Have a personal or library account? Click to login
Enterococcus faecium Supplementation: Impacts on Growth and Health of Pikeperch (Sander lucioperca) Cover

Enterococcus faecium Supplementation: Impacts on Growth and Health of Pikeperch (Sander lucioperca)

Open Access
|Oct 2025

References

  1. Adel M., Sakhaie F., Shekarabi S.P.H., Gholamhosseini A., Impellitteri F., Faggio C. (2024). Dietary Mentha piperita essential oil loaded in chitosan nanoparticles mediated the growth performance and humoral immune responses in Siberian sturgeon (Acipenser baerii). Fish Shellfish Immunol., 145: 109321.
  2. Ahmadniaye Motlagh H., Horie Y., Rashid H., Banaee M., Multisanti C.R., Faggio C. (2023). Unveiling the effects of fennel (Foeniculum vulgare) seed essential oil as a diet supplement on the biochemical parameters and reproductive function in female common carps (Cyprinus carpio). Water, 15: 2978.
  3. Al-Dohail M.A., Hashim R., Aliyu-Paiko M. (2009). Effects of the probiotic, Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African catfish (Clarias gariepinus, Burchell 1822) fingerling. Aquac. Res., 40: 1642–1652.
  4. Aly S.M., Ahmed Y.A.-G., Ghareeb A.A.-A., Mohamed M.F. (2008). Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol., 25: 128–136.
  5. AOAC International (2000). Official methods of analysis of AOAC International. AOAC Int.
  6. Arun D., Midhun S.J., Sheeja C.C., Maurya A.K., Divya L. (2023). Probiotics and prebiotics in aquaculture. In: Recent Advances in Aquaculture Microbial Technology. Elsevier, pp. 209–226.
  7. Bagheri T., Hedayati S.A., Yavari V., Alizade M., Farzanfar A. (2008). Growth, survival and gut microbial load of rainbow trout (Onchorhynchus mykiss) fry given diet supplemented with probiotic during the two months of first feeding. Turk. J. Fish. Aquat. Sci., 8: 43–48.
  8. Bajelan B., Zakeri M., Mousavi S.M., Yavari V., Rajab Zadeh E. (2018). Combinatory effects of dietary inulin and Enterococcus faecium in Benni (Mesopotamichthys sharpeyi) on some hemato-logical parameters, serum biochemical and resistance to environmental stress. Iran. Vet. J., 14: 25–38.
  9. Balcázar J.L., De Blas I., Ruiz-Zarzuela I., Cunningham D., Vendrell D., Múzquiz J.L. (2006). The role of probiotics in aquaculture. Vet. Microbiol., 114: 173–186.
  10. Bogut I., Milakovic Z., Bukvic Z., Brkic S., Zimmer R. (1998). Influence of probiotic (Streptococcus faecium M74) on growth and content of intestinal microflora in carp (Cyprinus carpio). Czech J. Anim. Sci., 43.
  11. Boshra H., Li J., Sunyer J. (2006). Recent advances on the complement system of teleost fish. Fish Shellfish Immunol., 20: 239–262.
  12. Buddington R.K., Krogdahl A., Bakke-McKellep A.M. (1997). The intestines of carnivorous fish: structure and functions and the relations with diet. Acta Physiol. Scand. Suppl., 638: 67–80.
  13. Cheriet S., Lengliz S., Romdhani A., Hynds P., Abbassi M.S., Ghrairi T. (2023). Selection and characterization of bacteriocinogenic lactic acid bacteria from the intestine of gilthead seabream (Sparus aurata) and whiting fish (Merlangius merlangus): Promising strains for aquaculture probiotic and food bio-preservation. Life, 13: 91833.
  14. da Costa Sousa N., do Couto M.V.S., Abe H.A., Paixão P.E.G., Cordeiro C.A.M., Monteiro Lopes E., Ready J.S., Jesus G.F.A., Martins M.L., Mouriño J.L.P. (2019). Effects of an Enterococcus faecium-based probiotic on growth performance and health of pirarucu (Arapaima gigas). Aquac. Res., 50: 3720–3728.
  15. Ellis A.E. (1990). Lysozyme assays. Tech. Fish Immunol., 1: 101–103. El-Saadony M.T., Alagawany M., Patra A.K., Kar I., Tiwari R., Dawood M.A., Dhama K., Abdel-Latif H.M. (2021). The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immunol., 117: 36–52.
  16. Faeed M., Kasra Kermanshahi R., Pourkazemi M., Darboee M., Haghighi Karsidani S. (2016). Effect of the probiotic Entrococcus faecium on hematological and non-specific immune parameters and disease resistance in zander (Sander lucioperca). Iranian J. Fish. Sci., 15: 1581–1592.
  17. Falahatkar B., Efatpanah I., Kestemont P. (2018). Pikeperch (Sander lucioperca) production in the south part of the Caspian Sea: technical notes. Aquac. Int., 26: 391–401.
