V.W. Jr., Borer R.E., Clarke R.A. Jr., Pries J.H. (2000). Constructed wetlands for livestock wastewater management. Ecol. Eng., 15: 41–55.
- Kong S., Chen Z., Ghonimy A., Li J., Zhao F. (2023). Bivalves improved water quality by changing bacterial composition in sediment and water in an IMTA system. Aquaculture Res., https://doi.org/10.1155/2023/1930201
- Kuebutornye F.K., Abarike E.D., Lu Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish Shell. Immun., 87: 820–828.
- Kuenen J.G. (2008). Anammox bacteria: from discovery to application. Nat. Rev. Microbiol., 6: 320–326.
- Lau W.W.Y., Armbrust E.V. (2006). Detection of glycolate oxidase gene glcD diversity among cultured and environmental marine bacteria. Environ. Microbiol., 8: 1688–1702.
- Lalloo R., Moonsamy G., Ramchuran S., Gӧrgens J., Gardiner N. (2010). Competitive exclusion as a mode of action of a novel Bacillus cereus aquaculture biological agent. Lett. Appl. Microbiol., 50: 563–570.
- Lam S.S., Ma N.L., Jusoh A., Ambak M.A. (2014). A study on the optimal tank design and feed type to the growth of marble goby (Oxyeleotris marmorata Bleeker) and reduction of waste in a recirculating aquaponic system. Desalination Water Treat., 52: 1044–1053.
- Lander T.R., Robinson S.M.C., MacDonald B.A., Martin J.D. (2013). Characterization of the suspended organic particles released from salmon farms and their potential as a food supply for the suspension feeder, Mytilus edulis in integrated multi-trophic aquaculture (IMTA) systems. Aquaculture, 406: 160–171.
- Law Y., Ye L., Pan Y., Yuan Z. (2012). Nitrous oxide emissions from wastewater treatment processes. Philosophical Transactions of the Royal Society B: Biol. Sci., 367: 1265–1277.
- Ledda F.D., Pronzato R., Manconi R. (2014). Mariculture for bacterial and organic waste removal: a field study of sponge filtering activity in experimental farming. Aquacult. Res., 45: 1389–1401.
- Leng L., Li J., Wen Z., Zhou W. (2018). Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Biores. Tech., 256: 529–542.
- Leng L., Wei L., Xiong Q., Xu S., Li W., Lv S., Lu Q., Wan L., Wen Z., Zhou W. (2020). Use of microalgae based technology for the removal of antibiotics from wastewater: a review. Chemosphere, 238: 124680.
- Li B., Jia R., Hou Y., Zhang C., Zhu J., Ge X. (2021). The sustainable treatment effect of constructed wetland for the aquaculture effluents from blunt snout bream (Megalobrama amblycephala) farm. Water, 13: 341.
- Li J., Liu R., Tao Y., Li G. (2018). Archaea in wastewater treatment: Current research and emerging technology. Archaea, 6973294.
- Li M., Callier M.D., Blancheton J.-P., Gales A., Nahon S., Triplet S., Geoffroy T., Menniti C., Fouilland E., Roque d’ bcastel E. (2019). Bioremediation of fishpond effluent and production of microalgae for an oyster farm in an innovative recirculating integrated multi-trophic aquaculture system. Aquaculture, 504: 314–325.
- Li X., Song H., Li W., Lu X., Nishimura O. (2010). An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecol. Eng., 36: 382–390.
- Li X., Wang T., Fu B., Mu X. (2021). Aquaculture water quality improvement by mixed bacillus and its effects on microbial community structure. Res. Square, DOI:10.21203/rs.3.rs-1057159/v1
- Li X.L., Marella T.K., Tao L., Dai L.L., Peng L., Song C.F., Li G. (2018). The application of ceramsite ecological floating bed in aquaculture: its effects on water quality, phytoplankton, bacteria and fish production. Water Sci. Tech., 77: 2742–2750.
- Lin Y.F., Jing S.R., Lee D.Y., Wang T.W. (2002). Removal of solids and oxygen demand from aquaculture wastewater with a constructed wetland system in the start-up phase. Water Environ. Res., 74: 136–141.
