Have a personal or library account? Click to login
Non-Antibiotic Growth Promoters in Poultry Nutrition – A Review Cover

Non-Antibiotic Growth Promoters in Poultry Nutrition – A Review

Open Access
|Oct 2025

References

  1. Abadeen Z.U., Javed M.T., Rizvi F., Rahman S.U. (2021). Salutary effects of anti-Clostridium perfringens type A egg y1olk antibodies (IgY) on growth performance and hemato-biochemical parameters in experimentally infected broiler chicken. Pak. Vet. J., 41: 562–566.
  2. Abadeen Z.U., Javed M.T., Jamil T., Nasir A.A. (2022). Ameliorative effects of anti-clostridial egg yolk antibodies (IgYs) in experimentally-induced avian necrotic enteritis. Animals, 12: 1307.
  3. Abd-El Wahab A., Basiouni S., El-Seedi H.R., Ahmed M.F., Bielke L.R., Hargis B., Tellez-Isaias G., Eisenreich W., Lehnherr H., Kittler S., Shehata A.A. (2023). An overview of the use of bacteriophages in the poultry industry: Successes, challenges, and possibilities for overcoming breakdowns. Front. Microbiol., 14: 1136638.
  4. Adil S., Banday M.T., Hussain S.A., Wani M.A., Al-Olayan E., Patra A.K., Rasool S., Gani A., Sheikh I.U., Khan A.A., Muzamil S. (2024). Impact of nanoencapsulated rosemary essential oil as a novel feed additive on growth performance, nutrient utilization, carcass traits, meat quality and gene expression of broiler chicken. Foods, 13: 1515.
  5. Al Sattar A., Chisty N.N., Irin N., Uddin M.H., Hasib F.Y., Hoque M.A. (2023). Knowledge and practice of antimicrobial usage and resistance among poultry farmers: A systematic review, meta-analysis, and meta-regression. Vet. Res. Comm., 47: 1047–1066.
  6. Alqhtani A.H., Al Sulaiman A.R., Alharthi A.S., Abudabos A.E. (2024). Dietary supplementation of prebiotic yeast Saccharomyces cerevisiae cell wall promotes growth performance and intestinal health in broiler chickens challenged with Clostridium perfringens. Br. Poult. Sci., 65: 129–136.
  7. Amir S.E., Naeem M., Boocock D., Coveney C., O’Neill H.M., Bedford M.R., Burton E.J. (2023). Xylo-oligosaccharide-based prebiotics upregulate the proteins of the Sus-like system in caecal Bacteroidetes of the chicken: evidence of stimbiotic mechanism. Poult. Sci., 102: 103113.
  8. Araba M., Girgis G., McBride H., Lohrmann T. (2024). Effect of a Bacillus subtilis plus yeast cell wall synbiotic on Salmonella Enteritidis colonization in ceca of layer pullets. Poultry, 3: 26–35.
  9. Baffoni L., Gaggìa F., Di Gioia D., Santini C., Mogna L., Biavati B. (2012). A Bifidobacterium-based synbiotic product to reduce the transmission of C. jejuni along the poultry food chain. Int. J. Food Microbiol., 157: 156–161.
  10. Begum M., Hossain M.M., Kim I.H. (2014). Effects of the plant extract YGF251 on growth performance, meat quality, relative organ weight, nutrient digestibility and blood profiles in broiler chickens: possible role of insulin-like growth factor 1. Vet. Med., 59.
  11. Bessam F.H., Mehdadi Z. (2014). Evaluation of the antibacterial and antifongigal activity of different extract of flavonoiques Silybum marianum L. Adv. Env. Biol., 8: 1–9.
  12. Boroojeni F.G., Svihus B., von Reichenbach H.G., Zentek J. (2016). The effects of hydrothermal processing on feed hygiene, nutrient availability, intestinal microbiota and morphology in poultry – A review. Anim. Feed Sci. Tech., 220: 187–215.
  13. Bouassi T., Libanio D., Mesa M.D., Oke O.E., Gil A.H., Tona K., Ameyapoh Y. (2021). Supplementation with liquid whey and ACIDAL® ML in drinking water affect gut pH and microflora and productive performance in laying hens. Brit. Poult. Sci., 62: 138–46.
  14. Bravo D., Pirgozliev V., Rose S.P. (2014). A mixture of carvacrol, cinnamaldehyde, and capsicum oleoresin improves energy utilization and growth performance of broiler chickens fed maize-based diet. J. Anim. Sci., 92: 1531–1536.
  15. Brenes A., Roura E. (2010). Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed Sci. Technol., 158: 1–14.
  16. Broom L. (2015). Organic acids for improving intestinal health of poultry. World’s Poult. Sci. J., 71: 630–642.
  17. Cai P., Liu S., Tu Y., Fu D., Zhang W., Zhang X., Zhou Y., Shan T. (2024). Effects of different supplemental levels of protease DE200 on the production performance, egg quality, and cecum microflora of laying hens. J. Anim. Sci., 102.
  18. Carpio M.B., Valdes-Pena M.A., Molina D.A., Cabello S.E.E., Guerrero C.A.S., Cribillero G., Coca K.F.V., Icochea E. (2024). Evaluation of commercial doses of a feed additive and silymarin on broiler performance with and without CCl4-induced liver damage. Poult. Sci., 103567.
  19. Cason E.E., Al Hakeem W.G., Adams D., Shanmugasundaram R., Selvaraj R. (2023). Effects of synbiotic supplementation as an antibiotic growth promoter replacement on cecal Campylobacter jejuni load in broilers challenged with C. jejuni. J. Appl. Poult. Res., 32: 100315.
  20. Castanon J.I. (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci., 86: 2466–2471.
  21. Ceylan N., Koca, S., Golzar Adabi S. (2024). Effect of two different dietary endo-1,4-β-xylanases on growth performance, intestinal histomorphology, caecal microbial population and short-chain fatty acid composition of broiler chickens. Ital. J. Anim. Sci., 23: 15–25.
  22. Chalghoumi R., Beckers Y., Portetelle D., Théwis A. (2009). Hen egg yolk antibodies (IgY), production and use for passive immunization against bacterial enteric infections in chicken: A review. Biotechnol. Agron. Société Environ., 13: 295–308.
  23. Chan B.K., Abedon S. T., Loc-Carrillo C. (2013). Phage cocktails and the future of phage therapy. Future Microbiol., 8: 769–783.
  24. Chatterjee A., Willett J.L.E., Dunny G.M., Duerkop B.A. (2021). Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genet., 17: e1009204.
