References
- Al Eissa A., Chen P., Brown P.B., Huang J.Y. (2022). Effects of feed formula and farming system on the environmental performance of shrimp production chain from a life cycle perspective. J. Ind. Ecol., 26: 2006–2019.
- Amelia F., Yustiati A., Andriani Y. (2021). Review of shrimp (Litopenaeus vannamei (Boone, 1931)) farming in Indonesia: Management operating and development. W. Sci. News., 158: 145–158.
- Anderson D.P., Siwicki A.K. (1995). Basic hematology and serology for fish health programs. Fish Health Section, Asian Fisheries Society.
- Ayiku S., Shen J., Tan B.P., Dong X.H., Liu H.Y. (2020). Effects of reducing dietary fishmeal with yeast supplementations on Litopenaeus vannamei growth, immune response and disease resistance against Vibrio harveyi. Microbiol. Res., 239: 126554.
- Bell T.A., Lightner D.V. (1988). A handbook of normal penaeid shrimp histology.
- Cai Y., Huang H., Yao W., Yang H., Xue M., Li X., Leng X. (2022). Effects of fish meal replacement by three protein sources on physical pellet quality and growth performance of Pacific white shrimp (Litopenaeus vannamei). Aquac. Rep., 25: 101210.
- Cerenius L., Jiravanichpaisal P., Liu H.P., Soderhall I. (2010). Crustacean immunity. Invertebrate Immun., 239–259.
- Chen Y., Chi S., Zhang S., Dong X., Yang Q., Liu H., Tan B., Xie S. (2021 a). Evaluation of the dietary black soldier fly larvae meal (Hermetia illucens) on growth performance, intestinal health, and disease resistance to Vibrio parahaemolyticus of the Pacific white shrimp (Litopenaeus vannamei). Front. Mar. Sci., 8: 706463.
- Chen Y., Chi S., Zhang S., Dong X., Yang Q., Liu H., Zhang W., Deng J., Tan B., Xie S. (2021 b). Replacement of fish meal with Methanotroph (Methylococcus capsulatus, Bath) bacteria meal in the diets of Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 541: 736801.
- Cheng Z.J., Hardy R.W. (2002). Apparent digestibility coefficients of nutrients and nutritional value of poultry by-product meals for rainbow trout Oncorhynchus mykiss measured in vivo using settlement. J. World Aquac. Soc., 33: 458–465.
- Chi S., Tan B., Mai K., Zheng S. (2009). Growth and feed efficiency of juvenile shrimp Litopenaeus vannamei fed formulated diets containing different levels of poultry by-product meal. J. Ocean Univ. China, 8: 399–403.
- Cruz-Suárez L.E., Nieto-López M., Guajardo-Barbosa C., Tapia-Salazar M., Scholz U., Ricque-Marie D. (2007). Replacement of fish meal with poultry by-product meal in practical diets for Litopenaeus vannamei, and digestibility of the tested ingredients and diets. Aquaculture, 272: 466–476.
- Daiyong W., Yuantu Y., Baotong Z. (2009). Effects of cotton seed meal and rapeseed meal on growth performance, non-specific immune indexes and body compositions of Litopenaeus vannamei. China Feed., 23:12.
- Davis R.P., Boyd C.E., Godumala R., Mohan A.B.C., Gonzalez A., Duy N.P., Ahyani N., Shatova O., Wakefield J., Harris B., McNevin A.A. (2022). Assessing the variability and discriminatory power of elemental fingerprints in whiteleg shrimp Litopenaeus vannamei from major shrimp production countries. Food Control., 133: 108589.
- de Carvalho N.M., Madureira A.R., Pintado M.E. (2020). The potential of insects as food sources –a review. Crit. Rev. Food Sci. Nutr., 60: 3642–3652.
- Eroldoğan O.T., Glencross B., Novoveska L., Gaudêncio S.P., Rinkevich B., Varese G.C., de Fátima Carvalho M., Tasdemir D., Safarik I., Nielsen S.L., Rebours C. (2023). From the sea to aquafeed: A perspective overview. Rev. Aquac., 15: 1028–1057.
- FAO (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. https://doi.org/10.4060/ca9229en.
- FAO (2022). The State of World Fisheries and Aquaculture 2022. FAO. https://doi.org/10.4060/cc0461en.
