References
- Aiple K.P., Steingass H., Menke K.H. (1992). Suitability of a buffered faecal suspension as the inoculum in the Hohenheim gas test. J. Anim. Physiol. Nutr., 67: 57–66.
- Akhter S., Hossain M.M. (1998). Cow faeces in in vitro digestibility assays of forages. Asian-Aust J. Anim. Sci., 11: 51–54.
- Akhter S., Owen E., Theodorou M.K., Butler E.A., Minson D.J. (1999). Bovine faeces as a source of micro-organisms for the in vitro digestibility assay of forages. Grass Forage Sci., 54: 219–226.
- Alba H.D.R., Oliveira R.L., Carvalho S.T., Itavo L.C., Ribeiro O.L., Do Nascimento Junior N.G., Dias Freita M., Bezerra L.R. (2018). Can ruminal inoculum from slaughtered cattle replace inoculum from cannulated cattle for feed evaluation research? Semina: Ciências Agrárias, 39: 2133–2143.
- Alba H.D.R., Lima V.G.O., Carvalho S.T., Ítavo L.C.V., Pinto L.F.B., Carneiro P.L.S., Oliveira R.L. (2023). Rumen content from slaughterhouse as an alternative inoculum source for in vitro analysis of feeds: a multivariate approach. Ruminants, 3: 360–372.
- Amanzougarene Z., Fondevila M. (2017). Fitting of pH conditions for the study of concentrate feeds fermentation by the in vitro gas production technique. Anim. Prod. Sci., 58: 1751–1757.
- Amanzougarene Z., Fondevila M. (2020). Fitting of the in vitro gas production technique to the study of high concentrate diets. Animals (Basel), 10: 1935.
- Bauer E., Williams B.A., Bosch M.W., Voigt C., Mosenthin R., Verstegen M.W. (2004). Differences in microbial activity of digesta from three sections of the porcine large intestine according to in vitro fermentation of carbohydrate-rich substrates. J. Sci. Food Agric., 84: 2097–2104.
- Belanche A., Palma-Hidalgo J.M., Nejjam I., Serrano R., Jiménez E., Martín-García I., Yáñez-Ruiz D.R. (2019). In vitro assessment of the factors that determine the activity of the rumen microbiota for further applications as inoculum. J. Sci. Food Agric., 99: 163–172.
- Bertipaglia L.M.A., Fondevila M., Van Laar H., Castrillo C. (2010). Effect of pelleting and pellet size of a concentrate for intensively reared beef cattle on in vitro fermentation by two different approaches. Anim. Feed Sci. Technol., 159: 88–95.
- Beyihayo G.A., Omaria R., Namazzi C., Atuhaire A. (2015). Comparison of in vitro digestibility using slaughtered and fistulated cattle as sources of inoculum. UJAS, 16: 93–98.
- Bodas R., López S., Fernández M., García-González R., Rodríguez A.B., Wallace R.J., González J.S. (2008). In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim. Feed Sci. Technol., 145: 245–258.
- Borba A.E.S., Correia P.J.A., Fernandes J.M.M, Borba A.F.N.S. (2001). Comparison of three sources of inocula for predicting apparent digestibility of ruminant feedstuffs. Anim. Res., 50: 265–273.
- Bosch G., Wrigglesworth D.J., Cone J.W., Pellikaan W. F., Hendriks W.H. (2013). Effects of preservation conditions of canine faeces on in vitro gas production kinetics and fermentation end products, J. Anim. Sci., 91: 259–267.
- Bowen J.M., McCabe M.S., Lister S.J., Cormican P., Dewhurst R.J. (2018). Evaluation of microbial communities associated with the liquid and solid phases of the rumen of cattle offered a diet of perennial ryegrass or white clover. Front. Microbiol., 9: 2389.
- Brewster A.N., Pless L.A., McLean, D.J., Armstrong S.A. (2018). Time of rumen fluid collection relative to feeding alters in vitro fermentation gas parameters. Transl. Anim. Sci., 2(Suppl 1): S97.
- Bustamante M.M. de, Plummer C., MacNicol J., Gomez D. (2021). Impact of ambient temperature sample storage on the equine faecal microbiota. Animals, 11: 819.