  25. Chen Q., Dharmaraj T., Cai P.C., Burgener E.B., Haddock N.L., Spakowitz A.J., Bollyky P.L. (2022). Bacteriophage and bacterial susceptibility, resistance, and tolerance to antibiotics. Pharmaceutics, 14: 1425.
  26. Chen Y.J., Sui X., Wang Y., Zhao Z.H., Han T.H., Liu Y.J., Zhang J.N., Zhou P., Yang K., Ye Z.H. (2024). Preparation, structural characterization, biological activity, and nutritional applications of oligosaccharides. Food Chem., 15: 101289.
  27. Cheng G., Hao H., Xie S., Wang X., Dai M., Huang L., Yuan Z. (2014). Antibiotics alternatives: The substitution of antibiotics in animal husbandry? Front. Microbiol., 5: 217.
  28. Chmiel M., Roszko M., Adamczak L., Florowski T., Pietrzak D. (2019). Influence of storage and packaging method on chicken breast meat chemical composition and fat oxidation. Poult. Sci., 98: 2679–2690.
  29. Cowieson A.J., Roos F.R., (2013). Bioefficacy of a mono-component protease in the diets of pigs and poultry: a meta-analysis of effect on ileal amino acid digestibility. J. Appl. Anim. Nutr. 2: e13.
  30. Cowieson A.J., Ruckebusch J.P., Knap I., Guggenbuhl P., Fru-Nji F. (2016). Phytate-free nutrition: A new paradigm in monogastric animal production. Anim. Feed Sci. Technol., 222: 180–189.
  31. Cox C.M., Dalloul R.A. (2015). Immunomodulatory role of probiotics in poultry and potential in ovo applications. Benef. Microb., 6: 45.
  32. Cui Y., Zhu J., Li P., Guo F., Yang B., Su X., Zhou H., Zhu K., Xu F. (2024). Assessment of probiotic Bacillus velezensis supplementation to reduce Campylobacter jejuni colonization in chickens. Poult. Sci., 103897.
  33. Daghio M., Scicutella F., Buccioni A., Minieri S., Galigani I., Passeri, S., Danesi R., Toni E., Mele M., Mannelli F. (2024). Short- and medium-chain fatty acids and chestnut tannin extract blend as supplement in poultry feeding: effect on animal performances and gut microbiota communities. Ital. J. Anim. Sci., 23: 288–298.
  34. Dai Z., Shang L., Wang F., Zeng X., Yu H., Liu L., Zhou J., Qiao S. (2022). Effects of antimicrobial peptide Microcin C7 on growth performance, immune and intestinal barrier functions, and cecal microbiota of broilers. Front. Vet. Sci., 8: 813629.
  35. Dibner J.J., Buttin P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J. Appl. Poult. Res., 11: 453–463.
  36. Dijksteel G.S., Ulrich M.M.W., Middelkoop E., Boekema B.K.H.L. (2021). Review: Lessons Learned from Clinical Trials Using Antimicrobial Peptides (AMPs). Front. Microbiol., 12: 616979.
  37. Dong Z., Liu Z., Xu Y., Tan B., Sun W., Ai Q., Yang Z., Zeng J. (2024). Potential for the development of Taraxacum mongolicum aqueous extract as a phytogenic feed additive for poultry. Front. Immun., 15: 1354040.
  38. Doss M., White M.R., Tecle T., Hartshorn K.L. (2010). Human defen-sins and LL-37 in mucosal immunity. J. Leukoc. Biol., 87: 79–92.
  39. Du E., Jiang M., Chen F., Fan Q., Guo S., Zhao N., Jin F., Guo W., Huang S., Wei J. (2024). Dietary honokiol supplementation improves antioxidant capacity, enhances intestinal health, and modulates cecal microbial composition and function of broiler chickens. Poult. Sci., 103: 103798.
  40. El-Sayed Y., Khalil W., Fayez N., Mohamed Abdel-Fattah A.F. (2024). Enhancing effect of oregano essential oil and Bacillus subtilis on broiler immune function, intestinal morphology and growth performance. BMC Vet. Res., 20: 112.
  41. European Union (EU) (2005). Ban on antibiotics as growth promoters in animal feed enters into effect. European Commission.
  42. FAO (2020). FAOSTAT: FAO statistical databases. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#home
  43. Flora K., Hahn M., Rosen H., Benner K. (1998). Milk thistle (Silybum marianum) for the therapy of liver disease. Am. J. Gastroent., 93: 139–143.
  44. Fonseca A., Kenney S., Van Syoc E., Bierly S., Dini-Andreote F., Silverman J., Boney J., Ganda E. (2024). Investigating antibiotic free feed additives for growth promotion in poultry-effects on performance and microbiota. Poult. Sci., 103604.
  45. Foster J.W. (1995). Low pH adaptation and the acid tolerance response of Salmonella typhimurium. Crit. Rev. Microbiol., 21: 215–237.
  46. Founou L.L., Founou R.C., Essack S.Y. (2016). Antibiotic resistance in the food chain: a developing country-perspective. Front. Microbiol., 7: 1881.
  47. Fuller R. (1992). Probiotics: The Scientific Basis, 1st ed. Springer, Dordrecht, The Netherlands.
  48. Gao M., Ren Y., Lu S., Reddyvari R., Venkitanarayanan K., Amalaradjou M.A. (2024). In ovo probiotic supplementation supports hatchability and improves hatchling quality in broilers. Poult. Sci., 103: 103624.
  49. Gao S., Zhang Q., Liu C., Shen H., Wang J. (2023). Effects of maggot antimicrobial peptides on growth performance, immune function, and cecal flora of yellow-feathered broilers. Front. Vet. Sci., 10.
  50. Garcia M.I., Vazquez P., Ibáñez-Pernía Y., Pos J., Tawde S. (2024). Performance evaluation of a novel combination of four-and five-carbon [butyric and valeric] short-chain fatty acid glyceride esters in broilers. Animals, 14: 617.
  51. Gautron J., Dombre C., Nau F., Feidt C., Guillier L. (2022). Review: Production factors affecting the quality of chicken table eggs and egg products in Europe. Animal, 16: 100425.
  52. Geiker N.R.W., Bertram H.C., Mejborn H., Dragsted L.O., Kristensen L., Carrascal J.R., Bügel S., Astrup A. (2021). Meat and human health – Current knowledge and research gaps. Foods, 10: 1556.
  53. Gibson G.R., Roberfroid M.B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr., 125: 1401–1412.
  54. Gibson G.R., Probert H.M., Van Loo J., Rastall R.A., Roberfroid M.B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev., 17: 259–275.