  18. Fuller R. (1989). Probiotics in man and animals. J. Appl. Bacteriol., 66: 365–378.
  19. Gayed M.A., Elabd H., Tageldin M., Abbass A. (2021). Probiotic Zado® (Ruminococcus flavefaciens) boosts hematology, immune, serum proteins, and growth profiles in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. Rep., 2: 100021.
  20. Giri S., Sukumaran V., Sen S., Jena P. (2014). Effects of dietary supplementation of potential probiotic Bacillus subtilis VSG 1 singularly or in combination with Lactobacillus plantarum VSG 3 or/and Pseudomonas aeruginosa VSG 2 on the growth, immunity and disease resistance of Labeo rohita. Aquac. Nutr., 20: 163–171.
  21. Guardiola F., Porcino C., Cerezuela R., Cuesta A., Faggio C., Esteban M. (2016). Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax). Fish Shellfish Immunol., 52: 298–308.
  22. Harikrishnan R., Devi G., Balasundaram C., Van Doan H., Jaturasitha S., Ringø E., Faggio C. (2021). Effect of chrysophanic acid on immune response and immune genes transcriptomic profile in Catla catla against Aeromonas hydrophila. Sci. Rep., 11: 612.
  23. Hoseinifar S.H., Mirvaghefi A., Amoozegar M.A., Sharifian M., Esteban M.Á. (2015). Modulation of innate immune response, mucosal parameters and disease resistance in rainbow trout (Oncorhynchus mykiss) upon synbiotic feeding. Fish Shellfish Immunol., 45: 27–32.
  24. Hoseinifar S.H., Hoseini S.M., Taheri Mirghaed A., Ghelichpour M., Shirzad-Aski H., Van Doan H., El-Haroun E., Safari R., Khanzadeh M. (2024). Comparison of the effects of host-associated (autochthonous) and commercial probiotics on immune responses, growth parameters and intestinal microbiota of Caspian whitefish (Rutilus frisii kutum) fry. Front. Mar. Sci., 11: 1446927.
  25. Hossain Md.S., Small B.C., Kumar V., Hardy R. (2023). Utilization of functional feed additives to produce cost-effective, ecofriendly aquafeeds high in plant-based ingredients. Rev. Aquacult., 12824.
  26. Imanpoor M.R., Roohi Z. (2015). Influence of primalac probiotic on growth performance, blood biochemical parameters, survival and stress resistance in the Caspian roach (Rutilus rutilus) fry. Turk. J. Fish. Aquat. Sci., 15: 917–922.
  27. Lauzon H.L., Ringø E. (2012). Prevalence and application of lactic acid bacteria in aquatic environments. In: Lactic Acid Bacteria, 4th ed. CRC Press, Boca Raton, FL, pp. 593–631.
  28. Maniat M., Salati A.P., Zanguee N., Mousavi S.M., Hoseinifar S.H. (2023). Effects of dietary Pediococcus acidilactici and isomaltooligosaccharide on growth performance, immunity, and antioxidant defense in juvenile common carp. Aquacult. Nutr., 1808640.
  29. Merrifield D.L., Carnevali O. (2014). Probiotic modulation of the gut microbiota of fish. Aquac. Nutr., https://doi.org/10.1002/9781118897263.ch8, pp. 185–222.
  30. Mirbakhsh M., Ghaednia B., Zorriehzahra M.J., Esmaeili F., Faggio C. (2023). Dietary mixed and sprayed probiotic improves growth performance and digestive enzymes of juvenile whiteleg shrimp (Litopenaeus vannamei, Boone, 1931). J. Appl. Aquac., 35: 823–836.
  31. Mohammadian T., Monjezi N., Peyghan R., Mohammadian B. (2022). Effects of dietary probiotic supplements on growth, digestive enzymes activity, intestinal histomorphology and innate immunity of common carp (Cyprinus carpio): a field study. Aquaculture, 549: 737787.
  32. Morshedi V., Bojarski B., Hamedi S., Torahi H., Hashemi G., Faggio C. (2021). Effects of dietary bovine lactoferrin on growth performance and immuno-physiological responses of Asian sea bass (Lates calcarifer) fingerlings. Probiot. Antimicrob. Proteins., 13: 1790–1797.
  33. Nguyen T.L., Chun W.-K., Kim A., Kim N., Roh H.J., Lee Y., Yi M., Kim S., Park C.-I., Kim D.-H. (2018). Dietary probiotic effect of Lactococcus lactis WFLU12 on low-molecular-weight metabolites and growth of olive flounder (Paralichthys olivaceus). Front. Microbiol., 9: 2059.
  34. Nikiforov-Nikishin A., Nikiforov-Nikishin D., Kochetkov N., Smorodinskaya S., Klimov V. (2022). The influence of probiotics of different microbiological composition on histology of the gastrointestinal tract of juvenile Oncorhynchus mykiss. Microsc. Res. Tech., 85: 538–547.