- Castillo C., Hernández J. (2021). Ruminal fistulation and cannulation: a necessary procedure for the advancement of biotechnological research in ruminants. Animals (Basel), 11: 1870.
- Cavallini D., Palmonari A., Mammi L.M.E., Ghiaccio F., Canestrari G., Formigoni A. (2023). Evaluation of faecal sampling time points to estimate apparent nutrient digestibility in lactating Holstein dairy cows. Front. Vet. Sci., 9: 1065258.
- Chaudhry A.S., Mohamed R.A.I. (2012). Fresh or frozen rumen contents from slaughtered cattle to estimate in vitro degradation of two contrasting feeds. Czech J. Anim. Sci., 57: 265–273.
- Chen H., Wang C., Huasai S., Chen A. (2021). Effects of dietary forage to concentrate ratio on nutrient digestibility, ruminal fermentation and rumen bacterial composition in Angus cows. Sci. Rep., 11: 17023.
- Chiaravalli M., Rapetti L., Rota G.A., Galassi G., Crovetto G.M., Colombini S. (2019). Comparison of faecal versus rumen inocula for the estimation of NDF digestibility. Animals (Basel), 9: 928.
- Chiu O., Gomez D.E., Obrego D., Dunfield K., MacNicol J.L., Liver-sidge B., Verbrugghe A. (2024). Impact of faecal sample preservation and handling techniques on the canine faecal microbiota profile. PLoS One., 19(1):e0292731.
- Cone J., Van Gelder A., Bachmann H. (2000). Influence of inoculum source, dilution and storage of rumen fluid on gas production profiles. In: Proceedings of the British Society of Animal Science, Cambridge University Press, Edinburgh, UK.
- Cone J.W., Van Gelder A.H., Bachmann H. (2002). Influence of inoculum source on gas production profiles. Anim. Feed Sci. Technol., 99: 221–231.
- Cone J.W., Rodrigues M.A.M., Guedes C.M., Blok M.C. (2009). Comparison of protein fermentation characteristics in rumen fluid determined with the gas production technique and the nylon bag technique. Anim. Feed Sci. Technol., 153: 28–38.
- Cutrignelli M.I., Calabro S., Tudisco R., Zicarelli F., Gazaneo M.P., Piccolo V. (2005). Comparison of buffalo rumen liquor and buffalo faeces as inoculum for the in vitro gas production technique. Ital. J. Anim. Sci., 4 (Supl. 2): 319–321.
- Cutrignelli M.I., D’Urso S., Tudisco R., Grossi M., Piccolo V. (2007). Effect of ruminant species (bovine vs buffalo) and source of inoculum (rumen liquor vs faeces) on in vitro fermentation. Ital. J. Anim. Sci., 6 (Supl.1): 295–297.
- Dehority B.A., Grubb J.A. (1980). Effect of short-term chilling of rumen contents on viable bacterial numbers. Appl. Environ. Micro-biol., 39: 376–381.
- Demeyer D.I., Fiedler D., De Graeve K.G. (1996). Attempted induction of reductive acetogenesis into the rumen fermentation in vitro. Reprod. Nutr. Dev., 36: 233–240.
- Denek N., Can A., Avci M. (2010). Frozen rumen fluid as microbial inoculum in the two-stage in vitro digestibility assay of ruminant feeds. S. Afr. J. Anim. Sci., 40: 251–256.
- Duffield T., Plaizier J.C., Fairfield A., Bagg R., Vessie G., Dick P., Wilson J., Aramini J., McBride B. (2004). Comparison of techniques for measurement of rumen pH in lactating dairy cows. J. Dairy Sci., 87: 59–66.
- Durmic Z., Hutton P., Revell D.K., Emms J., Hughes S., Vercoe P.E. (2010). In vitro fermentative traits of Australian woody perennial plant species that may be considered as potential sources of feed for grazing ruminants. Anim. Feed Sci. Technol., 160: 98–109.
- Ekpo M.D., Boafo G.F., Xie J., Liu X., Chen C., Tan S. (2022). Strategies in developing dimethyl sulfoxide (DMSO)-free cryopreservation protocols for biotherapeutics. Front. Immunol., 13: 1030965.