- FAO (2024). The State of World Fisheries and Aquaculture 2024. https://doi.org/10.4060/cd0683en
- Felix N., Manikandan K., Uma A., Kaushik S.J. (2023). Evaluation of single cell protein on the growth performance, digestibility and immune gene expression of Pacific white shrimp, Penaeus vannamei. Anim. Feed Sci. Technol., 296: 115549.
- Folch J., Lees M., Stanley G.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509.
- Franceschini-Vicentini I.B., Ribeiro K., Papa L.P., Marques Junior J., Vicentini C.A., Valenti P.M.C.M. (2009). Histoarquitectura del Hepatopáncreas del Camarón de la Amazonia Macrobrachium amazonicum. Int. J. Morphol. 27: 121–128.
- Gasco L., Biancarosa I., Liland N.S. (2020). From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Curr. Opin. Green Sustain. Chem., 23: 67–79.
- Geetha R., Ravisankar T., Patil P.K., Avunje S., Vinoth S., Sairam C.V., Vijayan K.K. (2020). Trends, causes, and indices of import rejections in international shrimp trade with special reference to India: a 15-year longitudinal analysis. Aquac Int., 28: 1341–1369.
- Gholipour Kanani H., Nobahar Z., Kakoolaki S., Jafarian H. (2014). Effect of ginger- and garlic-supplemented diet on growth performance, some hematological parameters and immune responses in juvenile Huso huso. Fish Physiol. Biochem., 40: 481–490.
- González-Félix M.L., Gatlin III D.M., Lawrence A.L., Perez-Velazquez M. (2002). Effect of various dietary lipid levels on quantitative essential fatty acid requirements of juvenile Pacific white shrimp Litopenaeus vannamei. J. World Aquac. Soc., 33: 330–340.
- Guo J., Qiu X., Salze G., Davis D.A. (2019). Use of high-protein brewer’s yeast products in practical diets for the Pacific white shrimp Litopenaeus vannamei. Aquac. Nutr., 25: 680–690.
- He Y., Guo X., Tan B., Dong X., Yang Q., Liu H., Zhang S., Chi S. (2021). Partial fishmeal protein replacement with peptides from swine blood modulates the nutritional status, immune response, and intestinal microbiota of hybrid groupers (female Epinephelus fuscoguttatus × male E. lanceolatus). Aquaculture, 533: 736154.
- Hernández-López J., Gollas-Galván T., Vargas-Albores F. (1996). Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes. Comp. Biochem. Physiol. C, Pharmacol. Toxicol. Endocrinol., 113: 61–66.
- Hu L., Yun B., Xue M., Wang J., Wu X., Zheng Y., Han F. (2013). Effects of fish meal quality and fish meal substitution by animal protein blend on growth performance, flesh quality and liver histology of Japanese seabass (Lateolabrax japonicus). Aquaculture, 372: 52–61.
- Ishida Y., Fujita T., Asai K. (1981). New detection and separation method for amino acids by high-performance liquid chromatography. J. Chromatogr., 204: 143–148.
- Jiang J., Shi D., Zhou X.Q., Feng L., Liu Y., Jiang W.D., Wu P., Tang L., Wang Y., Zhao Y. (2016). Effects of lysine and methionine supplementation on growth, body composition and digestive function of grass carp (Ctenopharyngodon idella) fed plant protein diets using high-level canola meal. Aquac. Nutr., 22: 1126–1133.
- Jones S.W., Karpol A., Friedman S., Maru B.T., Tracy B.P. (2020). Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr. Opin. Biotechnol., 61: 189–197.
- Kader M.A., Koshio S., Ishikawa M., Yokoyama S., Bulbul M. (2010). Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture, 308: 136–144.
- Kaizu A., Fagutao F.F., Kondo H., Aoki T., Hirono I. (2011). Functional analysis of C-type lysozyme in penaeid shrimp. J. Biol. Chem., 286: 44344–44349.
- Kakoolaki S., Ebne al-Torab S.A.M., Ghajari A., Anvar A.A., Sepahdari A., Ahari H., Hoseinzadeh H. (2020). Socio-economic impacts of Coronavirus (COVID-19) outbreak on world shrimp aquaculture sector. Sustain. Aquac. Health Manag. J., 6: 1–18.