  55. Gibson G.R., Scott K.P., Rastall R.A., Tuohy K.M., Hotchkiss A., Dubert-Ferrandon A., Gareau M., Murphy E.F., Saulnier D., Loh G. (2010). Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods, 7: 1–19.
  56. Gill J.J., Hyman P. (2010). Phage choice, isolation, and preparation for phage therapy. Curr. Pharm. Biotechnol., 11: 2–14.
  57. Gong H., Yang Z., Celi P., Yan L., Ding X., Bai S., Zeng Q., Xu S., Su Z., Zhuo Y., Zhang K. (2021). Effect of benzoic acid on production performance, egg quality, intestinal morphology, and cecal microbial community of laying hens. Poult. Sci., 100: 196–205.
  58. Goo D., Gadde U.D., Kim W.K., Gay C.G., Porta E.W., Jones S.W., Walker S., Lillehoj H.S. (2023). Hyperimmune egg yolk antibodies developed against Clostridium perfringens antigens protect against necrotic enteritis. Poult. Sci., 102: 102841.
  59. Hafeez A., Shahid Ali S., Akhtar J., Naz S., Alrefaei A.F., Albeshr M.F., Israr M., Ullah Khan R. (2024). Impact of coriander (Coriandrum sativum), garlic (Allium sativum), fenugreek (Trigonella foenum-graecum) on zootechnical performance, carcass quality, blood metabolites and nutrient digestibility in broilers chickens. Vet. Quart., 44: 1–7.
  60. Haines M.D., Parker H.M., McDaniel C.D., Kiess A.S. (2015). When rooster semen is exposed to Lactobacillus fertility is reduced. Int. J. Poult. Sci., 14: 541–547.
  61. Hancock R.E., Brown K.L., Mookherjee N. (2006). Host defence peptides from invertebrates – emerging antimicrobial strategies. Immunobiol., 211: 315–322.
  62. Hashemi S.R., Davoodi H. (2011). Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet. Res. Comm., 35: 169–180.
  63. Hassan N., Mostafa I., Elhady M.A., Ibrahim M.A., Amer H. (2022). Effects of probiotic feed additives (biosol and Zemos) on growth and related genes in broiler chickens. Ital. J. Anim. Sci., 21: 62–73.
  64. Hatipoglu D., Senturk G., Aydin S.S., Kirar N., Top S., Demircioglu İ. (2024). Rye-grass-derived probiotics alleviate heat stress effects on broiler growth, health, and gut microbiota. J. Therm. Biol., 119: 103771.
  65. Hatta H., Tsuda K., Akachi S., Kim M., Yamamoto T., Ebina T. (1993). Oral passive immunization effect of anti-human rotavirus IgY and its behavior against proteolytic enzymes. Biosci. Biotechnol. Biochem., 57: 1077–1081.
  66. Hernández-González J.C., Martínez-Tapia A., Lazcano-Hernández G., García-Pérez B.E., Castrejón-Jiménez N.S. (2021). Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals, 11: 979.
  67. Horyanto D., Bajagai Y.S., Kayal A., von Hellens J., Chen X., Van T.T.H., Radovanović A., Stanley D. (2024). Bacillus amyloliquefaciens probiotics mix supplementation in a broiler leaky gut model. Microorganisms, 12: 419.
  68. Huang J., Guo F., Abbas W., Hu Z., Liu L., Qiao J., Bi R., Xu T., Zhang K., Huang J., Guo Y. (2024). Effects of microencapsulated essential oils and organic acids preparation on growth performance, slaughter characteristics, nutrient digestibility and intestinal microenvironment of broiler chickens. Poult. Sci., 103: 103655.
  69. Hyman P., Abedon S.T. (2010). Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol., 70: 217–248.
  70. Iji P., Hughes R., Choct M., Tivey D.R. (2001). Intestinal structure and function of broiler chickens on wheat-based diets supplemented with a microbial enzyme. Asian-Aust. J. Anim. Sci., 14: 54–60.
  71. Iqbal A., Hasni S., Rahman S. (2016). Preparation and evaluation of bacteriophage lysate specific for Salmonella typhimurium. Int. J. Curr. Microbiol. Appl. Sci., 5: 828–835.
  72. Isfahani N.H., Rahimi S., Rasaee M.J., Torshizi M.A.K., Salehi T.Z., Grimes J.L. (2020). The effect of capsulated and noncapsulated egg-yolk–specific antibody to reduce colonization in the intestine of Salmonella enterica ssp. enterica serovar Infantis –challenged broiler chickens. Poult. Sci., 99: 1387–1394.
  73. Islam Z., Sultan A., Khan S., Khan K., Jan A.U., Aziz T., Alharbi M., Alshammari A., Alasmari A.F. (2024). Effects of an organic acids blend and coated essential oils on broiler growth performance, blood biochemical profile, gut health, and nutrient digestibility. Ital. J. Anim. Sci., 23: 152–163.
  74. Jadhao G.M., Sawai D.H., Rewatkar H.N., Kolhe R.P., Bansod A.P., Nandeshwar J.D. (2019). Effect of organic acids with probiotic supplementation on immunity and blood biochemical status of broiler chicken. Int. J. Curr. Microbiol. Appl. Sci., 8: 1952–1959.
  75. Jiang A., Liu Z., Lv X., Zhou C., Ran T., Tan Z. (2024). Prospects and challenges of bacteriophage substitution for antibiotics in livestock and poultry production. Biology, 13: 28.
  76. Jin Y., Lv H., Wang M., Cho C.S., Shin J., Cui L., Yan C. (2023). Effect of microencapsulation of egg yolk immunoglobulin Y by sodium alginate/chitosan/sodium alginate on the growth performance, serum parameters, and intestinal health of broiler chickens. Anim. Biosci., 36: 1241.
  77. Joerger R.D. (2003). Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci., 82: 640–647.
  78. Johnson A.M., Clark A., Anderson M.G., Corbin E., Arguelles-Ramos M., Ali A.B. (2024). The influence of dietary synbiotic on agonistic behavior, stress, and brain monoamines via modulation of the microbiota–gut–brain axis in laying hens. Poultry, 3: 129–146.
  79. Juárez-Estrada M.A., Tellez-Isaias G., Sánchez-Godoy F.D., Alonso-Morales R.A. (2021). Immunotherapy with egg yolk Eimeria sp.-specific immunoglobulins in SPF Leghorn chicks elicits successful protection against Eimeria tenella infection. Front. Vet. Sci., 8: 758379.