- Liu Z., Iqbal M., Zeng Z., Lian Y., Zheng A., Zhao M., Li Z., Wang G., Li Z., Xie J. (2020). Comparative analysis of microbial community structure in the ponds with different aquaculture model and fish by high-throughput sequencing. Microbial. Pathol., 142: 104101.
- Lin Y.F., Jing S.R., Lee D.Y., Chang Y.F., Sui H.Y. (2010). Constructed wetlands for water pollution management of aquaculture farms conducting earthen pond culture. Water Environ. Res., 82: 759–768.
- Lin Y.F., Jing S.R., Lee D.Y., Chang Y.F., Sui H.Y. (2010). Constructed wetlands for water pollution management of aquaculture farms conducting earthen pond culture. Water Environ. Res., 82: 759–768.
- Liu H.Y., Hu H.W, Huang, X., Ge, T.D., Li Y.F., Zhu Z.K., Liu X.M., Tan W.F., Jia Z.J., Di H.J., Xu J., Li Y. (2021). Canonical ammonia oxidizers, rather than comammox Nitrospira, dominated autotrophic nitrification during the mineralization of organic substances in two paddy soils. Soil Biol. Biochem., 156: 108192.
- Liu L., Sun F., Zhao H., Mi H., He S., Chen Y., Wang Z. (2020). Compositional changes of sedimentary microbes in the Yangtze River Estuary and their roles in the biochemical cycle. Sci. Total Environ., 143383.
- Liu X.G., Xu H., Liu C. (2018). Ecological engineering technologies for optimizing freshwater pond aquaculture. In: Aquaculture in China: Success Stories and Modern Trends, Gui J.F., Tang Q., Li Z., Liu J., De Silva S.S. (eds). Wiley, pp. 555–576.
- Liu Y.K.L.Y., Xu A.L., Song Z.W. (2019). Effect of microecological preparation on the establishment of nitrification function in mariculture system. J. Microbiol., 39: 16–21.
- Logan B.E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol., 7: 375–381.
- Longo C., Cardone F., Corriero G., Licciano M., Pierri C., Stabili L. (2016). The co-occurrence of the demosponge Hymeniacidon perlevis and the edible mussel Mytilus galloprovincialis as a new tool for bacterial load mitigation in aquaculture. Environ. Sci. Pollut. Res., 23: 3736–3746.
- Lu H., Zhang G., Wan T., Lu Y. (2011). Influences of light and oxygen conditions on photosynthetic bacteria macromolecule degradation: different metabolic pathways. Biores. Technol., 102: 9503–9508.
- Lu J., Zhang Y., Wu J., Wang J. (2020). Nitrogen removal in recirculating aquaculture water with high dissolved oxygen conditions using the simultaneous partial nitrification, anammox and denitrification system. Biores. Technol., 305: 123037.
- Lu Q., Chen P., Addy M., Zhang R., Deng X., Ma Y., Cheng Y., Hussain F., Chen C., Liu Y., Ruan R. (2018). Carbon-dependent alleviation of ammonia toxicity for algae cultivation and associated mechanisms exploration. Biores. Technol., 249: 99–107.
- Lu Q., Ji C., Yan Y., Xiao Y., Li J., Leng L., Zhou W. (2019). Application of a novel microalgae‐ film based air purifier to improve air quality through oxygen production and fine particulates removal. J. Chem. Technol. Biotech., 94: 1057–1063.
- Lu Q., Zhou W., Min M., Ma X., Chandra C., Doan Y.T., Ma Y., Zheng H., Cheng S., Griffith R., Chen P. (2015). Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Biores. Technol., 198: 189–197.
- Lu Q., Zhou W., Min M., Ma X., Ma Y., Chen P., Zheng H., Doan Y.T., Liu H., Chen C., Urriola P.E. (2016). Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation. Biores. Technol., 201: 33–40.
- MacDonald B.A., Robinson S.M., Barrington K.A. (2011). Feeding activity of mussels (Mytilus edulis) held in the field at an integrated multi-trophic aquaculture (IMTA) site (Salmo salar) and exposed to fish food in the laboratory. Aquaculture, 314: 244–251.
- MacIntyre C.M., Ellis T., North B.P., Turnbull J.F. (2008). The influences of water quality on the welfare of farmed rainbow trout: a review. In: Fish Welfare, Branson E.J. (ed.). Wiley, pp. 150–184.