- Karthik R., Pushpam A.C., Chelvan Y., Vanitha M.C. (2016). Efficacy of probiotic and nitrifier bacterial consortium for the enhancement of Litopenaeus vannamei aquaculture. Int. J. Vet. Sci., 2: 001–006.
- Khanjani M.H., Sharifinia M. (2024). Feeding Nile tilapia with varying levels of biofloc: effect on growth performance, survival rate, digestive and liver enzyme activities, and mucus immunity. Aquac Int., 1–24.
- Khanjani M.H., Mozanzadeh M.T., Sharifinia M., Emerenciano M.G.C. (2023 a). Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738757.
- Khanjani M.H., Mozanzadeh M.T., Sharifinia M., Emerenciano M.G.C. (2023 b). Broodstock and seed production in biofloc technology (BFT): an updated review focused on fish and penaeid shrimp. Aquaculture, 740278.
- Khanjani M.H., Sharifinia M., Emerenciano M.G.C. (2023 c). A detailed look at the impacts of biofloc on immunological and hematological parameters and improving resistance to diseases. Fish Shellfish Immunol., 137: 108796.
- Khiari Z. (2022). Sustainable upcycling of fisheries and aquaculture wastes using fish-derived cold-adapted proteases. Front. Nutr., 9: 875697.
- Li X., Rahimnejad S., Wang L., Lu K., Song K., Zhang C. (2019). Substituting fish meal with housefly (Musca domestica) maggot meal in diets for bullfrog Rana (Lithobates) catesbeiana: Effects on growth, digestive enzymes activity, antioxidant capacity and gut health. Aquaculture, 499: 295–305.
- Liao I.C., Chien Y.H. (2011). The pacific white shrimp, Litopenaeus vannamei, in Asia: The world’s most widely cultured alien crustacean. In: In the wrong place-alien marine crustaceans: Distribution, biology and impacts. Dordrecht: Springer Netherlands, pp. 489–519.
- Lim C., Ako H., Brown C.L., Hahn K. (1997). Growth response and fatty acid composition of juvenile Penaeus vannamei fed different sources of dietary lipid. Aquaculture, 151: 143–153.
- Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25: 402–408.
- Luo Y., Ai Q., Mai K., Zhang W., Xu W., Zhang Y. (2012). Effects of dietary rapeseed meal on growth performance, digestion and protein metabolism in relation to gene expression of juvenile cobia (Rachycentron canadum). Aquaculture, 368: 109–116.
- Manikandan K., Felix N. (2020). Evaluation of dietary supplementation of L-lysine and phytase in corn gluten meal-soybean meal based diets for Pacific white shrimp Penaeus vannamei (Boone, 1931). Indian J. Fish., 67: 1–91358.
- Mastoraki M., Ferrándiz P.M., Vardali S.C., Kontodimas D.C., Kotzamanis Y.P., Gasco L., Chatzifotis S., d Antonopoulou E. (2020). A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aqua-culture, 528: 735511.
- Men K., Ai Q., Mai K., Xu W., Zhang Y., Zhou H. (2014). Effects of dietary corn gluten meal on growth, digestion and protein metabolism in relation to IGF-I gene expression of Japanese seabass, Lateolabrax japonicus. Aquaculture, 428: 303–309.
- Mo W.Y., Man Y.B., Wong M.H. (2018). Use of food waste, fish waste and food processing waste for China’s aquaculture industry: Needs and challenge. Sci. Total Environ., 613: 635–643.
- Mousavi S., Zahedinezhad S., Loh J.Y. (2020). A review on insect meals in aquaculture: The immunomodulatory and physiological effects. Int. Aquat. Res., 12: 100–115.
- Neto S.G., Oliveira R.L., de Lima F.H.S., de Medeiros A.N., Bezerra L.R., Viégas J., do Nascimento N.G., de Freitas Neto M.D. (2015). Milk production, intake, digestion, blood parameters, and ingestive behaviour of cows supplemented with by-products from the biodiesel industry. Trop. Anim. Health Prod., 47: 191–200.
- Novriadi R., Herawati V.E., Prayitno S.B., Windarto S., Mertz K., Nguyen Duy H. (2022). Effect of fermented corn protein concentrate on growth performance, haemocyte counts, histological structure of hepatopancreas and intestinal condition of pacific white shrimp Litopenaeus vannamei. Aquac. Fish Fish., 2: 82–93.