  80. Kabir S.M.L. (2009). The role of probiotics in the poultry industry. Int. J. Mol. Sci., 10: 3531–3546.
  81. Karabasanavar N., Chakkodabail Benakabhat M., Agalagandi Gopalakrishna S., Bagalkote P.S., Basayya Hiremath J., Shivanagowda Patil G., Krishnan Sivaraman G., Barbuddhe S. (2022). Polyclonal hen egg yolk antibodies could confer passive protection against salmonella serotypes in broiler chicks. J. Food Safety, 42: e12987.
  82. Karami M., Goudarztalejerdi A., Mohammadzadeh A., Berizi E. (2024). In vitro evaluation of two novel Escherichia bacteriophages against multiple drug resistant avian pathogenic Escherichia coli. BMC Infec. Dis., 24.
  83. Khongthong S., Faroongsarng D., Roekngam N., Maliwan P., Theapparat Y. (2024). Modulating cecal microbiome and in silico amino acid metabolism of sanguinarine-based isoquinoline alkaloids supplements in natural heat stress broiler. Livest. Sci., 283: 105441.
  84. Kiess A.S., Hirai J.H., Triplett M.D., Parker H.M., McDaniel C.D. (2016). Impact of oral Lactobacillus acidophilus gavage on rooster seminal and cloacal Lactobacilli concentrations. Poult. Sci., 95: 1934–1938.
  85. Kim D., Kim J., Kim S., Kang G., Kang H., Lee S., Kim S. (2009). A study on the efficacy of dietary supplementation of organic acid mixture in broiler chicks. J. Anim. Sci. Technol., 51: 207–216.
  86. Kim J.W., Kim J.H., Kil D.Y. (2015). Dietary organic acids for broiler chickens: A review. Rev. Colomb. Cienc. Pecu., 28: 109–123.
  87. Koshchaev I., Mezinova K., Ryadinskaya A., Sorokina N., Chuev S. (2020). Identification of cases of pododermatitis in broiler chickens when feeding a probiotic feed additive. E3S Web. Conf., 210: 6023.
  88. Krysiak K., Konkol D., Korczyński M. (2021). Overview of the use of probiotics in poultry production. Animals, 11: 1620.
  89. Kumar A., Toghyani M., Kheravii S.K., Pineda L., Han Y., Swick R.A., Wu S. (2022). Organic acid blends improve intestinal integrity, modulate short-chain fatty acids profiles and alter microbiota of broilers under necrotic enteritis challenge. Anim. Nutr., 8: 82–90.
  90. Kumar R., Ali S.A., Singh S.K., Bhushan V., Mathur M., Jamwal S., Mohanty A.K., Kaushik J.K., Kumar S. (2020). Antimicrobial peptides in farm animals: An updated review on its diversity, function, modes of action and therapeutic prospects. Vet. Sci., 7: 206.
  91. Kwiecień M., Jachimowicz-Rogowska K., Krupa W., Winiarska-Mieczan A., Krauze M. (2023). Effects of dietary supplementation of L-carnitine and mannan-oligosaccharides on growth performance, selected carcass traits, content of basic and mineral components in liver and muscle tissues, and bone quality in turkeys. Animals, 13: 770.
  92. Lambert R.J.W., Skandamis P.N., Coote P.J., Nychas G.J.E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Appl. Microbiol., 91: 453–462.
  93. Lan R., Wu F., Wang Y., Lin Z., Wang H., Zhang J., Zhao Z. (2024). Chitosan oligosaccharide improves intestinal function by promoting intestinal development, alleviating intestinal inflammatory response, and enhancing antioxidant capacity in broilers aged d 1 to 14. Poult. Sci., 103: 103381.
  94. Lee L., Samardzic K., Wallach M., Frumkin L.R., Mochly-Rosen D. (2021). Immunoglobulin Y for potential diagnostic and therapeutic applications in infectious diseases. Front. Immunol., 12: 696003.
  95. Leigh R.J., Corrigan A., Murphy R.A., Taylor-Pickard J., Moran C.A., Walsh F. (2024). Yeast mannan rich fraction positively influences microbiome uniformity, productivity associated taxa, and lay performance. Anim. Microb., 6: 9.
  96. Leinonen I., Williams A.G. (2015). Effects of dietary protease on nitrogen emissions from broiler production: a holistic comparison using Life Cycle Assessment. J. Sci. Food Agric., 95: 3041–3046. Leone F., Ferrante V. (2023). Effects of prebiotics and precision biotics on performance, animal welfare and environmental impact. A review. Sci. Total Env., 165951.
  97. Li Z., Hu Y., Yang Y., Lu Z., Wang Y. (2018). Antimicrobial resistance in livestock: antimicrobial peptides provide a new solution for a growing challenge. Anim. Front., 8: 21–29.
  98. Li Z., Li C., Lin F., Yan L., Wu H., Zhou H., Guo Q., Lin B., Xie B., Xu Y., Lin Z. (2024 a). Duck compound probiotics fermented diet alters the growth performance by shaping the gut morphology, microbiota and metabolism. Poult. Sci., 103: 103647.
  99. Li L., Fan R., Chen Y., Zhang Q., Zhao X., Hu M., Lv Q., Luo Y., Xu X., Cai Y., Li Y. (2024 b). Characterization, genome analysis, and therapeutic evaluation of a novel Salmonella phage vB_SalS_JNS02: a candidate bacteriophage for phage therapy. Poult. Sci., 103845.
  100. Liu H.Y., Li X., Zhu X., Dong W.G., Yang G.Q. (2021 a). Soybean oligosaccharides attenuate odour compounds in excreta by modulating the caecal microbiota in broilers. Animal, 15: 100159.
  101. Liu L., Li Q., Yang Y., Guo A. (2021 b). Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Front. Vet. Sci., 8: 736739.
  102. Liu H., Liu W., Ai M., Hao X., Zhang Q., Ren J., Zhang K. (2024 a). Effects of β-mannanase supplementation on productive performance, inflammation, energy metabolism, and cecum microbiota composition of laying hens fed with reduced-energy diets. Poult. Sci., 103: 103521.
  103. Liu X., Wang X., Shi X., Wang S., Shao K. (2024 b). The immune enhancing effect of antimicrobial peptide LLv on broilers chickens. Poult. Sci., 103: 103235.
  104. Llamas-Moya S., Girdler C.P., Shalash S.M.M., Atta A.M., Gharib H.B., Morsy E.A., Salim H.M., Awaad M.H.H., Elmenawey M. (2020). Effect of a multicarbohydrase containing α-galactosidase enzyme on the performance, carcass yield, and humoral immunity of broilers fed corn–soybean meal-based diets of varying energy density. J. Appl. Poult. Res., 29: 142–151.
  105. Luiken R.E., Van Gompel L., Munk P., Sarrazin S., Joosten P., Dorado-García A., Borup Hansen R., Knudsen B.E., Bossers A., Wagenaar J.A., Aarestrup F.M. (2019). Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries. J. Antimicrob. Chemotharp., 74: 2596–2604.
