References
- Abu-Raya S., Bloch-Shilderman E., Shohami E., Trembovler V., Shai Y., Weidenfeld J., Yedgar S., Gutman Y., Lazarovici P. (1998). Pardaxin, a new pharmacological tool to stimulate the arachidonic acid cascade in PC12 cells. J. Pharmacol. Exp. Ther., 287: 889–896.
- Abu-Raya S., Bloch-Shilderman E., Lelkes P.I., Trembovler V., Shohami E., Gutman Y., Lazarovici P. (1999). Characterization of pardaxin-induced dopamine release from pheochromocytoma cells: Role of calcium and eicosanoids. J. Pharmacol. Exp. Ther., 288: 399–406.
- Acosta J., Roa F., González-Chavarría I., Astuya A., Maura R., Montesino R., Muñoz C., Camacho F., Saavedra P., Valenzuela A., Sánchez O. (2019). In vitro immunomodulatory activities of peptides derived from Salmo salar NK-lysin and cathelicidin in fish cells. Fish Shellfish Immunol., 88: 587–594.
- Adermann K., Raida M., Paul Y., Abu-Raya S., Bloch-Shilderman E., Lazarovici P., Hochman J., Wellhöner, H. (1998). Isolation, characterization and synthesis of a novel pardaxin isoform. FEBS Lett., 435: 173–177.
- Aedo S., Ivanova L., Tomova A., Cabello F.C. (2014). Plasmid-related quinolone resistance determinants in epidemic Vibrio parahaemolyticus, uropathogenic Escherichia coli, and marine bacteria from an aquaculture area in Chile. Microb. Ecol., 68: 324–328.
- Aerts A.M., François I.E.J.A., Cammue B.P.A., Thevissen K. (2008). The mode of antifungal action of plant, insect and human defen-sins. Cell. Mol. Life Sci., 65: 2069–2079.
- Akhavan-Bahabadi M. (2020). Fish-derived antimicrobial peptides (AMPs): promising and novel candidates as potential therapeutic molecules for the preventing and treatment of Covid-19. In: 4th International Congress of Fisheries and Aquatic Research, p. 30.
- Akhavan-Bahabadi M., Paknejad H., Habibi-Rezaei M., Hedayati A.M. (2020). Antioxidant peptidic components derived from epidermal mucus of Neogobius fluviatilis pallasi. In: 4th International Congress of Fisheries and Aquatic Research, p. 14.
- Akhavan Bahabadi M., Paknejad H., Habibi Rezaei M., Hedayati A., Moghimi H. (2021). Screening of epidermal mucus from Neogobius fluviatilis pallasi for finding antimicrobial peptides (in Persian). Aquat. Physiol. Biotechnol., 8: 93–114.
- Akhavan-Bahabadi M., Paknejad H., Hedayati A., Habibi-Rezaei M. (2024 a). Fractionation of the Caspian sand goby epidermal exu-dates using membrane ultrafiltration and reversed-phase chromatography: an investigation on bioactivities. Sci. Rep., 14.
- Akhavan-Bahabadi M., Shekarbi S.P.H., Sharifinia M., Khanjani M.H. (2024 b). Exploring fish antimicrobial peptides (AMPs): classification, biological activities, and mechanisms of action. Int. J. Pept. Res. Ther., 30: 63.
- Ali S., Dawar F.U., Ullah W., Hassan M., Ullah K., Zhao Z. (2023 a). Proteomic map of the differentially expressed proteins in the skin of Ctenopharyngodon idella against Aeromonas hydrophila infection. Fish Shellfish Immunol. Rep., 5: 100122.
- Ali S., Shah S.A.U.R., Rauf M., Hassan M., Ullah W., Dawar F.U. (2023 b). Bactericidal role of epidermal mucus of freshwater fish treated with Aeromonas hydrophila. J. Fish Dis., 46: 1225–1237.
- Ali W., Elsahn A., Ting D.S., Dua H.S., Mohammed I. (2022). Host de-fence peptides: A potent alternative to combat antimicrobial resistance in the era of the COVID-19 pandemic. J. Antibiot., 11: 475.
- Andersson M., Gunne H., Agerberth B., Boman A., Bergman T., Sillard R., Jörnvall H., Mutt V., Olsson B., Wigzell H. (1995). NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J., 14: 1615–1625.
- Andrä J., Koch M.H.J., Bartels R., Brandenburg K. (2004). Biophysical characterization of endotoxin inactivation by NK-2, an antimi-crobial peptide derived from mammalian NK-lysin. Antimicrob. Agents Chemother., 48: 1593–1599.
- Ángeles Esteban M. (2012). An overview of the immunological defenses in fish skin. ISRN Immunol., 853470.
- Armstrong S.M., Hargrave B.T., Haya K. (2005). Antibiotic use in finfish aquaculture: modes of action, environmental fate, and microbial resistance. In: Environmental effects of marine finfish aquaculture, Hargrave B.T. (ed.). Springer Berlin, Heidelberg. pp. 341–357.
- Austin B., Mcintosh D. (1988). Natural antibacterial compounds on the surface of rainbow trout, Salmo gairdneri Richardson. J. Fish Dis., 11: 275–277.
- Azadi H., Paknejad H., Hajimoradloo A., Abbasian M.A-B. (2016). Comparative of protein pattern and immune parameters of skin mucus in Persian and Russian sturgeon (Acipenser persicus and Acipenser guldenstaedtii). In: International Conference on the Future of Sturgeon Aquaculture, p. 2.
- Bae J.S., Shim S.H., Hwang S.D., Park M.A., Jee B.Y., An C.M., Kim Y.O., Kim J.W., Park C.I. (2014). Expression analysis and biological activity of moronecidin from rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol., 40: 345–353.