- El-Meadaway A., Mir Z., Mir P.S., Zaman M.S., Yanke, L.J. (1998). Relative efficacy of inocula from rumen fluid or faecal solution for determining in vitro digestibility and gas production. Can. J. Anim. Sci., 78: 673–679.
- Fabro C., Sarnataro C., Spanghero M. (2020). Impacts of rumen fluid, refrigerated or reconstituted from a refrigerated pellet, on gas production measured at 24 h of fermentation. Anim. Feed Sci. Technol., 268: 114585.
- Fondevila M., Perez-Espés B. (2008). A new in vitro system to study the effect of liquid phase turnover and pH on microbial fermentation of concentrate diets for ruminants. Anim. Feed Sci. Technol., 144: 196–211.
- Fortina R., Glorio P.S., Barbera S., Tassone S. (2022). Rumen fluid from slaughtered animals: a standardized procedure for sampling, storage and use in digestibility trials. Methods Protoc., 5: 59.
- Frey J.C., Pell A.N., Berthiaume R., Lapierre H., Lee S., Ha J.K., Mendell J.E., Angert E.R. (2010). Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. J. Appl. Microbiol., 108: 1982–1993.
- Galvao J., Davis B., Tilley M., Normando E., Duchen M.R., Cordeiro M.F. (2014). Unexpected low-dose toxicity of the universal solvent DMSO. Faseb J., 28: 1317–1330.
- Gastelen S., Schumacher F., Cone J.W., Dijkstra J., Pellikaan W.F. (2019). In dairy cattle, the stomach tube method is not a feasible alternative to the rumen cannulation method to examine in vitro gas and methane production. Anim. Feed Sci. Technol., 256: 114259.
- Getachew G., Blummel M., Makkar H.P.S., Becker K. (1998). In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Agric. Food Sci., 72: 261–281.
- Gibson L.F., Khoury J.T. (1986). Storage and survival of bacteria by ultra-freeze. Lett. Appl. Microbiol., 3: 127–129.
- Goering H.K., Van Soest P.J. (1970). Forage fiber analysis (apparatus, reagents, procedures, and some applications). Agricultural Handbook No. 379. USDA Agricultural Research Service, Washington, DC.
- Gosselink J.M.J., Dulphy J.P., Poncet C., Jailler M., Tamminga S., Cone J.W. (2004). Prediction of forage digestibility in ruminants using in situ and in vitro techniques. Anim. Feed Sci. Technol., 115: 227–246.
- Granja-Salcedo Y.T., Ramirez-Uscategui R.A., Machado E.G., Messana J.D., Kishi L.T., Dias A.V.L., Berchielli T.T. (2017). Studies on bacterial community composition are affected by the time and storage method of the rumen content. PLOS ONE, 12(4):e0176701.
- Haddi M.L., Filacorda S., Meniai K., Rollin F., Susmel P. (2003). In vitro fermentation kinetics of some halophyte shrubs sampled at three stages of maturity. Anim. Feed Sci. Technol., 104: 215–225.
- Hervas G., Frutos P., Giraldez F.J., Mora M.J., Fernandez B., Mantecon A.R., (2005). Effect of preservation on fermentative activity of rumen fluid inoculum for in vitro gas production techniques. Anim. Feed Sci. Technol., pp. 123–124.
- Hristov A.N., McAllister T.A., Cheng K.J. (1999). Effect of diet, digesta processing, freezing and extraction procedure on some polysaccharide-degrading activities of ruminal contents. Can. J. Anim. Sci., 70: 73–81.
- Hristov A.N., McAllister T.A., Xu Z., Newbold J.C. (2002). Proteolytic activity in ruminal fluid from cattle fed two levels of barley grain: a comparison of three methods of determination. J. Sci. Food Agric., 82: 1886–1893.
- Hubálek Z. (2003). Protectants used in the cryopreservation of micro-organisms. Cryobiology, 46: 205–229.
- Jaramillo-Jaramillo A.S., McClure J.T., Stryhn H., Tahlan K., Sanchez J. (2024). Effects of storage conditions on the microbiota of faecal samples collected from dairy cattle. PLoS One, 19(8):e0308571.