  106. Madkour M., Alaqaly A.M., Soliman S.S., Ali S.I., Aboelazab O. (2024). Growth performance, blood biochemistry, and mRNA expression of hepatic heat shock proteins of heat-stressed broilers in response to rosemary and oregano extracts. J. Therm. Biol., 119: 103791.
  107. Maguey-González J.A., Liu J., Zhang G., Latorre J.D., Hernández-Ramírez J.O., de Jesús Nava-Ramírez M., Senas-Cuesta R., Gómez-Rosales S., de Lourdes Ángeles M., Stein A., Solís-Cruz B. (2024). Assessment of the impact of humic acids on intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an aflatoxin B1-contaminated diet. Toxins, 16: 122.
  108. Maina A.N., Schulze H., Kiarie E.G. (2024). Response of broiler breeder pullets when fed hydrolyzed whole yeast from placement to 22 wk of age. Poult. Sci., 103: 103383.
  109. Mani-López E., García H., López-Malo A. (2012). Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int., 45: 713–721.
  110. Marshall B.M., Levy S.B. (2011). Food and antimicrobials: impacts on human health. Clin. Microbiol. Rev., 24: 718–733. Miernikiewicz P., Dąbrowska K. (2022). Endocytosis of bacteriophages. Curr. Opin. Virol., 52: 229–235.
  111. Mirsalami S.M., Mirsalami M. (2024). Effects of duo-strain probiotics on growth, digestion, and gut health in broiler chickens. Vet. Anim. Sci., 100343.
  112. Mohr K.I. (2016). History of antibiotics research. How to overcome the antibiotic crisis: facts, challenges, technologies and future perspectives, Springer, 237–272.
  113. Morgan N.K. (2023). Advances in prebiotics for poultry: role of the caeca and oligosaccharides. Anim. Prod. Sci., 63: 18.
  114. Morgan N.K., Wallace A., Bedford M.R., Hawking K.L., Rodrigues I., Hilliar M., Choct M. (2020). In vitro versus in situ evaluation of xylan hydrolysis into xylo-oligosaccharides in broiler chicken gastrointestinal tract. Carbohydr. Polym., 230: 115645.
  115. Mortada M., Cosby D.E., Shanmugasundaram R., Selvaraj R.K. (2020). In vivo and in vitro assessment of commercial probiotic and organic acid feed additives in broilers challenged with Campylobacter coli. J. Appl. Poult. Res., 29: 435–446.
  116. Mountzouris K.C., Tsitrsikos P., Palamidi I., Arvaniti A., Mohnl M., Schatzmayr G., Fegeros K. (2010). Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult. Sci., 89: 58–67.
  117. Mullenix G.J., Greene E.S., Ramser A., Maynard C., Dridi S. (2024). Effect of a microencapsulated phyto/phycogenic blend supplementation on growth performance, processing parameters, meat quality, and sensory profile in male broilers. Front. Vet. Sci., 11: 1382535.
  118. Munyaka P.M., Nandha N.K., Kiarie E., Nyachoti C.M., Khafipour E. (2016). Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poult. Sci., 95: 528–540.
  119. Murugesan G.R., Syed B., Haldar S., Pender C. (2015). Phytogenic feed additives as an alternative to antibiotic growth promoters in broiler chickens. Front. Vet. Sci., 2: 21.
  120. Nazeer N., Uribe-Diaz S., Rodriguez-Lecompte J.C., Ahmed M. (2021). Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry. Br. Poult. Sci., 62: 672–685.
  121. Nguyen T.T.T., Allan B., Wheler C., Köster W., Gerdts V., Dar A. (2021). Avian antimicrobial peptides: in vitro and in ovo characterization and protection from early chick mortality caused by yolk sac infection. Sci Rep., 11: 2132.
  122. Niewold T.A. (2007). The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult. Sci., 86: 605–609.
  123. Odenbreit S., Till M., Hofreuter D., Faller G., Haas R. (1999). Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol. Microbiol., 31: 1537–1548.
  124. OECD FAO (2022). OECD-FAO Agricultural Outlook 2022–2031. Oechslin F. (2018). Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses, 10: 351.
  125. Ongey E.L., Pflugmacher S., Neubauer P. (2018). Bioinspired designs, molecular premise and tools for evaluating the ecological importance of antimicrobial peptides. Pharmaceuticals, 11: 68.
  126. Pan D., Yu Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5: 108–119.
  127. Pasri P., Rakngam S., Gérard N., Mermillod P., Khempaka S. (2024). Synthetic and phytogenic antioxidants improve productive performance, antioxidant activity, gene expression, and offspring quality in breeder hens subjected to heat stress. Poult. Sci., 103: 103390.
  128. Patel D.S., Pendrill R., Mallajosyula S.S., Widmalm G., MacKerell A.D. Jr. (2014). Conformational properties of α- or β-(1→6)-linked oligosaccharides: Hamiltonian replica exchange MD simulations and NMR experiment. J. Phys. Chem. B., 118: 2851–2871.
  129. Patyra E., Kwiatek K. (2023). Insect meals and insect antimicrobial peptides as an alternative for antibiotics and growth promoters in livestock production. Pathogens, 12: 854.
  130. Peh E., Szott V., Reichelt B., Friese A., Ploetz M., Roesler U., Kittler S. (2024). Combined application of bacteriophages with a competitive exclusion culture and carvacrol with organic acids can reduce Campylobacter in primary broiler production. Sci. Rep., 14: 9218.
  131. Pham V.H., Kan L., Huang J., Geng Y., Zhen W., Guo Y., Abbas W., Wang Z. (2020). Dietary encapsulated essential oils and organic acids mixture improves gut health in broiler chickens challenged with necrotic enteritis. J. Anim. Sci. Biotechnol., 11: 1–18.
  132. Pires D.P., Oliveira H., Melo L.D., Sillankorva S., Azeredo J. (2016). Bacteriophage-encoded depolymerases: their diversity and bio-technological applications. Appl. Microbiol. Biotechnol., 100: 2141–2151.
  133. Popov I.V., Skripkin V.S., Mazanko M.S., Epimakhova E.E., Prazdnova E.V., Dilekova O.V., Dannikov S.P., Trukhachev V.I., Rastovarov E.I., Derezina T.N., Kochetkova N.A. (2024). Effects of spore-forming Bacillus probiotics on growth performance, intestinal morphology, and immune system of broilers housed on deep litter. J. Appl. Poult. Res., 33: 100396.