- Maillard V.M., Boardman G.D., Nyland J.E., Kuhn D.D. (2005). Water quality and sludge characterization at raceway-system trout farms. Aquacult. Eng., 33: 271–284.
- Maringo R., Torretta M. (2013). Stochastic modeling of radon gas distribution in the unsaturated as a function of groudwater depth. Proc. XXXVI Convegno Nazionale di Radioprotezione (AIRP), Palermo, Italy, pp. 18–20.
- Marinho-Soriano E., Nunes S.O., Carneiro M.A.A., Pereira D.C. (2009). Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass Bioeng., 33: 327–331.
- Martins C.I.M., Eding E.H., Verdegem M.C., Heinsbroek L.T., Schneider O., Blancheton J.P., d’Orbcastel E.R., Verreth J.A.J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacult. Eng., 43: 83–93.
- Martins C.I.M., Eding E.H., Verdegem M.C., Heinsbroek L.T., Schneider O., Blancheton J.P., d’Orbcastel E.R., Verreth J.A.J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacult. Eng., 43: 83–93.
- Md S.A., Nour A.M., Srour T.M., Assem S.S., Ibrahim H.A., El-Sayed H.S. (2015). Greenwater, marine Bacillus subtilis HS1 probiotic and synbiotic enriched Artemia and rotifers improved european seabass Dicentrarchus labrax larvae early weaning length growth, survival, water and bacteriology quality. Am. J. Life Sci., 3: 45–52.
- Mishra A., Kavita K., Jha B. (2011). Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydrate Polym., 83: 852–857.
- Mohamed Ramli N., Verdegem M., Yusoff F., Zulkifely M., Verreth J. (2017). Removal of ammonium and nitrate in recirculating aquaculture systems by the epiphyte Stigeoclonium nanum immobilized in alginate beads. Aquac. Environ. Interact., 9: 213–222.
- Mook W.T., Chakrabarti M.H., Aroua M.K., Khan G.M.A., Ali B.S., Islam M.S., Hassan M.A. (2012). Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review. Desalination, 285: 1–13.
- Müller W.E., Wang X., Burghard Z., Bill J., Krasko A., Boreiko A., Schloßmacher U., Schröder H.C., Wiens M. (2009). Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni. J. Struct. Biol., 168: 548–561.
- Nagadomi H., Hiromitsu T., Takeno K., Watanabe M., Sasaki K. (1999). Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads. J. Biosci. Bioeng., 87: 189–193.
- Nakai S., Zou G., Song X., Pan Q., Zhou S., Hosomi M. (2008). Release of anti-cyanobacteria allelochemicals from aquatic and terrestrial plants applicable for artificial floating islands. J. Water Environ. Technol., 6: 55–63.
- Nduvamana A., Yang X.-L., Wang L.R. (2007). Evaluation of a cost effective technique for treating aquaculture water discharge using Lolium perenne Lam as a biofilter. J. Environ. Sci., 19: 1079–1085.
- Nederlof M.A., Verdegem M.C., Smaal A.C., Jansen H.M. (2022). Nutrient retention efficiencies in integrated multi‐trophic aquaculture. Rev. Aquac., 14: 1194–1212.
- Ngien I.D.S.K., Shahidi M.A.F.M., Doh S.I., Chin I.D.S.C., Gisen J.I. (2022). Water quality improvement features of aquaponic systems and their economic feasibility. Construction, 2: pp.39–47.
- Nie X., Mubashar M., Zhang S., Qin Y., Zhang X. (2020). Current progress, challenges and perspectives in microalgae-based nutrient removal for aquaculture waste: a comprehensive review. J. Clean. Prod., 277.
- Omotade I.F., Alatise M.O., Olanrewaju O.O. (2019). Recycling of aquaculture wastewater using charcoal based constructed wetlands. Int. J. Phytore., 21: 399–404.
- Pacheco D., Rocha A.C., Pereira L., Verdelhos T. (2020). Microalgae water bioremediation: trends and hot topics. Appl. Sci., 10: 1886.
- Pham T.T.H., Cochevelou V., Dinh H.D.K., Breider F., Rossi P. (2021). Implementation of a constructed wetland for the sustainable treatment of inland shrimp farming water. J. Environ. Manag., 279: 111782.