- Bals R. (2000). Epithelial antimicrobial peptides in host defense against infection. Respir. Res., 1: 1–10.
- Barroso C., Carvalho P., Nunes M., Gonçalves J.F., Rodrigues P.N., Neves J.V. (2021). The era of antimicrobial peptides: Use of hepcidins to prevent or treat bacterial infections and iron disorders. Front Immunol., 12: 4018.
- Beck B.H., Peatman E. (2015). Mucosal health in aquaculture. Academic Press, p. 408.
- Bergsson G., Agerberth B., Jörnvall H., Gudmundsson G.H. (2005) Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). FEBS J., 272: 4960–4969.
- Bhatnagar A., Rathi P. (2021). Fish skin mucus as putative bio-resource for the development of next generation antibiotics. Egypt. J. Aquat. Biol. Fish., 25: 1063–1091.
- Birkemo G.A., Lüders T., Andersen Ø., Nes I.F., Nissen-Meyer, J. (2003). Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochim. Biophys. Acta-Proteins Proteom., 1646: 207–215.
- Birkemo G.A., Mantzilas D., Lüders T., Nes I.F., Nissen-Meyer J. (2004). Identification and structural analysis of the antimicrobial domain in hipposin, a 51-mer antimicrobial peptide isolated from Atlantic halibut. Biochim. Biophys. Acta-Proteins Proteom., 1699: 221–227.
- Björklund H., Bondestam J., Bylund G. (1990). Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture, 86: 359–367.
- Blackstock N., Pickering A.D. (1982). Changes in the concentration and histochemistry of epidermal mucous cells during the alevin and fry stages of the brown trout Salmo trutta. J. Zool., 197: 463–471.
- Bloch-Shilderman E., Jiang H., Abu-Raya S., Linial M., Lazarovici P. (2001). Involvement of extracellular signal-regulated kinase (ERK) in pardaxin-induced dopamine release from PC12 cells. J. Pharmacol. Exp. Ther., 296: 704–711.
- Boeckel T.P. van, Brower C., Gilbert M., Grenfell B.T., Levin S.A., Robinson T.P., Teillant A., Laxminarayan R. (2015). Global trends in antimicrobial use in food animals. Proc. National Academy of Sciences, 112: 5649–5654.
- Boman H.G. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol., 13: 61–92.
- Brogden K.A. (1992). Ovine pulmonary surfactant induces killing of Pasteurella haemolytica, Escherichia coli, and Klebsiella pneumoniae by normal serum. Infect. Immun., 60: 5182–5189.
- Brogden K.A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 3: 238–250.
- Brogden K.A., De Lucca A.J., Bland J., Elliott S. (1996). Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc. Natl. Acad. Sci. USA., 93: 412–416.
- Brogden K.A., Ackermann M., McCray P.B., Tack B.F. (2003). Anti-microbial peptides in animals and their role in host defences. Int. J. Antimicrob. Agents., 22: 465–478.
- Bruhn H., Leippe M. (1999). Comparative modeling of amoebapores and granulysin based on the NK-lysin structure – Structural and functional implications. Biol. Chem., 380: 1001–1007.
- Bruhn H., Riekens B., Berninghausen O., Leippe M. (2003). Amoebapores and NK-lysin, members of a class of structurally distinct antimicrobial and cytolytic peptides from protozoa and mammals: A comparative functional analysis. Biochem. J., 375: 737–744.
- Brunner S.R., Varga J.F.A., Dixon B. (2020). Antimicrobial peptides of salmonid fish: From form to function. Biol., 9: 1–17.
- Bulet P., Stöcklin R., Menin L. (2004). Anti-microbial peptides: From invertebrates to vertebrates. Immunol. Rev., 198: 169–184.
- Burka J.F., Hammell K.L., Horsberg TE, Johnson G.R., Rainnie D.J., Speare D.J. (1997). Drugs in salmonid aquaculture – a review. J. Vet. Pharmacol. Ther., 20: 333–349.
- Bustillo M.E., Fischer A.L., LaBouyer M.A., Klaips J.A., Webb A.C., Elmore D.E. (2014). Modular analysis of hipposin, a histone-deri ved antimicrobial peptide consisting of membrane translocating and membrane permeabilizing fragments. Biochim. Biophys. Acta-Biomembr., 1838: 2228–2233.
- Cabello F.C. (2006). Heavy use of prophylactic antibiotics in aqua-culture: A growing problem for human and animal health and for the environment. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16817922 (Accessed 12 Dec 2019).
- Cabello F.C., Godfrey H.P., Tomova A., Ivanova L., Dölz H., Millanao A., Buschmann A.H. (2013). Antimicrobial use in aquaculture reexamined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol., 15: 1917–1942.
- Cabello F.C., Godfrey H.P., Buschmann A.H., Dölz H.J. (2016). Aqua-culture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis., 16: e127–e133.
- Cai S., Wang J., Wang K., Chen D., Dong X., Liu T., Zeng Y., Wang X., Wu D. (2016). Expression, purification and antibacterial activity of NK-lysin mature peptides from the channel catfish (Ictalurus punctatus). Appl. Sci., 6.
- Campagna S., Saint N., Molle G., Aumelas A. (2007). Structure and mechanism of action of the antimicrobial peptide piscidin. Biochemistry, 46: 1771–1778.
- Cantisani M., Leone M., Mignogna E., Kampanaraki K., Falanga A., Morelli G., Galdiero M., Galdiero S. (2013). Structure-activity relations of myxinidin, an antibacterial peptide derived from the epidermal mucus of hagfish. Antimicrob. Agents Chemother., 57: 5665–5673.