  134. Pourabadeh A.H., Madani S.A., Dorostkar R., Rezaeian M., Esmaeili H., Bolandian M., Salavati A., Hashemian S.M.M., Aghahasani A. (2024). Evaluation of the in vitro and in vivo efficiency of in-feed bacteriophage cocktail application to control Salmonella Typhimurium and Salmonella Enteritidis infection in broiler chicks. Avian Path., 1–8.
  135. Puvača N., Ljubojević D., Kostadinović L.J., Lukač D., Lević J., Popović S., Đuragić O. (2015). Spices and herbs in broilers nutrition: Effects of garlic (Allium sativum L.) on broiler chicken production. World’s Poult. Sci. J., 71: 533–538.
  136. Rafeeq M., Bilal R.M., Batool F., Yameen K., Farag M.R., Madkour M., Elnesr S.S., El-Shall N.A., Dhama K., Alagawany M. (2023). Application of herbs and their derivatives in broiler chickens: A review. World’s Poult. Sci. J., 79: 95–117.
  137. Ramlucken U., Lalloo R., Roets Y., Moonsamy G., van Rensburg C.J., Thantsha M.S. (2020). Advantages of Bacillus-based probiotics in poultry production. Livest. Sci., 241: 104215.
  138. Rao Z., Li Y., Yang X., Guo Y., Zhang W., Wang Z. (2024). Diet xylooligosaccharide supplementation improves growth performance, immune function, and intestinal health of broilers. Anim. Nutr., 17: 165–176.
  139. Ravindran V. (2013). Feed enzymes: The science, practice, and metabolic realities. J. Appl. Poult. Res., 22: 628–636.
  140. Ravindran V., Son J.H. (2011). Feed enzyme technology: present status and future developments. Recent Pat. Food Nutr. Agric., 3: 102–109.
  141. Rehan I.F., Rehan A.F., Abouelnaga A.F., Hussein M.A., El-Ghareeb W.R., Eleiwa N.Z., Elnagar A., Batiha G.E., Abdelgawad M.A., Ghoneim M.M., Hafiz A.A. (2022). Impact of dietary egg yolk IgY powder on behavior, meat quality, physiology, and intestinal Escherichia coli colonization of broiler chicks. Front. Vet. Sci., 9: 783094.
  142. Réhault-Godbert S., Guyot N., Nys Y. (2019). The golden egg: nutritional value, bioactivities, and emerging benefits for human health. Nutrients, 11: 684.
  143. Ricke S.C. (2018). Impact of prebiotics on poultry production and food safety. Yale J. Biol. Med., 91: 151–159.
  144. Ricke S.C., Lee S.I., Kim S.A., Park S.H., Shi Z. (2020). Prebiotics and the poultry gastrointestinal tract microbiome. Poult. Sci., 99: 670–677.
  145. Rodjan P., Soisuwan K., Thongprajukaew K., Theapparat Y., Khongthong S., Jeenkeawpieam J., Salaeharae T. (2018). Effect of organic acids or probiotics alone or in combination on growth performance, nutrient digestibility, enzyme activities, intestinal morphology and gut microflora in broiler chickens. J. Anim. Physiol. Anim. Nutr., 102: e931.
  146. Rodrigues G., Souza Santos L., Franco OL. (2022). Antimicrobial peptides controlling resistant bacteria in animal production. Front. Microbiol., 19: 874153.
  147. Rushton J. (2015). Anti-microbial use in animals: how to assess the trade-offs. Zoon. Pub. Health., 62: 10–21.
  148. Salahi A., Abd El-Ghany W.A. (2024). Beyond probiotics, uses of their next-generation for poultry and humans: A review. J. Anim. Phys. Anim. Nutr., 108: 1–12.
  149. Salami S.A., Ross S.A., Patsiogiannis A., Moran C.A., Taylor-Pick-ard J. (2022). Performance and environmental impact of egg production in response to dietary supplementation of mannan oligosaccharide in laying hens: a meta-analysis. Poult. Sci., 101: 101745.
  150. Saleem K., Saima., Rahman A., Pasha T.N., Mahmud A., Hayat Z. (2020). Effects of dietary organic acids on performance, cecal microbiota, and gut morphology in broilers. Trop. Anim. Health Prod., 52: 3589–3596.
  151. Salem F.M., Abd El-Dayem A.A. (2024). The effectiveness of Bio-plus2B®, Techno Mos® and their mixture on the rate of egg production, egg characteristics, retention of nutrients and blood metabolites through the early period of production. BMC Vet. Res., 20: 56.
  152. Salsinha A.S., Machado M., Rodríguez-Alcalá L.M., Gomes A.M., Pintado M. (2023). Bioactive lipids: Chemistry, biochemistry, and biological properties. In: Bioactive Lipids. Academic Press: Cambridge, MA, USA.
  153. Shah B.R., Hakeem W.A., Shanmugasundaram R., Selvaraj R.K. (2023). Effect of synbiotic supplementation on production performance and severity of necrotic enteritis in broilers during an experimental necrotic enteritis challenge. Poult. Sci., 102: 102959.
  154. Shah S.B.A. (2015). Phytogenic feed additives in animal nutrition. In: Medicinal and aromatic plants of the world (Vol. 1), Máthé Á. (ed.). Springer.
  155. Shanmugasundaram R., Markazi A., Mortada M., Ng T.T., Applegate T.J., Bielke L.R., Syed B., Pender C.M., Curry S., Murugesan G.R., Selvaraj R.K. (2020). Research Note: Effect of synbiotic supplementation on caecal Clostridium perfringens load in broiler chickens with different necrotic enteritis challenge models. Poult. Sci., 99: 2452–2458.
  156. Sharma M.K., Liu G., Choppa V.S.R., Rafieian-Naeini H.R., Mahdavi F.S., Marshall B., Gogal Jr R.M., Kim W.K. (2024). Effects of Artemisia annua supplementation on the performance and gut health of laying hens challenged with mixed Eimeria species. Front. Phys., 15: 1381548.
  157. Shini S., Bryden W. (2021). Probiotics and gut health: Linking gut homeostasis and poultry productivity. Anim Prod. Sci., 62: 1090–1112.
  158. Si W., Gong., Chanas C., Cui S., Yu H., Caballero C., Friendship R.M. (2006). In vitro assessment of antimicrobial activity of carvacrol, thymol and cinnamaldehyde towards Salmonella sero-type Typhimurium DT104: Effects of pig diets and emulsification in hydrocolloids. J. Appl. Microbiol., 101: 1282–1291.
  159. Sittiya J., Nii T. (2024). Effects of oligosaccharides on performance, intestinal morphology, microbiota and immune reactions in laying hens challenged with dextran sodium sulfate. Poult. Sci., 103: 104062.