- Piedrahita R.H. (2003). Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture, 226: 35–44.
- Poli M.A., Legarda E.C., de Lorenzo M.A., Pinheiro I., Martins M.A., Seiffert W.Q., do Nascimento Vieira F. (2019). Integrated multitrophic aquaculture applied to shrimp rearing in a biofloc system. Aquaculture, 511: 734274.
- Poli M.A., Martins M.A., Pereira S.A., Jesus G.F.A., Martins M.L., Mouriño J.L.P., do Nascimento Vieira F. (2021). Increasing stocking densities affect hemato-immunological parameters of Nile tilapia reared in an integrated system with Pacific white shrimp using biofloc technology. Aquaculture, 536: 736497.
- Posadas B.C., LaSalle M.W. (1997). Use of constructed wetlands to improve water quality in finfish pond culture. Mississippi State University.
- Ramzan M.N., Shen D., Wei Y., Emmanuel A., Nicholaus R., Yang W., Zheng Z. (2025). Nitrogen and phosphorus-related functional genes enhance nutrient removal in the integrated aquaculture wastewater bioremediation system in the presence of photosynthetic bacteria. Aquacult. Int., 33: 131.
- Rangabhashiyam S., Balasubramanian P. (2019). Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. Biores. Technol. Rep., 5: 261–279.
- Rao V.A. (2002). Bioremediation technology to maintain healthy ecology in aquaculture ponds. Fish. Chimes. Sept., 22: 39–42.
- Raza B., Ke J., Chen L., Shi Y., Zhu J., Shao Z., Zheng Z., Lu K. Yang W. (2025). Adding glucose combined with microalgae to water improves the benefits of the fungal community on the whiteleg shrimp (Litopenaeus vannamei) culture. Aquacult. Rep., 40: 102580.
- Raza B., Zheng Z., Zhu J., Yang W. (2024). A Review: Microbes and Their Effect on Growth Performance of Litopenaeus vannamei (White Leg Shrimps) during Culture in Biofloc Technology System. Microorganisms, 12: 1013.
- Raza B., Zheng Z., Yang W. (2024). A review on biofloc system technology, history, types, and future economical perceptions in aquaculture. Animals, 14: 1489.
- Raza B., Ramzan M.N., Yang W. (2024 c). A review: Improving aquaculture rearing water quality by removal of nutrients using microalgae, challenges and future prospects. Aquaculture, 741959.
- Reddy K.V., Reddy A.V.K., Babu B.S., Lakshmi T.V. (2018). Applications of Bacillus sp in aquaculture waste water treatment. Int. J. S. Res. Sci. Tech., 4: 1806–1812.
- Sallenave R. (2019). Understanding water quality parameters to better manage your pond. College of Agricultural, Consumer and Environmental Sciences.
- Samocha T.M., Fricker J., Ali A.M., Shpigel M., Neori A. (2015). Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture, 446: 263–271.
- Sankaran S., Khanal S.K., Jasti N., Jin B., Pometto III A.L., Van Leeuwen J.H. (2010). Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Critical Rev. Environ. Sci. Techn., 40: 400–449.
- Sanz-Luque E., Chamizo-Ampudia A., Llamas A., Galvan A., Fernandez E. (2015). Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci., 6: 899.
- Saravanan A., Kumar P.S., Varjani S., Jeevanantham S., Yaashikaa P.R., Thamarai P., George C.S. (2021). A review on algal-bacterial symbiotic system for effective treatment of wastewater. Chemosphere, 271: 129540.
- Schreier H.J., Mirzoyan N., Saito K. (2010). Microbial diversity of biological filters in recirculating aquaculture systems. Curr. Opin. Biotech., 21: 318–325.
- Schneider O., Sereti V., Eding E.H., Verreth J.A.J. (2005). Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacult. Eng., 32: 379–401.
- Shao M.F., Zhang T., Fang H.H.P. (2010). Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl. Microbiol. Biotechnol., 88: 1027–1042.
- Shahid A., Malik S., Zhu H., Xu J., Nawaz M.Z., Nawaz S., Alam M.A., Mehmood M.A. (2020). Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci. Total Environ., 704: 135303.