- Jiang F., Gao Y., Peng Z., Ma X., You Y., Hu Z., He A., Liao Y. (2023). Isoacids supplementation improves growth performance and feed fiber digestibility associated with ruminal bacterial community in yaks. Front. Microbiol., 14: 1175880.
- Kiani A.K., Pheby D., Henehan G., Brown R., Sieving P., Sykora, P., Marks R., Falsini B., Capodicasa N., Miertus S., Lorusso L, Dondossola D., Tartaglia G.M., Ergoren M.C., Dundar M., Michelini S., Malacarne D., Bonetti G., Dautaj A., Donato K. (2022). International bioethics study group. Ethical considerations regarding animal experimentation. J. Prev. Med. Hyg., 63 (2 Suppl 3): E255–E266.
- Kim M., Kim J., Kuehn L.A., Bono J.L., Berry E.D., Kalchayanand N., Freetly H.C., Benson A.K., Wells J.E. (2014). Investigation of bacterial diversity in the faeces of cattle fed different diets. J. Anim. Sci., 92: 683–694.
- Leedle J.A., Hespell R.B. (1984). Changes of bacterial numbers and carbohydrate fermenting groups during in vitro rumen incubations with feedstuff materials. J. Dairy Sci., 67: 808–816.
- Li M., Penner G.B., Hernandez-Sanabria E., Oba M., Guan L.L. (2009). Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J. Appl. Microbiol., 107: 1924–1934.
- Li X.M., Shi X., Yao Y., Shen Y.C., Wu X.L., Cai T., Liang L.X., Wang F. (2023). Effects of stool sample preservation methods on gut microbiota biodiversity: new original data and systematic review with meta-analysis. Microbiol. Spectr., 11: e0429722.
- Liu J., Zhang M., Zhang R., Zhu W., Mao S. (2016). Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microb. Biotechnol., 9: 257–268.
- Lodge-Ivey S.L., Browne-Silva J., Horvath M.B. (2009). Bacterial diversity and fermentation end products in rumen fluid samples collected via oral lavage or rumen cannula. J. Anim. Sci., 87: 2333–2337.
- Lutakome P., Kabi F., Tibayungwa F., Laswai G.H., Kimambo A., Ebong C. (2017). Rumen liquor from slaughtered cattle as inoculum for feed evaluation. Anim. Nutr., 3: 300–308.
- Ma Z.Y., Zhou J.W., Yi S.Y., Wang M., Tan Z.L. (2022). In vitro inoculation of fresh or frozen rumen fluid distinguishes contrasting microbial communities and fermentation induced by increasing forage to concentrate ratio. Front. Nutr., 8: 772645.
- Macheboeuf D., Jestin M., Martin-Rosset W. (1998). Utilization of the gas test method and horse faeces as a source of inoculum. BSAP Occasional Publication, 22: 187–189.
- Mao S., Zhang M., Liu J., Zhu W. (2015). Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci. Rep., 5: 16116.
- Martínez M.E., Ranilla M.J., Tejido M.L., Ramos S., Carro M.D. (2010). The effect of the diet fed to donor sheep on in vitro methane production and ruminal fermentation of diets of variable composition. Anim. Feed Sci. Technol., 158: 126–135.
- Matthews C., Crispie F., Lewis E., Reid M., O’Toole P.W., Cotter P.D. (2019). The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 10: 115–132.
- Mauricio R.M., Owen E., Mould F.L., Givens I., Theodorou M.K., France J., Davies D.R., Dhanoa M.S. (2001). Comparison of bovine rumen liquor and bovine faeces as inoculum for an in vitro gas production technique for evaluating forages. Anim. Feed Sci. Technol., 89: 33–48.
- McDermott K., Lee M.R.F., McDowall K.J., Greathead H.M.R. (2020). Cross inoculation of rumen fluid to improve dry matter disappearance and its effect on bacterial composition using an in vitro batch culture model. Front. Microbiol., 11: 531404.
- Menke K.H., Steingass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animals, pp. 7–56.
- Mohamed R., Chaudhry A.S. (2008). Methods to study degradation of ruminant feeds. Nutr. Res. Rev., 21: 68–81.
- Mohamed R., Chaudhry A.S., Rowlinson P. (2003). The use of fresh or thawed rumen fluid containing glycerol or particle associated microbes to estimate in vitro degradation of feeds. Proc. Brit. Soc. Anim. Sci., 2003: 149–149.