- Cantisani M., Finamore, E., Mignogna E., Falanga A., Nicoletti G.F., Pedone C., Morelli G., Leone M., Galdiero M., Galdiero S. (2014). Structural insights into and activity analysis of the antimicrobial peptide myxinidin. Antimicrob. Agents Chemother., 58: 5280–5290.
- Capone D.G., Weston D.P., Miller V., Shoemaker C. (1996). Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture, 145: 55–75.
- Cashman-Kadri S., Lagüe P., Fliss I., Beaulieu L. (2022). Determination of the relationships between the chemical structure and antimicrobial activity of a GAPDH-related fish antimicrobial peptide and analogs thereof. Antibiotics (Basel), 11.
- Chaturvedi P., Bhat R.A.H., Pande A. (2020). Antimicrobial peptides of fish: innocuous alternatives to antibiotics. Rev. Aquac., 12: 85–106.
- Chekmenev E.Y., Jones S.M., Nikolayeva Y.N., Vollmar B.S., Wagner T.J., Gor’kov P.L., Brey W.W., Manion M.N., Daugherty K.C., Cotten M. (2006). High-field NMR studies of molecular recognition and structure-function relationships in antimicrobial piscidins at the water-lipid bilayer interface. J. Am. Chem. Soc., 128: 5308–5309.
- Chen J.Y., Lin W.J., Wu J.L., Her G.M., Hui C.F. (2009). Epinecidin-1 peptide induces apoptosis which enhances antitumor effects in human leukemia U937 cells. Peptides, 30: 2365–2373.
- Chen Y., Mant C.T., Farmer S.W., Hancock R.E., Vasil M.L., Hodges R.S. (2005). Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem., 280: 12316–12329.
- Chen Y., Guarnieri M.T., Vasil A.I., Vasil M.L., Mant C.T., Hodges R.S. (2007). Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob. Agents Chemother., 51: 1398–1406.
- Chinchar V.G., Bryan L., Silphadaung U., Noga E., Wade D., Rollins-Smith, L. (2004). Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virol., 323: 268–275.
- Cho J., Lee D.G. (2011). Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie, 93: 1873–1879.
- Cho J., Choi H., Lee D.G. (2012). Influence of the N-and C-terminal regions of antimicrobial peptide pleurocidin on antibacterial activity. J. Microbiol. Biotechnol., 22: 1367–1374.
- Cho J.H., Park I.Y., Kim H.S., Lee W.T., Kim M.S., Kim S.C. (2002 a). Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. FASEB J., 16: 429–431.
- Cho J.H., Park I.Y., Kim M.S., Kim S.C. (2002 b). Matrix metalloproteinase 2 is involved in the regulation of the antimicrobial peptide parasin I production in catfish skin mucosa. FEBS Lett., 531: 459–463.
- Cho J.H., Sung B.H., Kim S.C. (2009). Buforins: Histone H2A-derived antimicrobial peptides from toad stomach. Biochim. Biophys. Acta Biomembr., 1788: 1564–1569.
- Choi H., Lee D.G. (2013). The influence of the N-terminal region of antimicrobial peptide pleurocidin on fungal apoptosis. J. Micro-biol. Biotechnol., 23: 1386–1394.
- Cipolari O.C., Oliveira Neto X.A. de, Conceição K. (2020). Fish bio-active peptides: A systematic review focused on sting and skin. Aquaculture, 515: 734598.
- Clark E. (1974). The Red Sea’s shark proof fish. Nat. Geogr. Mag., 146: 718–728.
- Cole A.M., Weis P., Diamond G. (1997). Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem., 272: 12008–12013.
- Cole A.M., Darouiche R.O., Legarda D., Connell N., Diamond G. (2000). Characterization of a fish antimicrobial peptide: Gene expression, subcellular localization, and spectrum of activity. Anti-microb. Agents Chemother., 44: 2039–2045.
- Colorni A., Ullal A., Heinisch G., Noga E.J. (2008). Activity of the antimicrobial polypeptide piscidin 2 against fish ectoparasites. J. Fish Dis., 31: 423–432.
- Conceição K., Monteiro-dos-Santos J., Seibert C.S., Ismael Silva P., Marques E.E., Richardson M., Lopes-Ferreira M. (2012). Potamotrygon cf. henlei stingray mucus: Biochemical features of a novel antimicrobial protein. Toxicon, 60: 821–829.
- Coyne R., Smith P., Moriarty C. (2001). The fate of oxytetracycline in the marine environment of a salmon cage farm. Mar. Envir. Health Ser., 3: 1–24.
- Cutrona K.J., Kaufman B.A., Figueroa D.M., Elmore D.E. (2015). Role of arginine and lysine in the antimicrobial mechanism of his-tone-derived antimicrobial peptides. FEBS Lett., 589: 3915–3920.
- Das P.K., Salinas I. (2020). Fish nasal immunity: From mucosal vaccines to neuroimmunology. Fish Shellfish Immunol., 104: 165–171.
- Dash S., Das S.K., Samal J., Thatoi H.N. (2018). Epidermal mucus, a major determinant in fish health: A review. Iran. J. Vet. Res., 19: 72–81.
- Dathe M., Nikolenko H., Meyer J., Beyermann M., Bienert M. (2001). Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett., 501: 146–150.
- Desriac F., Jégou C., Brillet B., Chevalier P. Le, Fleury Y. (2013). Antimicrobial peptides from fish. In: Utilization of Fish Waste, CRC Pres, pp. 106–141.
- Dezfuli B.S., Lui A., Boldrini P., Pironi F., Giari L. (2008). The inflammatory response of fish to helminth parasites. Parasite, 15: 426–433.
- De Zoysa M., Nikapitiya C., Whang I., Lee J.S., Lee J., (2009). Abhisin: A potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus). Fish Shellfish Immunol., 27: 639–646.