- Sharrer M.J., Tal Y., Ferrier D., Hankins J.A., Summerfelt S.T. (2007). Membrane biological reactor treatment of a saline backwash flow from a recirculating aquaculture system. Aquaculture, Eng., 36: 159–176.
- Shivran H.S., Kumar D., Singh R.V. (2006). Improvement of water quality through biological denitrification. J.Environ.Sci.Eng., 48: 57–60.
- Shpigel M., Ari T.B., Shauli L., Odintsov V., Ben-Ezra D. (2016). Nutrient recovery and sludge management in seabream and grey mullet co-culture in Integrated Multi-Trophic Aquaculture (IMTA). Aquaculture, 464: 316–322.
- Silva L., Gasca-Leyva E., Escalante E., Fitzsimmons K.M., Lozano D.V. (2015). Evaluation of biomass yield and water treatment in two aquaponic systems using the dynamic root floating technique (DRF). Sustainability, 7: 15384–15399.
- Sin Y., Lee H. (2020). Changes in hydrology, water quality, and algal blooms in a freshwater system impounded with engineered structures in a temperate monsoon river estuary. J. Hydrol. Reg. Stud., 32.
- Sindilariu P.D., Brinker A., Reiter R. (2009). Factors influencing the efficiency of constructed wetlands used for the treatment of intensive trout farm effluent. Ecol. Eng., 35: 711–722.
- Sindilariu P.D., Wolter C., Reiter R. (2008). Constructed wetlands as a treatment method for effluents from intensive trout farms. Aquaculture, 277: 179–184.
- Sirakov I., Velichkova K., Stoyanova S., Staykov Y. (2015). The importance of microalgae for aquaculture industry. Review. Int. J. Fish. Aquat. Stud., 2: 81–84.
- Slater M.J., Carton A.G. (2009). Effect of sea cucumber (Australostichopus mollis) grazing on coastal sediments impacted by mussel farm deposition. Marine Pollut. Bull., 58: 1123–1129.
- Soltani M., Ghosh K., Hoseinifar S.H., Kumar V., Lymbery A.J., Roy S., Ringø E. (2019). Genus Bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev. Fish. Sci Aquac., 27: 331–379.
- Stabili L., Licciano M., Giangrande A., Fanelli G., Cavallo R.A. (2006). Sabella spallanzanii filter-feeding on bacterial community: ecological implications and applications. Marine Environ. Res., 61: 74–92.
- Stabili L., Schirosi R., Licciano M., Mola E., Giangrande A. (2010). Bioremediation of bacteria in aquaculture waste using the polychaete Sabella spallanzanii. New Biotech., 27: 774–781.
- Stewart F. M., Mulholland T., Cunningham A.B., Kania B.G., Osterlund M.T. (2008). Floating islands as an alternative to constructed wetlands for treatment of excess nutrients from agricultural and municipal wastes-results of laboratory-scale tests. Land Cont. Rec., 16: 25–33.
- Song Z.F., An J., Fu G.H., Yang X.L. (2011). Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds. Aquaculture, 319: 188–193.
- Strous M., Pelletier E., Mangenot S., Rattei T., Lehner A., Taylor M.W., Horn M., Daims H., Bartol-Mavel D., Wincker P., Barbe V. (2006). Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 440: 790–794.
- Su Z., Liu T., Guo J., Zheng M. (2023). Nitrite oxidation in wastewater treatment: microbial adaptation and suppression challenges. Environ. Sci. Technol., 57: 12557–12570.
- Su Y., Mennerich A., Urban B. (2012). Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios. Biores. Technol., 105: 67–73.
- Sunitha K., Padmavathi P. (2013). Influence of probiotics on water quality and fish yield in fish ponds. Int. J. Pure Appl. Sci. Technol., 19: 48–60.
- Tang X.M., Li L.L., Shao K.Q., Wang B.W., Cai X.L., Zhang L., Chao J.Y., Gao G. (2015). Pyrosequencing analysis of free-living and attached bacterial communities in Meiliang Bay, Lake Taihu, a large eutrophic shallow lake in China. Can. J. Microbiol., 61: 22–31.