- Mohammadzadeh H., Yáñez-Ruiz D.R., Martínez-Fernandez G., Abecia L. (2014). Molecular comparative assessment of the microbial ecosystem in rumen and faeces of goats fed alfalfa hay alone or combined with oats. Anaerobe, 29: 52–58.
- Mould F.L., Kliem K.E., Morgan R., Mauricio R.M. (2005). In vitro microbial inoculum: A review of its function and properties. Anim. Feed Sci. Technol., 123–124: 31–50.
- Murray J-A., McMullin P., Handel I., Hastie P.M. (2012). The effect of freezing on fermentation activity of equine faecal inocula for use in an in vitro gas production technique. Anim. Feed Sci. Technol., 178: 175–182.
- Nagadi S., Herrero M., Jessop N.S. (2000). The influence of diet of the donor animal on the initial bacterial concentration of ruminal fluid and in vitro gas production degradability parameters. Anim. Feed Sci. Technol., 87: 231–239.
- Njokweni S.G., Weimer P.J., Botes M., van Zyl W.H. (2021). Effects of preservation of rumen inoculum on volatile fatty acids production and the community dynamics during batch fermentation of fruit pomace. Bioresour. Technol., 321: 124518.
- Nsahlai I.V., Umunna N.N. (1996). Comparison between reconstituted sheep faeces and rumen fluid inocula and between in vitro and in sacco digestibility methods as predictors of intake and in vivo digestibility. J. Agric. Sci. Camb., 126: 235–248.
- Panoff J.M., Thammavongs B., Guéguen M., Boutibonnes P. (1998). Cold stress responses in mesophilic bacteria. Cryobiology, 36: 75–83.
- Park K., Lee H. (2020). Effects of nitrogen gas flushing in comparison with argon on rumen fermentation characteristics in in vitro studies. J. Anim. Sci. Technol., 62: 52–57.
- Pastorelli G., Faustini M., Attard E. (2014). In vitro fermentation of feed ingredients by fresh or frozen pig faecal inocula. J. Anim. Sci., 85: 690–697.
- Pastorelli G., Simeonidis K., Faustini M., Le Mura A., Cavalleri M., Serra V., Attard E. (2023). Chemical characterization and in vitro gas production kinetics of alternative feed resources for small ruminants in the Maltese islands. Metabolites, 13: 762.
- Paz H.A., Anderson C.L., Muller M.J., Kononoff P.J., Fernando S.C. (2016). Rumen bacterial community composition in Holstein and Jersey cows is different under same dietary condition and is not affected by sampling method. Front. Microbiol., 7: 1206.
- Pédron T., Mulet C., Dauga C., Frangeul L., Chervaux C., Grompone G., Sansonetti P. J. (2012). A crypt-specific core microbiota resides in the mouse colon. mBio, 3: e00116–12.
- Peiretti P.G. (2020). Introduction to the special issue: In vitro digestibility in animal nutritional studies. Animals (Basel), 10: 929.
- Posada S.L., Noguera R.R., Segura J.A. (2012). Ruminant faeces used as inoculum for the in vitro gas production technique. Rev. Colombiana Cienc. Pec., 25: 592–602.
- Pramita M.S., Soetanto H. (2022). The potential of frozen rumen fluid for ruminant feed evaluation using in vitro gas production technique. E3S Web of Conferences, 335: 00053:12.
- Prates A., De Oliveira J., Abecia L., Fondevila M. (2010). Effect of preservation procedures of rumen inoculum on in vitro microbial diversity and fermentation. Anim. Feed Sci. Technol., 155: 186–193.
- Ramin M., Lerose D., Tagliapietra F., Huhtanen P. (2015). Comparison of rumen fluid inoculum vs. faecal inoculum on predicted methane production using a fully automated in vitro gas production system. Livest. Sci., 181: 65–71.
- Ramos-Morales E., Arco-Perez A., Martin-Garcia A.I., Yáñez-Ruiz D.R., Frutos P., Hervas G. (2014). Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim. Feed Sci. Technol., 198: 57–66.