- Diamond G., Beckloff N., Weinberg A., Kisich K. (2009). The roles of antimicrobial peptides in innate host defense. Curr. Pharm. Des., 15: 2377–2392.
- Díaz-Rosales P., Romero A., Balseiro P., Dios S., Novoa B., Figue- ras A. (2012). Microarray-based identification of differentially expressed genes in families of turbot (Scophthalmus maximus) after Infection with viral haemorrhagic septicaemia virus (VHSV). Mar. Biotechnol., 14: 515–529.
- Dik I., Dik B., Tufan Ö., Er A. (2024). Evaluation of potential antiviral activities of antimicrobial peptides in fish mucus. Fundam. Clin. Pharmacol., 38: 695–702.
- Douglas S.E., Gallant J.W., Gong Z., Hew C. (2001). Cloning and developmental expression of a family of pleurocidin-like antimicrobial peptides from winter flounder, Pleuronectes americanus (Walbaum). Dev. Comp. Immunol., 25: 137–147.
- Douglas S.E., Gallant J.W., Liebscher R.S., Dacanay A., Tsoi S.C.M. (2003 a). Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish. Dev. Comp. Immunol., 27: 589–601.
- Douglas S.E., Patrzykat A., Pytyck J., Gallant J.W. (2003 b). Identification, structure and differential expression of novel pleurocidins clustered on the genome of the winter flounder, Pseudopleuronectes americanus (Walbaum). Eur. J. Biochem., 270: 3720–3730.
- Dourado F.S., Leite J.R.S.A., Silva L.P., Melo J.A.T., Bloch C., Schwartz E.F. (2007). Antimicrobial peptide from the skin secretion of the frog Leptodactylus syphax. Toxicon., 50: 572–580.
- Dubos R.J. (1939). Studies on a bactericidal agent extracted from a soil bacillus: II. Protective effect of the bactericidal agent against experimental pieuococcus infections in mice. J. Exp. Med., 70: 11–18.
- Ebenhan T., Gheysens O., Kruger H.G., Zeevaart J.R., Sathekge M.M. (2014). Antimicrobial peptides: Their role as infection-selective tracers for molecular imaging. Biomed. Res. Int., 2014: 867381.
- Ebran N., Julien S., Orange N., Saglio P., Lemaître C., Molle G. (1999). Pore-forming properties and antibacterial activity of proteins extracted from epidermal mucus of fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 122: 181–189.
- Ebran N., Julien S., Orange N., Auperin B., Molle G. (2000). Isolation and characterization of novel glycoproteins from fish epidermal mucus: Correlation between their pore-forming properties and their antibacterial activities. Biochim. Biophys. Acta Biomembr., 1467: 271–280.
- Edwards I.A., Elliott A.G., Kavanagh A.M., Zuegg J., Blaskovich M.A.T., Cooper M.A. (2016). Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect. Dis., 2: 442–450.
- Ellis A.E. (2001). Innate host defense mechanisms of fish against viruses and bacteria. Dev. Comp. Immunol., 25: 827–839.
- Endsley J.J., Furrer J.L., Endsley M.A., McIntosh M.A., Maue A.C., Waters W.R., Lee D.R., Estes D.M. (2004). Characterization of bovine homologues of granulysin and NK-lysin. J. Immunol., 173: 2607–2614.
- Epand R., Ramamoorthy A., Epand R. (2012). Membrane lipid composition and the interaction of pardaxin: The role of cholesterol. Protein Pept. Lett., 13: 1–5.
- Esteban M.Á., Cerezuela R. (2015). Fish mucosal immunity: Skin. In: Mucosal health in aquaculture, Beck B.H., Peatman E. (eds). Academic Press, pp. 67–92.
- Falco A., Medina-Gali R.M., Antonio Poveda J., Bello-Perez M., Novoa B., Antonio Encinar J. (2019). Antiviral activity of a turbot (Scophthalmus maximus) NK-lysin peptide by inhibition of lowpH virus-induced membrane fusion. Mar. Drugs., 17: 87.
- Falla T.J., Hancock R.E.W. (1997). Improved activity of a synthetic indolicidin analog. Antimicrob. Agents Chemother., 41: 771–775.
- Fernandes J.M.O., Smith V.J. (2002). A novel antimicrobial function for a ribosomal peptide from rainbow trout skin. Biochem. Biophys Res. Commun., 296: 167–171.
- Fernandes J.M.O., Kemp G.D., Molle G.M., Smith V.J. (2002). Antimicrobial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochem. J., 368: 611–620.
- Fernandes J.M.O., Saint N., Kemp G.D., Smith V.J. (2003). Oncorhyncin III: A potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout, Oncorhynchus mykiss. Biochem. J., 373: 621–628.
- Fernandes J.M.O., Molle G., Kemp G.D., Smith V.J. (2004). Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev. Comp. Immunol., 28: 127–138.
- Fernandes J.M.O., Smith V.J. (2004). Partial purification of antibacterial proteinaceous factors from erythrocytes of Oncorhynchus mykiss. Fish Shellfish Immunol., 16: 1–9.
- Fischer F.G., Neumann W.P. (1961). The venom of the honeybee. III. On the chemical knowledge of the principle active constituent (melittin). Biochem. Z., 335: 51–61.
- Fomina L.L., Oshurkova Yu.L., Junina O.A., Kulakova T.S., Weitzel A.E. (2020). Study of protein components of fish skin mucus with thrombogenic activity. Russ. Agric. Sci., 46: 399–403.
- Fouz B., Devesa S., Gravningen K., Barja J.L., Toranzo A.E. (1990). Antibacterial action of the mucus of turbot. Bull. Eur. Assoc. Fish Pathol., 10: 56–59.