  160. Smialek M., Burchardt S., Koncicki A. (2018). The influence of pro-biotic supplementation in broiler chickens on population and carcass contamination with Campylobacter spp. – field study. Res. Vet. Sci., 118: 312–316.
  161. Soren S., Mandal G.P., Mondal S., Pradhan S., Mukherjee J., Banerjee D., Pakhira M.C., Amla Mondal A., Nsereko V., Samanta I. (2024). Efficacy of Saccharomyces cerevisiae fermentation product and probiotic supplementation on growth performance, gut microflora and immunity of broiler chickens. Animals, 14: 866.
  162. Spring P., Newman K., Wenk C., Messikommer R., Vranjes M.V. (1996). Effect of pelleting temperature on the activity of different enzymes. Poult. Sci., 75: 357–361.
  163. Swaggerty C.L., Callaway T.R., Kogut M.H., Piva A., Grilli E. (2019). Modulation of the immune response to improve health and reduce foodborne pathogens in poultry. Microorganisms, 7: 6.
  164. Tabashsum Z., Scriba A., Biswas D. (2023). Alternative approaches to therapeutics and sub-therapeutics for sustainable poultry production. Poult. Sci., 102750.
  165. Tabata E., Kashimura A., Kikuchi A., Masuda H., Miyahara R., Hiruma Y., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Matoska V., Bauer P.O., Oyama F. (2018). Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci. Rep., 8: 1–11.
  166. Thanki A.M., Hooton S., Whenham N., Salter M.G., Bedford M.R., O’Neill H.V.M., Clokie M.R. (2023). A bacteriophage cocktail delivered in feed significantly reduced Salmonella colonization in challenged broiler chickens. Emerg. Microb. Infect., 12: 2217947.
  167. Tini M., Jewell U.R., Camenisch G., Chilov D., Gassmann M. (2002). Generation and application of chicken egg-yolk antibodies. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 131: 569–574.
  168. Tran C., Horyanto D., Stanley D., Cock I.E., Chen X., Feng Y. (2023). Antimicrobial properties of Bacillus probiotics as animal growth promoters. Antibiotics, 12: 407.
  169. Tsirtsikos P., Fegeros K., Kominakis A., Balaskas C., Mountzouris K.C. (2012). Modulation of intestinal mucin composition and mucosal morphology by dietary phytogenic inclusion level in broilers. Animal, 6: 1049–1057.
  170. Upadhyaya I., Upadhyay A., Yin H.B., Nair M.S., Bhattaram V.K., Karumathi D., Kollanoor-Johny A., Khan M.I., Darre M.J., Curtis P.A., Venkitanarayanan K. (2015). Reducing colonization and eggborne transmission of Salmonella enteritidis in layer chickens by in-feed supplementation of caprylic acid. Foodborne Path. Dis., 12: 591–597.
  171. van der Laan S., Breeman G., Scherer L. (2024). Animal lives affected by meat consumption trends in the G20 Countries. Animals, 14: 1662.
  172. Vaz C.S.L., da Fonseca F.N., Voss-Rech D., Morés M.A.Z., Coldebella A., Cantão M.E. (2024). Wild-type lytic bacteriophages against Salmonella Heidelberg: Further characterization and effect of prophylactic therapy in broiler chickens. Res. Vet. Sci., 171: 105247.
  173. Verraes C., Van Boxstael S., Van Meervenne E., Van Coillie E., Butaye P., Catry B., De Schaetzen M.A., Van Huffel X., Imberechts H., Dierick K., Daube G. (2013). Antimicrobial resistance in the food chain: a review. Int. J. Env. Res. Pub. Health, 10: 2643–2669.
  174. Wang L.H., Li X.Y., Jin L.J., You J.S., Zhou Y., Li S.Y., Xu Y.P. (2011). Characterization of chicken egg yolk immunoglobulins (IgYs) specific for the most prevalent capsular serotypes of mastitis-causing Staphylococcus aureus. Vet. Microbiol., 149: 415–421.
  175. Wang Y., Li J., Dai X., Wang Z., Ni X., Zeng D., Zeng Y., Zhang D., Pan K. (2023). Effects of antimicrobial peptides Gal-13 on the growth performance, intestinal microbiota, digestive enzyme activities, intestinal morphology, antioxidative activities, and immunity of broilers. Prob. Antimicrob. Proteins, 15: 694–705.
  176. Wang X., Li D., Xu Y., Ding X., Liang S., Xie L., Wang Y., Zhan X. (2024). Xylanase supplement enhances the growth performance of broiler by modulating serum metabolism, intestinal health, short-chain fatty acid composition, and microbiota. Animals, 14: 1182.
  177. White M.B., Calik A., Dalloul R.A. (2024). Hatchery and dietary application of synbiotics in broilers: Performance and mRNA abundance of ileum tight junction proteins, nutrient transporters, and immune response markers. Animals, 14: 970.
  178. Wolfenden A., Vicente J., Higgins J., Andreatti Filho R.L., Higgins S., Hargis B., Tellez G. (2007). Effect of organic acids and probiotics on Salmonella enteritidis infection in broiler chickens. Int. J. Poult. Sci., 6: 403.
  179. Woyengo T.A., Nyachoti C.M. (2011). Review: supplementation of phytase and carbohydrases to diets for poultry. Can. J. Anim. Sci., 91: 177–192.
  180. Wu Y., Zhen W., Geng Y., Wang Z., Guo Y. (2019). Pretreatment with probiotic Enterococcus faecium NCIMB 11181 ameliorates necrotic enteritis-induced intestinal barrier injury in broiler chickens. Sci. Rep., 9: 10217–10256.
  181. Xiong S., Zhang Q., Zhang K., Wang J., Bai S., Zeng Q., Peng H., Xuan Y., Mu Y., Ding X. (2024). Effects of long-term coated sodium butyrate supplementation on the intestinal health and colonization of cecal Salmonella of laying hens infected with Salmonella enteritidis. Animals, 14: 1356.
  182. Xu F., Wang J., Zhu E., Feng Y., Xu T., Ru X., Gu S., Liu X. (2024). Research note: Effects of the intermittent feeding of microencapsulation essential oil on laying performance, egg quality, immune response, intestinal morphology, and oxidation status of laying hens. Poult. Sci., 103600.
  183. Xu Y., Li X., Jin L., Zhen Y., Lu Y., Li S., You J., Wang L. (2011). Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: a review. Biotechnol. Adv., 29: 860–868.