- Novriadi R., Istiqomah I., Isnansetyo A., Balk D., Jolly-Breithaupt M., Davies S. (2023). Corn fermented protein in production diets for pacific white legged shrimp Litopenaeus vannamei: Improved growth performance, health status and resistance to infection. Aquac. Rep., 30: 101571.
- NRC (2011). Nutrient requirements of fish and shrimp. National Academies Press.
- Panini R.L., Freitas L.E.L., Guimarães A.M., Rios C., da Silva M.F.O., Vieira F.N., Fracalossi D.M., Samuels R.I., Prudêncio E.S., Silva C.P., Amboni R.D. (2017). Potential use of mealworms as an alternative protein source for Pacific white shrimp: Digestibility and performance. Aquaculture, 473: 115–120.
- Pourmozaffar S., Hajimoradloo A., Paknejad H., Rameshi H. (2019). Effect of dietary supplementation with apple cider vinegar and propionic acid on hemolymph chemistry, intestinal microbiota and histological structure of hepatopancreas in white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol., 86: 900–905.
- Quang Tran H., Van Doan H., Stejskal V. (2022). Environmental consequences of using insect meal as an ingredient in aquafeeds: A systematic view. Rev. Aquac., 14: 237–251.
- Rice R. (2009). Nutritional value of fish oils: In: Fish Oils, Rossell B. (ed.). Wiley Blackwell, UK.
- Roque A., Yildiz H.Y., Carazo I., Duncan N. (2010). Physiological stress responses of sea bass (Dicentrarchus labrax) to hydrogen peroxide (H2O2) exposure. Aquaculture, 304: 104–107.
- Saleh N.E., Wassef E.A., Abdel-Mohsen H.H. (2022). Sustainable fish and seafood production and processing. In: Sustainable Fish Production and Processing. Academic Press, pp. 259–291.
- Sallam E.A., Matter A.F., Mohammed L.S., Azam A.E., Shehab A., Mohamed Soliman M. (2021). Replacing fish meal with rapeseed meal: potential impact on the growth performance, profitability measures, serum biomarkers, antioxidant status, intestinal morphometric analysis, and water quality of Oreochromis niloticus and Sarotherodon galilaeus fingerlings. Vet. Res. Commun., 45: 223–241.
- Sánchez-Muros M., De Haro C., Sanz A., Trenzado C.E., Villareces S., Barroso F.G. (2016). Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac. Nutr., 22: 943–955.
- Shao J., Wang B., Liu M., Jiang K., Wang L., Wang M. (2019). Replacement of fishmeal by fermented soybean meal could enhance the growth performance but not significantly influence the intestinal microbiota of white shrimp Litopenaeus vannamei. Aquaculture, 504: 354–360.
- Sharifinia M., Bahmanbeigloo Z.A., Keshavarzifard M., Khanjani M.H., Daliri M., Koochaknejad E., Jasour M.S. (2023 a). The effects of replacing fishmeal by mealworm (Tenebrio molitor) on digestive enzymes activity and hepatopancreatic biochemical indices of Litopenaeus vannamei. Ann. Anim. Sci., 23: 519–528.
- Sharifinia M., Bahmanbeigloo Z.A., Keshavarzifard M., Khanjani M.H., Daliri M., Koochaknejad E., Jasour M.S. (2023 b). Fish-meal replacement by mealworm (Tenebrio molitor) in diet of farmed Pacific white shrimp (Litopenaeus vannamei): effects on growth performance, serum biochemistry, and immune response. Aquat. Living Res., 36: 19.
- Sheikhzadeh N., Tayefi-Nasrabadi H., Khani Oushani A., Najafi Enferadi M.H. (2012). Effects of Haematococcus pluvialis supplementation on antioxidant system and metabolism in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem., 38: 413–419.
- Shin J., Lee K.J. (2021). Digestibility of insect meals for Pacific white shrimp (Litopenaeus vannamei) and their performance for growth, feed utilization and immune responses. PloS One., 16: e0260305.
- Sun S., Xuan F., Fu H., Zhu J., Ge X., Gu Z. (2015). Transciptomic and histological analysis of hepatopancreas, muscle and gill tissues of oriental river prawn (Macrobrachium nipponense) in response to chronic hypoxia. BMC Genomics, 16: 1–13.