- Frohm M., Gunne H., Bergman A.C., Agerberth B., Bergman T., Boman A., Lidén S., Jörnvall H., Boman H.G. (1996). Biochemical and antibacterial analysis of human wound and blister fluid. Eur. J. Biochem., 237: 86–92.
- Gagnon M.C., Strandberg E., Grau-Campistany A., Wadhwani P., Reichert J., Bürck J., Rabanal F., Auger M., Paquin J.F., Ulrich A.S. (2017). Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides. Biochemistry, 56: 1680–1695.
- Hallock K.J., Lee D.K., Omnaas J., Mosberg H.I., Ramamoorthy A. (2002). Membrane composition determines pardaxin’s mechanism of lipid bilayer disruption. Biophys. J., 83: 1004–1013.
- Han H.M., Gopal R., Park Y. (2016 a). Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Amino Acids., 48: 505–522.
- Han Y., Cui Z., Li Y.H., Hsu W.H., Lee B.H. (2016 b). In vitro and in vivo anticancer activity of pardaxin against proliferation and growth of oral squamous cell carcinoma. Mar. Drugs, 14: 1–12.
- Han H.M., Ko S., Cheong M.J., Bang J.K., Seo C.H., Luchian T., Park Y. (2017). Myxinidin2 and myxinidin3 suppress inflammatory responses through STAT3 and MAPKs to promote wound healing. Oncotarget, 8: 87582–87597.
- Hancock R.E.W., Diamond G. (2000). The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol., 8: 402–410.
- Harris F., Dennison S., Phoenix D. (2009). Anionic antimicrobial peptides from eukaryotic organisms. Curr. Protein Pept. Sci., 10: 585–606.
- Hashimoto Y., Oshima Y. (1972). Separation of grammistins A, B and C from a soapfish Pogonoperca punctata. Toxicon, 10: 279–284.
- Hawrani A., Howe R.A., Walsh T.R., Dempsey C.E. (2008). Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J. Biol. Chem., 283: 18636–18645.
- Hedmon O., Jacqueline A., Koffi K.T., Drago K.C., Engeu O.P. (2018). Fish mucus: A neglected reservoir for antimicrobial peptides. Asian J. Pharm. Res. Dev., 6: 6–11.
- Hektoen H., Berge J.A., Hormazabal V., Yndestad M. (1995). Persistence of antibacterial agents in marine sediments. Aquaculture, 133: 175–184.
- Hellio C., Pons A.M., Beaupoil C., Bourgougnon N., Le Gal Y. (2002). Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus. Int. J. Antimicrob. Agents, 20: 214–219.
- Hiemstra P.S., Zaat S.A.J. (2013). Antimicrobial peptides and innate immunity. Springer Basel, p. 384.
- Hiemstra P.S., Eisenhauer P.B., Harwig S.S.L., Barselaar M.T. Van den, Furth R. Van, Lehrer R.I. (1993). Antimicrobial proteins of murine macrophages. Infect. Immun., 61: 3038–3046.
- Hilchie A.L., Doucette C.D., Pinto D.M., Patrzykat A., Douglas S., Hoskin D.W. (2011). Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res., 13: R102.
- Hilchie A.L., Conrad D.M., Power Coombs M.R., Zemlak T., Doucette C.D., Liwski R.S., Hoskin D.W. (2013). Pleurocidin-family cationic antimicrobial peptides mediate lysis of multiple myeloma cells and impair the growth of multiple myeloma xenografts. Leuk. Lymphoma., 54: 2255–2262.
- Hilchie A.L., Haney E.F., Pinto D.M., Hancock R.E.W., Hoskin D.W. (2015). Enhanced killing of breast cancer cells by a d-amino acid analog of the winter flounder-derived pleurocidin NRC-03. Exp. Mol. Pathol., 99: 426–434.
- Hilton K.B., Lambert L.A. (2008). Molecular evolution and characterization of hepcidin gene products in vertebrates. Gene, 415: 40–48.
- Hirono I., Kondo H., Koyama T., Arma N.R., Hwang J.Y., Nozaki R., Midorikawa N., Aoki T. (2007). Characterization of Japanese flounder (Paralichthys olivaceus) NK-lysin, an antimicrobial peptide. Fish Shellfish Immunol., 22: 567–575.
- Hirsch J.G. (1956). Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J. Exp. Med., 103: 589–611.
- Hirsch J.G. (1958). Bactericidal action of histone. J. Exp. Med., 108: 925–944.
- Hodson D., Hirsch J.G. (1958). The antibacterial activity of hemoglobin. J. Exp. Med., 107: 167–183.
- Hoeksema M., Eijk M. Van, Haagsman H.P., Hartshorn K.L. (2016). Histones as mediators of host defense, inflammation and thrombosis. Future Microbiol., 11: 441–453.
- Hong S.Y., Oh J.E., Lee K.H. (1999). Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem. Pharmacol., 58: 1775–1780.
- Hong S.Y., Park T.G., Lee K.H. (2001). The effect of charge increase on the specificity and activity of a short antimicrobial peptide. Peptides, 22: 1669–1674.
- Hori K., Fusetani N., Hashimoto K., Aida K., Randall J.E. (1979). Occurrence of a grammistin-like mucous toxin in the clingfish Diademichthys lineatus. Toxicon, 17: 418–424.
- Hosseini Shekarabi S.P., Mostafavi Z.S., Mehrgan M.S., Islami H.R. (2021). Dietary supplementation with dandelion (Taraxacum officinale) flower extract provides immunostimulation and resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 118: 180–187.
- Hsu J.C., Lin L.C., Tzen J.T.C., Chen J.Y. (2011). Pardaxin-induced apoptosis enhances antitumor activity in HeLa cells. Peptides, 32: 1110–1116.