- Robinson P.H., Mathews M.C., Fadel J. G. (1999). Influence of storage time and temperature on in vitro digestion of neutral detergent fibre at 48 h, and comparison to 48 h in sacco neutral detergent fibre digestion. Anim. Feed Sci. Technol., 80: 257–266.
- Rymer C., Huntington J.A., Williams B.A., Givens D.I. (2005). In vitro cumulative gas production techniques: history, methodological considerations and challenges. Anim. Feed Sci. Tech., 123–124: 9–30.
- Salem A.F.Z.M. (2005). Impact of season of harvest on in vitro gas production and dry matter degradability of Acacia saligna leaves with inoculum from three ruminant species. Anim. Feed Sci. Technol., 123–124: 67–79.
- Shanks O.C., Kelty C.A., Archibeque S., Jenkins M., Newton R.J., McLellan S.L., Huse S.M., Sogin M.L. (2011). Community structures of faecal bacteria in cattle from different animal feeding operations. Environ. Microbiol., 77: 2992–3001.
- Shaw C.A., Park Y., Gonzalez M., Duong R.A., Pandey P.K., Brooke C.G., Hess M. (2023). A comparison of three artificial rumen systems for rumen microbiome modeling. Fermentation, 9: 953.
- Shen J.S., Chai Z., Song L.J., Liu J.X., Wu Y.M. (2012). Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. J. Dairy Sci., 95: 5978–5984.
- Song J., Choi H., Jeong. J.Y., Lee S., Lee H.J., Baek Y., Ji S.Y., Kim M. (2018). Effects of sampling techniques and sites on rumen microbiome and fermentation parameters in Hanwoo steers. J. Microbiol. Biotechnol., 28: 1700–1705.
- Spanghero M., Chiarevalli M., Colombini S., Fabro C., Froldi F., Mason F., Moschini M., Sarnataro C., Schiavon S., Tagliapietra F. (2019). Rumen inoculum collected from cows at slaughter or from a continuous fermenter and preserved in warm, refrigerated, chilled or freeze-dried environments for in vitro tests. Animals, 9: 815.
- Tagesu A. (2018). Manual guidance of veterinary clinical practice and laboratory. Int. J. Vet. Sci. Res., 1: 014–023.
- Tagliapietra F., Cattani M., Bailoni L., Schiavon S. (2010). In vitro rumen fermentation: Effect of headspace pressure on the gas production kinetics of corn meal and meadow hay. Anim. Feed Sci. Tech., 158: 197–201.
- Terré M., Castells L., Fàbregas F., Bach A., (2013). Short communication: Comparison of pH, volatile fatty acids, and microbiome of rumen samples from preweaned calves obtained via cannula or stomach tube. J. Dairy Sci., 96: 5290–5294.
- Tilley J.M.A., Terry R.A. (1963). A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci., 18: 104–111.
- Tunkala B.Z., Di Giacomo K., Alvarez Hess P.S., Dunshea F.R., Leury B.J. (2023). Impact of rumen fluid storage on in vitro feed fermentation characteristics. Fermentation, 9: 392.
- Váradyová Z., Baran M., Zeleňák I. (2005). Comparison of two in vitro fermentation gas production methods using both rumen fluid and faecal inoculum from sheep. Anim. Feed Sci. Technol., 123–124: 81–94.
- Wang S., Kreuzer M., Schwarm A. (2018). Utility of an in vitro test with rumen fluid from slaughtered cattle for capturing variation in methane emission potential between cattle types and with age. Can. J. Anim. Sci., 98: 61–72.
- Yáñez-Ruiz D.R., Bannink A., Dijkstra J., Kebreab E., Morgavi D., O’Kiely P. Reynolds C.K., Schwarm A., Shingfield K.J., Yu Z., Hristov A.N (2016). Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants – a review. Anim. Feed Sci. Technol., 216: 1–18.
- Yu Z., Morrison M. (2004). Improved extraction of PCR-quality community DNA from digesta and faecal samples. Biotechniques, 36: 808–812.
- Zhao W., Abdelsattar M.M., Wang X., Zhang N., Chai J. (2023). In vitro modulation of rumen fermentation by microbiota from the recombination of rumen fluid and solid phases. Microbiol. Spectr., 11: e0338722.