  35. Ohira H., Tsutsui W., Fujioka Y. (2017). Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J. Atheroscler. Thromb., 24: 660–672.
  36. Pérez-Pascual D., Pérez-Cobas A.E., Rigaudeau D., Rochat T., Bernardet J.-F., Skiba-Cassy S., Marchand Y., Duchaud E., Ghigo J.-M. (2021). Sustainable plant-based diets promote rainbow trout gut microbiota richness and do not alter resistance to bacterial infection. Anim. Microbiome, 3: 47.
  37. Policar T., Stejskal V., Kristan J., Podhorec P., Svinger V., Blaha M. (2013). The effect of fish size and stocking density on the weaning success of pond-cultured pikeperch (Sander lucioperca L.) juveniles. Aquac. Int., 21: 869–882.
  38. Pvnička K., Rybař M. (2001). Long-term trends in sport fishery yield from selected reservoirs in the Labe watershed (1958–1998). Czech J. Anim. Sci., 46: 89–99.
  39. Ringø E., Van Doan H., Lee S.H., Soltani M., Hoseinifar S.H., Harikrishnan R., Song S.K. (2020). Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. J. Appl. Microbiol., 129: 116–136.
  40. Román L., Padilla D., Acosta F., Sorroza L., Fátima E., Déniz S., Grasso V., Bravo J., Real F. (2015). The effect of probiotic Enterococcus gallinarum L-1 on the innate immune parameters of outstanding species to marine aquaculture. J. Appl. Anim. Res., 43: 177–183.
  41. Safari R., Adel M., Lazado C.C., Caipang C.M.A., Dadar M. (2016). Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol., 52: 198–205.
  42. Salari A., Mahdavi-Roshan M., Kheirkhah J., Ghorbani Z. (2021). Probiotics supplementation and cardiometabolic risk factors: A new insight into recent advances, potential mechanisms, and clinical implications. PharmaNutr., 16: 100261.
  43. Saurabh S., Sahoo P. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquac. Res., 39: 223–239.
  44. Sonsa-Ard N., Rodtong S., Chikindas M.L., Yongsawatdigul J. (2015). Characterization of bacteriocin produced by Enterococcus faecium CN-25 isolated from traditionally Thai fermented fish roe. Food Control., 54: 308–316.
  45. Sun Y.-Z., Yang H.-L., Ma R.-L., Song K., Li J.-S. (2012). Effect of Lactococcus lactis and Enterococcus faecium on growth performance, digestive enzymes and immune response of grouper (Epinephelus coioides). Aquac. Nutr., 18: 281–289.
  46. Tachibana L., Telli G.S., de Carla Dias D., Gonçalves G.S., Ishikawa C.M., Cavalcante R.B., Natori M.M., Hamed S.B., Ranzani-Paiva M.J.T. (2020). Effect of feeding strategy of probiotic Enterococcus faecium on growth performance, hematologic, biochemical parameters and non-specific immune response of Nile tilapia. Aquac. Rep., 16: 100277.
  47. Tilwani Y.M., Sivagnanavelmurugan M., Lakra A.K., Jha N., Arul V. (2022). Enhancement of growth, innate immunity, and disease resistance by probiotic Enterococcus faecium MC-5 against Aeromonas hydrophila in Indian major carp (Cirrhinus mrigala). Vet. Immunol. Immunopathol., 253: 110503.
  48. Tocher D.R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci., 11: 107–184.
  49. Vadstein O., Bergh Ø., Gatesoupe F.-J., Galindo-Villegas J., Mulero V., Picchietti S., Scapigliati G., Makridis P., Olsen Y., Dierckens K., Defoirdt T., Boon N., De Schryver P., Bossier P. (2013). Microbiology and immunology of fish larvae. Rev. Aquacult., 5: S1–S25.
  50. Van Doan H., Hoseinifar S.H., Ringø E., Ángeles Esteban M., Dadar M., Dawood M.A., Faggio C. (2020). Host-associated probiotics: a key factor in sustainable aquaculture. Rev. Fish. Sci. Aquacult., 28: 16–42.
  51. Wang Y.-B., Tian Z.-Q., Yao J.-T., Li W. (2008). Effect of probiotics, Enterococcus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture, 277: 203–207.
  52. Wuertz S., Schroeder A., Wanka K.M. (2021). Probiotics in fish nutrition – long-standing household remedy or native nutraceuticals? Water, 13.
  53. Zorriehzahra M.J., Delshad S.T., Adel M., Tiwari R., Karthik K., Dhama K., Lazado C.C. (2016). Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet. Q., 36: 228–241.
DOI: https://doi.org/10.2478/aoas-2025-0034 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1529 - 1536
Submitted on: Aug 14, 2024
Accepted on: Mar 10, 2025
Published on: Oct 24, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Monireh Faeed, Seyed Hossein Hoseinifar, Mohammad Jalil Zorriehzahra, Ghasem Rashidian, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.