- Huang T.C., Chen J.Y. (2013). Proteomic analysis reveals that pardaxin triggers apoptotic signaling pathways in human cervical carcinoma HeLa cells: Cross talk among the UPR, c-Jun and ROS. Carcinogenesis, 34: 1833–1842.
- Huang T.C., Lee J.F., Chen J.Y. (2011). Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar. Drugs, 9: 1995–2009.
- Huang H.N., Rajanbabu V., Pan C.Y., Chan Y.L., Wu C.J., Chen J.Y. (2013). A cancer vaccine based on the marine antimicrobial peptide pardaxin (GE33) for control of bladder-associated tumors. Biomaterials, 34: 10151–10159.
- Huang H.N., Pan C.Y., Chan Y.L., Chen J.Y., Wu C.J. (2014). Use of the antimicrobial peptide pardaxin (GE33) to protect against methicillin-resistant Staphylococcus aureus infection in mice with skin injuries. Antimicrob. Agents Chemother., 58: 1538–1545.
- Huang H.N., Chan Y.L., Wu C.J., Chen J.Y. (2015). Tilapia piscidin 4 (TP4) stimulates cell proliferation and wound closure in MRSA-infected wounds in mice. Mar. Drugs., 13: 2813–2833.
- Huang Y., Zheng Q., Niu J., Tang J., Wang B., Abarike E.D., Lu Y., Cai J., Jian J. (2018). NK-lysin from Oreochromis niloticus improves antimicrobial defence against bacterial pathogens. Fish Shellfish Immunol., 72: 259–265.
- Hussain A., Ghosh Sachan S. (2024). Evaluation of the antimicrobial efficacy of epidermal mucus extract from air-breathing fish (Channa punctatus) and identification of the peptides serving as immune components. Int. J. Pept. Res. Ther., 30:
- Ingram G.A. (1980). Substances involved in the natural resistance of fish to infection–A review. J Fish Biol., 16: 23–60.
- Ivanov V.T., Karelin A.A., Yatskin O.N. (2005). Generation of peptides by human erythrocytes: Facts and artifacts. Biopolymers Pept. Sci. Sec., 80: 332–346.
- Ji R., Guan L., Hu Z., Cheng Y., Cai M., Zhao G., Zang J. (2024). A comprehensive review on hemocyanin from marine products: Structure, functions, its implications for the food industry and beyond. Int. J. Biol. Macromol., 132041.
- Jiang Z., Vasil A.I., Hale J.D., Hancock R.E.W., Vasil M.L., Hodges R.S. (2008). Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers Pept. Sci. Sec., 90: 369–383.
- Jiang Z., Vasil A.I., Gera L., Vasil M.L., Hodges R.S. (2011). Rational design of α-helical antimicrobial peptides to target gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of charge, ‘specificity determinants,’ total hydro-phobicity, hydrophobe type and location as design para. Chem. Biol. Drug Des., 77: 225–240.
- Jiravanichpaisal P., Lee S.Y., Kim Y.A., Andrén T., Söderhäll I. (2007). Antibacterial peptides in hemocytes and hematopoietic tissue from freshwater crayfish Pacifastacus leniusculus: Characterization and expression pattern. Dev. Comp. Immunol., 31: 441–455.
- Jung H.J., Park Y., Sung W.S., Suh B.K., Lee J., Hahm K.S., Lee D.G. (2007). Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim. Biophys Acta Biomembr., 1768: 1400–1405.
- Jung Kim D., Lee Y.W., Park M.K., Shin J.R., Lim K.J., Cho J.H., Kim S.C. (2014). Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection. Amino Acids., 46: 2333–2343.
- Kaji T., Sugiyama N., Ishizaki S., Nagashima Y., Shiomi K. (2006). Molecular cloning of grammistins, peptide toxins from the soap-fish Pogonoperca punctata, by hemolytic screening of a cDNA library. Peptides, 27: 3069–3076.
- Kanno T., Nakai T., Muroga K. (1989). Mode of transmission of vibriosis among ayu Plecoglossus altivelis. J. Aquat. Anim. Health., 1: 2–6.
- Kashima M. (1991). H1 histones contribute to candidacidal activities of human epidermal extract. J. Dermatol., 18: 695–706. Katzenback B.A. (2015). Antimicrobial peptides as mediators of innate immunity in teleosts. Biol., 4: 607–639.
- Kawasaki H., Isaacson T., Iwamuro S., Conlon J.M. (2003). A protein with antimicrobial activity in the skin of Schlegel’s green tree frog Rhacophorus schlegelii (Rhacophoridae) identified as histone H2B. Biochem. Biophys. Res. Commun., 312: 1082–1086.
- Kim J.K., Lee S.A., Shin S., Lee J.Y., Jeong K.W., Nan Y.H., Park Y.S., Shin S.Y., Kim Y. (2010). Structural flexibility and the positive charges are the key factors in bacterial cell selectivity and membrane penetration of peptoid-substituted analog of piscidin 1. Biochim. Biophys. Acta Biomembr., 1798: 1913–1925.
- Ko S.J., Kang N.H., Kim M.K., Park J., Park E., Park G.H., Kang T.W., Na D.E., Park J.B., Yi Y.E., Jeon S.H., Park Y. (2019). Antibacterial and anti-biofilm activity, and mechanism of action of pleurocidin against drug resistant Staphylococcus aureus. Microb. Pathog., 127: 70–78.
- Koeypudsa W., Yakupitiyage A., Tangtrongpiros J. (2005). The fate of chlortetracycline residues in a simulated chicken-fish integrated farming systems. Aquac. Res., 36: 570–577.
- Kong X., Wu X., Pei C., Zhang J., Zhao X., Li L., Nie G., Li X. (2017). H2A and Ca-L-hipposin gene: Characteristic analysis and expression responses to Aeromonas hydrophila infection in Carassius aurutus. Fish Shellfish Immunol., 63: 344–352.