  184. Xu Y., Wang Q., Dong M., Song H., Hang B., Sun Y., Zhang H., Hu J. (2023). Evaluation of the efficacy of the antimicrobial peptide HJH-3 in chickens infected with Salmonella pullorum. Front. Microb., 14: 1102789.
  185. Yadav S., Singh A.K., Selvaraj R.K., Applegate T.J., Bhattacharya P., Shinall S.B., Fenn L.S., Shanmugasundaram R., Kim W.K. (2024). Research note: Effect of dietary xylo-oligosaccharide on growth performance, intestinal histomorphology, and specific cecal bacteria in broiler chickens. Poult. Sci., 103: 103189.
  186. Yang Y., Iji P.A., Choct M. (2009). Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to feed antibiotics. World’s Poult. Sci. J., 65: 97–114.
  187. Yang C., Chowdhury M.K., Hou Y., Gong J. (2015). Phytogenic compounds as alternatives to in-feed antibiotics: potentials and challenges in application. Pathogens, 4: 137–156.
  188. Yang Y., Ashworth A.J., Willett C., Cook K., Upadhyay A., Owens P.R., Ricke S.C., Debruyn J.M., Moore Jr P.A. (2019). Review of antibiotic resistance, ecology, dissemination, and mitigation in U.S. broiler poultry system. Front. Microb., 10: 2639.
  189. Yang B., Li X., Mesalam N.M., Elsadek M.F., Abdel-Moneim A.M.E. (2024 a). The impact of dietary supplementation of polysaccha-ride derived from Polygonatum sibiricum on growth, antioxidant capacity, meat quality, digestive physiology, and gut microbiota in broiler chickens. Poult. Sci., 103: 103675.
  190. Yang C., Wang S., Li Q., Zhang R., Xu Y., Feng J. (2024 b). Effects of probiotic Lactiplantibacillus plantarum HJLP-1 on growth performance, selected antioxidant capacity, immune function indices in the serum, and cecal microbiota in broiler chicken. Animals, 14: 668.
  191. Yi W., Huang Q., Liu Y., Fu S., Shan T. (2024 a). Effects of dietary multienzymes on the growth performance, digestive enzyme activity, nutrient digestibility, excreta noxious gas emission and nutrient transporter gene expression in white feather broilers. J. Anim. Sci., 102: 133.
  192. Yi W., Liu Y., Fu S., Zhuo J., Wang J., Shan T. (2024 b). Dietary novel alkaline protease from Bacillus licheniformis improves broiler meat nutritional value and modulates intestinal microbiota and metabolites. Anim. Microb., 6: 1.
  193. Youssef I.M., Khalil H.A., Jaber F.A., Alhazzaa R.A., Alkholy S.O., Almehmadi A.M., Alhassani W.E., Al-Shehri M., Hassan H., Hassan M.S., Abd El Halim H.S. (2023 a). Influence of dietary mannan-oligosaccharides supplementation on hematological characteristics, blood biochemical parameters, immune response and histological state of laying hens. Poult Sci., 102: 103071.
  194. Youssef I.M., Khalil H.A., Shakoori A.M., Bagadood R.M., Alyahyawi A.Y., Alhazzaa R.A., Fakiha K.G., Nasr S., Abo-Samra M.A., Hassan M.S., Abd El Halim H.S. (2023 b). Immune response, hematological traits, biochemical blood parameters, and histological status of laying hens influenced by dietary chitosan-oligosaccha-rides. Poult. Sci., 102: 102834.
  195. Youssef I.M., Khalil H.A., Swelum A.A., Al Garadi M.A., Balasubramanian B., Hassan M.S., Abd El Halim H.S., Abd El-Hack M.E., Youssef K.M., Abo-Samra M.A. (2024 a). Influence of dietary chitosan-oligosaccharides supplementation on productive and reproductive performance of laying hens. Ann. Anim. Sci., 24: 491–502.
  196. Youssef I.M., Elsherbeni A.I., Almuraee A.A., Nass N.M., Beyari E.A., Alshammarii N.M., Abdel-Ghany A.M., Ahmed E.S.G., Nasr S., Youssef K.M., Salem H.M. (2024 b). Influence of using synbiotics by various routes on Mandarah male chicks: intestinal bacterial counts, gut morphology and histological status. Poult. Sci., 103: 103601.
  197. Zhang C., Yang M. (2022). Antimicrobial peptides: From design to clinical application. Antibiotics, 11: 349.
  198. Zhang X., Chen Y., Lv Z., Zhou L., Guo Y. (2024 a). Analysis of the effects of β-mannanase on immune function and intestinal flora in broilers fed the low energy diet based on 16S rRNA sequencing and metagenomic sequencing. Poult. Sci., 103581.
  199. Zhang X., Xu H., Gong L., Wang J., Fu J., Lv Z., Zhou L., Li X., Liu Q., Xia P., Guo Y. (2024 b). Mannanase improves the growth performance of broilers by alleviating inflammation of the intestinal epithelium and improving intestinal microbiota. Anim. Nutr., 16: 376–394.
  200. Zhang H., Wang Y., Wang Y., Wei B., Wang L., Nguyen M.T., Lv X., Huang Y., Chen W. (2024 c). Fermented calcium butyrate supplementation in post-peak laying hens improved ovarian function and tibia quality through the “gut-bone” axis. Anim. Nutr., 16: 350–362.
  201. Zhao X., Zhang Y., He W., Wei Y., Han S., Xia L., Tan B., Yu J., Kang H., Ma M., Zhu Q. (2022). Effects of small peptide supplementation on growth performance, intestinal barrier of laying hens during the brooding and growing periods. Front. Immun., 13: 925256.
  202. Zhu C., Bai Y., Xia X., Zhang M., Wu X., Wu Y., Bai Y., Liu S., Zhang G., Hu J., Fotina H. (2022). Effects of the Antimicrobial Peptide Mastoparan X on the Performance, Permeability and Microbiota Populations of Broiler Chickens. Animals, 12: 3462.
  203. Zhu La A.T., Feng Y., Hu D., Feng Y., Jin X., Liu D., Guo Y., Cheng G., Hu Y. (2023). Enzymatically prepared alginate oligosaccha-rides improve broiler chicken growth performance by modulating the gut microbiota and growth hormone signals. J. Anim. Sci. Biotech., 14: 96.
DOI: https://doi.org/10.2478/aoas-2025-0008 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1249 - 1275
Submitted on: Jun 22, 2024
Accepted on: Nov 28, 2024
Published on: Oct 24, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Hafiz Muhammad Ishaq, Waqas Ishaq, Muhammad Usman, Abdul Ghayas, Rao Muhammad Kashif Yameen, Abdullah, Kinza Saleem, Sohail Ahmad, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.