- Surendra K.C., Tomberlin J.K., van Huis A., Cammack J.A., Heckmann L.H.L., Khanal S.K. (2020). Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.))(Diptera: Stratiomyidae)(BSF). Waste Manage., 117: 58–80.
- Tacon A.G., Metian M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285: 146–158.
- Tacon A.G., Metian M., McNevin A.A. (2022). Future feeds: suggested guidelines for sustainable development. Rev. Fish. Sci. Aquac., 30: 135–142.
- Tan B., Mai K., Zheng S., Zhou Q., Liu L., Yu Y. (2005). Replacement of fish meal by meat and bone meal in practical diets for the white shrimp Litopenaeus vannamei (Boone). Aquac. Res., 36: 439–444.
- Thiviya P., Gamage A., Kapilan R., Merah O., Madhujith T. (2022). Production of single-cell protein from fruit peel wastes using palmyrah toddy yeast. Fermentation, 8: 355.
- van Huis A. (2022). Edible insects: Challenges and prospects. Entomol. Res., 52: 161–177.
- Vargas-Albores F., Guzmán M.A., Ochoa J.L. (1993). An anticoagulant solution for haemolymph collection and prophenoloxidase studies of penaeid shrimp (Penaeus californiensis). Comp. Biochem. Physiol., Part A Mol. Integr. Physiol., 106: 299–303.
- Vazquez L., Alpuche J., Maldonado G., Agundis C., Pereyra-Morales A., Zenteno E. (2009). Immunity mechanisms in crustaceans. Innate Immun., 15: 179–188.
- Velisek J., Svobodova Z., Piackova V., Groch L., Nepejchalova L. (2005). Effects of clove oil anaesthesia on common carp (Cyprinus carpio L.). Vet. Med., 50: 269–275.
- Wang G., Peng K., Hu J., Mo W., Wei Z., Huang Y. (2021). Evaluation of defatted Hermetia illucens larvae meal for Litopenaeus vannamei: effects on growth performance, nutrition retention, antioxidant and immune response, digestive enzyme activity and hepatic morphology. Aquac. Nutr., 27: 986–997.
- Wu F., Tian J., Yu L., Wen H., Jiang M., Lu X. (2021). Effects of dietary rapeseed meal levels on growth performance, biochemical indices and flesh quality of juvenile genetically improved farmed tilapia. Aquac. Rep., 20: 100679.
- Wu J.P., Chen H.C., Huang D.J. (2008). Histopathological and biochemical evidence of hepatopancreatic toxicity caused by cadmium and zinc in the white shrimp, Litopenaeus vannamei. Chemosphere, 73: 1019–1026.
- Yang P., He C., Qin Y., Wang W., Mai K., Qin Q., Wei Z., Song F. (2021). Evaluation of composite mixture of protein sources in replacing fishmeal for Pacific white shrimp (Litopenaeus vannamei): Based on the changing pattern of growth performance, nutrient metabolism and health status. Aquac. Rep., 21: 100914.
- Yao W., Zhang C., Li X., He M., Wang J., Leng X. (2020). The replacement of fish meal with fermented soya bean meal or soya bean meal in the diet of Pacific white shrimp (Litopenaeus vannamei). Aquac. Res., 51: 2400–2409.
- Ye J.D., Wang K., Li F.D., Sun Y.Z., Liu X.H. (2011). Incorporation of a mixture of meat and bone meal, poultry by-product meal, blood meal and corn gluten meal as a replacement for fish meal in practical diets of Pacific white shrimp Litopenaeus vannamei at two dietary protein levels. Aquac. Nutr., 17: e337–e347.
- Yi H.Y., Chowdhury M., Huang Y.D., Yu X.Q. (2014). Insect antimicrobial peptides and their applications. Appl. Microbiol Biotechnol., 98: 5807–5822.
- Zhou C., Lin H., Ge X., Niu J., Wang J., Wang Y., Chen L., Huang Z., Yu W., Tan X. (2015). The effects of dietary soybean isoflavones on growth, innate immune responses, hepatic antioxidant abilities and disease resistance of juvenile golden pompano Trachinotus ovatus. Fish Shellfish Immunol., 43: 158–166.