- Koo Y.S., Kim J.M., Park I.Y., Yu B.J., Jang S.A., Kim K.S., Park C.B., Cho J.H., Kim S.C. (2008). Structure-activity relations of parasin I, a histone H2A-derived antimicrobial peptide. Peptides, 29: 1102–1108.
- Krause A., Neitz S., Mägert H.J., Schulz A., Forssmann W.G., Schulz-Knappe P., Adermann K. (2000). LEAP-1, a novel highly disul-fide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett., 480: 147–150.
- Kumar P., Kizhakkedathu J.N., Straus S.K. (2018). Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 8.
- Lai H.T., Lin J.J. (2009). Degradation of oxolinic acid and flumequine in aquaculture pond waters and sediments. Chemosphere, 75: 462–468.
- Lai Y., Gallo R.L. (2009). AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 30: 131–141.
- Lai R., Liu H., Hui Lee W., Zhang Y. (2002). An anionic antimicrobial peptide from toad Bombina maxima. Biochem. Biophys. Res. Commun., 295: 796–799.
- Lama R., Pereiro P., Costa M.M., Encinar J.A., Medina-Gali R.M., Pérez L., Lamas J., Leiro J., Figueras A., Novoa B. (2018). Turbot (Scophthalmus maximus) Nk-lysin induces protection against the pathogenic parasite Philasterides dicentrarchi via membrane disruption. Fish Shellfish Immunol., 82: 190–199.
- Lauth X., Shike H., Burns J.C., Westerman M.E., Ostland V.E., Carl-berg J.M., Olst J.C. Van, Nizet V., Taylor S.W., Shimizu C., Bulet P. (2002). Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J. Biol. Chem., 277: 5030–5039.
- Le T.X., Munekage Y. (2004). Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Mar. Pollut. Bull., 49: 922–929.
- Lee J., Lee D.G. (2008). Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Exp. Mol. Med., 40: 370–376.
- Lee J., Lee D.G. (2010). Influence of the hydrophobic amino acids in the N- and C-terminal regions of pleurocidin on antifungal activity. J. Microbiol. Biotechnol., 20: 1192–1195.
- Lee J., Lee D.G. (2016). Concentration-dependent mechanism alteration of pleurocidin peptide in Escherichia coli. Curr. Microbiol., 72: 159–164.
- Lee D.Y., Huang C.M., Nakatsuji T., Thiboutot D., Kang S.A., Mones-tier M., Gallo R.L. (2009 a). Histone H4 is a major component of the antimicrobial action of human sebocytes. J. Invest. Dermatol., 129: 2489–2496.
- Lee J., Park C., Park S.C., Woo E.R., Park Y., Hahm K.S., Lee D.G. (2009 b). Cell selectivity-membrane phospholipids relationship of the antimicrobial effects shown by pleurocidin enantiomeric peptides. J. Pept. Sci, 15: 601–606.
- Lee Y.S., Feng C.W., Peng M.Y., Chen Y.C., Chan T.F. (2022). Antiosteoporosis effects of a marine antimicrobial peptide pardaxin via regulation of the osteogenesis pathway. Peptides, 148.
- Lelkes P.I., Lazarovici P. (1988). Pardaxin induces aggregation but not fusion of phosphatidylserine vesicles. FEBS Lett., 230: 131–136.
- Lemaitre C., Orange N., Saglio P., Saint N., Gagnon J., Molle G. (1996). Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp (Cyprinus carpio). Eur. J. Biochem., 240: 143–149.
- Li C., Song L., Zhao J., Zhu L., Zou H., Zhang H., Wang H., Cai Z. (2007). Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri. Fish Shellfish Immunol., 22: 663–672.
- Li J., Zhao M., Zhang X., Zheng Z., Yao D., Yang S., Chen T., Zhang Y., Aweya J.J. (2023). The evolutionary adaptation of shrimp hemocyanin subtypes and the consequences on their structure and functions. Fish Shellfish Immunol., 109347.
- Liang Y., Guan R., Huang W., Xu T. (2011). Isolation and identification of a novel inducible antibacterial peptide from the skin mucus of Japanese eel, Anguilla japonica. Protein J., 30: 413–421.
- Liepinsh E., Andersson M., Ruysschaert J.M., Otting G. (1997). Saposin fold revealed by the NMR structure of NK-lysin. Nat. Struct. Biol., 4: 793–795.
- Liepke C., Baxmann S., Heine C., Breithaupt N., Ständker L., Forss-mann W.G. (2003). Human hemoglobin-derived peptides exhibit antimicrobial activity: A class of host defense peptides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 791: 345–356.
- Lin W.J., Chien Y.L., Pan C.Y., Lin T.L., Chen J.Y., Chiu S.J., Hui C.F. (2009). Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides, 30: 283–290.
- Lin M.C., Hui C.F., Chen J.Y., Wu J.L. (2013). Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides, 44: 139–148.
- Lin W.-C., Chen Y.-R., Chuang C.-M., Chen J.-Y. (2022). A cationic amphipathic tilapia piscidin 4 peptide-based antimicrobial formulation promotes eradication of bacterial vaginosis-associated bacterial biofilms. Front. Microbiol., 13: 913.
- Lirio G.A.C., Leon J.A.A. De, Villafuerte A.G. (2019). Antimicrobial activity of epidermal mucus from top aquaculture fish species against medically-important pathogens. Walailak J. Sci. Technol., 16: 329–340.
- Lombardi L., Stellato M.I., Oliva R., Falanga A., Galdiero M., Petrac-cone L., D’Errico G., Santis A. De, Galdiero S., Vecchio P. Del, (2017). Antimicrobial peptides at work: Interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes. Sci. Rep., 7: 1–15.