- Thurlow C.M., Williams M.A., Carrias A., Ran C., Newman M., Tweedie J., Allison E., Jescovitch L.N., Wilson A.E., Terhune J.S., Liles M.R. (2019). Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture, 503: 347–356.
- Tom A.P., Jayakumar J.S., Biju M., Somarajan J., Ibrahim M.A. (2021). Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus, 4: 100022.
- Troell M., Halling C., Neori A., Chopin T., Buschmann A.H., Kautsky N., Yarish C. (2003). Integrated mariculture: asking the right questions. Aquaculture, 226: 69–90.
- Truong Q.P., Kevin N.N., Phan T.C., Nguyen T.K., Vu N.U., Huynh T.G. (2022). Bacterial population in intensive striped catfish Pangasianodon hypophthalmus ponds. AACL Bioflux, 15: 3.
- Van Den Hende S., Beelen V., Bore G., Boon N., Vervaeren H. (2014). Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond. Biores. Technol., 159: 342–354.
- Varamogianni-Mamatsi D., Anastasiou T.I., Vernadou E., Papandroulakis N., Kalogerakis N., Dailianis T., Mandalakis M. (2021). A Multi-Species Investigation of Sponges’ Filtering Activity towards Marine Microalgae. Marine Drugs, 20: 24.
- Wang C., He T., Zhang M., Zheng C., Yang L., Yang L. (2024). Review of the mechanisms involved in dissimilatory nitrate reduction to ammonium and the efficacies of these mechanisms in the environment. Environ. Pollut., 123480.
- Wang C., Jiang C., Gao T., Peng X., Ma S., Sun Q., Xia B., Xie X., Bai Z., Xu S., Zhuang X. (2022). Improvement of fish production and water quality in a recirculating aquaculture pond enhanced with bacteria-microalgae association. Aquaculture, 547: 737420.
- Wang J., Zhou W., Yang H., Wang F., Ruan R. (2015). Trophic mode conversion and nitrogen deprivation of microalgae for high ammonium removal from synthetic wastewater. Biores. Technol., 196: 668–676.
- Wang W.W., Jiang X., Zheng B.H., Chen J.Y., Zhao L., Zhang B., Wang S.H. (2018). Composition, mineralization potential and release risk of nitrogen in the sediments of Keluke Lake, a Tibetan Plateau freshwater lake in China. Royal Soc. Open Sci., 5: 180612.
- Wang Y.B., Xu Z.R., Xia M.S. (2005). The effectiveness of commercial probiotics in northern white shrimp Penaeus vannamei ponds. Fish. Sci., 71: 1036–1041.
- Watson J.T., Reed S.C., Kadlec R.H., Knight R.L., Whitehouse A.E. (2020). Performance expectations and loading rates for constructed wetlands. In: Constructed Wetlands for Wastewater Treatment. CRC Press, pp. 319–351.
- Wu H., Hao B., Cai Y., Liu G., Xing W. (2020). Effects of submerged vegetation on sediment nitrogen-cycling bacterial communities in Honghu Lake (China). Sci. Total Environ., 755: 142541.
- Xia Z.G., Wang Q., She Z.L., Gao M.C., Zhao Y.G., Guo L., Jin C.J. (2019). Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. Sci. Total Environ., 697: 134047.
- Xu H.W., Lu Y. (2011). Research advances of aquatic plants in water ecological restoration. Chinese Agricult. Sci. Bull., 27: 413–416.
- Yang A., Zhang G., Meng F., Zhi R., Zhang P., Zhu Y. (2019). Nitrogen metabolism in photosynthetic bacteria wastewater treatment: a novel nitrogen transformation pathway. Biores. Technol., 294: 122162.
- Yang A., Zhang G., Yang G., Wang H., Meng F., Wang H., Peng M. (2017). Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria. Biores. Technol., 232: 408–411.
- Yang L., Chen F., Xiao Y., Li H., Li J., Leng L., Liu H., Zhong Y., Li K., Lu Q., Zhou W. (2019). Microbial community-assisted water quality control and nutrients recovery: emerging technologies for the sustainable development of aquaponics. J. Chem. Technol. Biotechnol., 94: 2405–2411.
- Yang L., Ren Y.X., Liang X., Zhao S.Q., Wang J.P., Xia Z.H. (2015). Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater. Biores. Technol., 193: 227–233.
- Yin Z., Bi X., Xu C. (2018). Ammonia‐oxidizing archaea (AOA) play with ammonia‐oxidizing bacteria (AOB) in nitrogen removal from wastewater. Archaea, 8429145.
- Yokoyama H. (2013). Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages – potential for integrated multi-trophic aquaculture. Aquaculture, 372: 28–38.
- Yuan X., Yang H., Zhou Y., Mao Y., Zhang T., Liu Y. (2006). The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture, 256: 457–467.
- Yusoff F.M., Banerjee S., Khatoon H., Shariff M. (2011). Biological approaches in management of nitrogenous compounds in aquaculture systems. Dynam. Biochem. Process Biotech. Molec. Biol., 5: 21–31.
- Zamora L.N., Jeffs A.G. (2011). Feeding, selection, digestion and absorption of the organic matter from mussel waste by juveniles of the deposit-feeding sea cucumber, Australostichopus mollis. Aquaculture, 317: 223–228.
- Zhang Q., Achal V., Xu Y., Xiang W.N. (2014). Aquaculture wastewater quality improvement by water spinach (Ipomoea aquatica Forsskal) floating bed and ecological benefit assessment in ecological agriculture district. Aquacult. Eng., 60: 48–55.
- Zhang X., Wang J., Tang R., He X., Li L., Takagi Y., Li D. (2019). Improvement of muscle quality of grass carp (Ctenopharyngodon idellus) with a bio-floating bed in culture ponds. Front. Physiol., 10: 683.
- Zhang X., Zhang W., Xue L., Zhang B., Jin M., Fu W. (2010). Bioremediation of bacteria pollution using the marine sponge Hymeniacidon perlevis in the intensive mariculture water system of turbot Scophthalmus maximus. Biotechnol. Bioeng., 105: 59–68.
- Zhang Y., Angelidaki I. (2013). A new method for in situ nitrate removal from groundwater using submerged microbial desalination–denitrification cell (SMDDC). Water Res., 47: 1827–1836.
- Zhang B., Li W., Guo Y., Zhang Z., Shi W., Cui F., Tay J.H. (2020). Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications. Renew. Sust. Energ. Rev., 118: 109563.
- Zheng L., Wang H. (2017). Effect of combined ecological floating bed for eutrophic lake remediation. Proc. AIP Conference. AIP Publishing LLC, 1839: 020058.
- Zheng Z., Nie Z., Zheng Y., Tang X., Sun Y., Zhu H., Gao J., Xu P., Xu G. (2022). Effects of submerged macrophytes on the growth, morphology, nutritional value, and flavor of cultured Largemouth Bass (Micropterus salmoides). Molecules, 27: 4927.
- Zhou Q., Zhang G., Zheng X., Liu G. (2015). Biological treatment of high NH4+-N wastewater using an ammonia-tolerant photosynthetic bacteria strain (ISASWR2014). Chin. J. Chem. Eng., 23: 1712–1715.
- Zhou Y., Zhang J.,Wang L., Xu H., Lin Z., Liu Y., Hao Z., Ding J., Chang Y. (2022). Characterization of the Bacterial Community in the Ecosystem of Sea Cucumber (Apostichopus japonicus) Culture Ponds: Correlation and Specificity in Multiple Media. Water, 14: 1386.
- Zhu J., He Y., Zhu Y., Huang M., Zhang Y. (2018). Biogeochemical sulfur cycling coupling with dissimilatory nitrate reduction processes in freshwater sediments. Environ. Rev., 26: 121–132.
- Zink I.C., Benetti D.D., Douillet P.A., Margulies D., Scholey V.P. (2011). Improvement of water chemistry with Bacillus probiotics inclusion during simulated transport of yellowfin tuna yolk sac larvae. N. Am. J. Aquac., 73: 42–48.
- Zou S., He Z. (2018). Efficiently “pumping out” value-added resources from wastewater by bioelectrochemical systems: A review from energy perspectives. Water Res., 131: 62–73.
- Zou S., Guan L., Taylor D.P., Kuhn D., He Z. (2018). Nitrogen removal from water of recirculating aquaculture system by a microbial fuel cell. Aquaculture, 497: 74–81.