- Lüders T., Birkemo G.A., Nissen-Meyer J., Andersen Ø., Nes I.F. (2005). Proline conformation-dependent antimicrobial activity of a proline-rich histone H1 N-terminal peptide fragment isolated from the skin mucus of Atlantic salmon. Antimicrob. Agents Che-mother., 49: 2399–2406.
- Luo S.W., Luo Z.Y., Yan T., Luo K.K., Feng P.H., Liu S.J. (2020). Antibacterial and immunoregulatory activity of a novel hepcidin homologue in diploid hybrid fish (Carassius auratus cuvieri ♀ × Carassius auratus red var ♂). Fish Shellfish Immunol., 98: 551–563.
- Lyu Y., Yang Y., Lyu X., Dong N., Shan A. (2016). Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci Rep., 6.
- Mahmoodi-Khaledi E., Kashef N., Habibi-Rezaei M., Moosavi-Movahedi A.A. (2015). In vitro characterization of antibacterial potential of Iranian honey samples against wound bacteria. Eur. Food Res. Technol., 241: 329–339.
- Mak P., Wójcik K., Wicherek Ł., Suder P., Dubin A. (2004). Antibacterial hemoglobin peptides in human menstrual blood. Peptides, 25: 1839–1847.
- Manzo G., Hind C.K., Ferguson P.M., Amison R.T., Hodgson-Casson A.C., Ciazynska K.A., Weller B.J., Clarke M., Lam C., Man R.C.H., Shaughnessy B.G.O., Clifford M., Bui T.T., Drake A.F., Atkinson R.A., Lam J.K.W., Pitchford S.C., Page C.P., Phoenix D.A., Lorenz C.D., Sutton J.M., Mason A.J. (2020). A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy. Commun. Biol., 3: 1–16.
- Markestad A., Grave K. (1997). Reduction of antibacterial drug use in Norwegian fish farming due to vaccination. Dev. Biol. Stand., 90: 365–369.
- Mason A.J., Chotimah I.N.H., Bertani P., Bechinger B. (2006). A spectroscopic study of the membrane interaction of the antimicrobial peptide pleurocidin. Mol. Membr. Biol., 23: 185–194.
- Mason A.J., Bertani P., Moulay G., Marquette A., Perrone B., Drake A.F., Kichler A., Bechinger B. (2007). Membrane interaction of chrysophsin-1, a histidine-rich antimicrobial peptide from red sea bream. Biochem., 46: 15175–15187.
- Masso-Silva J.A., Diamond G. (2014). Antimicrobial peptides from fish. Pharmaceuticals (Basel), 7: 265–310.
- McDonald M., Mannion M., Pike D., Lewis K., Flynn A., Brannan A.M., Browne M.J., Jackman D., Madera L., Power Coombs M.R., Hoskin D.W., Rise M.L., Booth V. (2015). Structure-function relationships in histidine-rich antimicrobial peptides from Atlantic cod. Biochim. Biophys. Acta Biomembr., 1848: 1451–1461.
- McMillan K.A.M., Coombs M.R.P. (2021). Investigating potential applications of the fish anti-microbial peptide pleurocidin: A systematic review. Pharmaceuticals (Basel), 14: 687.
- Mihajlovic M., Lazaridis T. (2012). Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 1818: 1274–1283.
- Ming L., Xiaoling P., Yan L., Lili W., Qi W., Xiyong Y., Boyao W., Ning H. (2007). Purification of antimicrobial factors from human cervical mucus. Human Reprod., 22: 1810–1815.
- Mohammadi M., Moradi Hasan-Abad A., Dehghani P., Nabipour I., Roozbehani M., Hemphill A., Taherzadeh M., Mohaghegh M.A., Fouladvand M. (2021). Dicentracin-like from Asian sea bass fish and moronecidine-like from hippocampus comes: two candidate antimicrobial peptides against Leishmanina major infection. Int. J. Pept. Res. Ther., 27: 769–778.
- Mohanram H., Bhattacharjya S. (2016). Salt-resistant short antimicrobial peptides. Biopolymers, 106: 345–356.
- Mookherjee N., Hancock R.E.W. (2007). Cationic host defence peptides: Innate immune regulatory peptides as a novel approach for treating infections. Cell. Mol. Life Sci., 64: 922–933.
- Morash M.G., Douglas S.E., Robotham A., Ridley C.M., Gallant J.W., Soanes K.H. (2011). The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents. DMM Dis. Models Mech., 4: 622–633.
- Mulero I., Noga E.J., Meseguer J., García-Ayala A., Mulero V. (2008). The antimicrobial peptides piscidins are stored in the granules of professional phagocytic granulocytes of fish and are delivered to the bacteria-containing phagosome upon phagocytosis. Dev. Comp. Immunol., 32: 1531–1538.
- Murray H.M., Gallant J.W., Douglas S.E. (2003). Cellular localization of pleurocidin gene expression and synthesis in winter flounder gill using immunohistochemistry and in situ hybridization. Cell Tissue Res., 312: 197–202.
- Nagashima Y., Sendo A., Shimakura K., Shiomi K., Kobayashi T., Kimura B., Fujii T. (2001). Antibacterial factors in skin mucus of rabbitfishes. J. Fish Biol., 58: 1761–1765.
- Nagashima Y., Kikuchi N., Shimakura K., Shiomi K. (2003). Purification and characterization of an antibacterial protein in the skin secretion of rockfish Sebastes schlegeli. Comp. Biochem. Physiol. C Toxicol. Pharmacol1., 36: 63–71.
- Naiel M.A.E., Ghazanfar S., Negm S.S., Shukry M., Abdel-Latif H.M.R. (2023). Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture – A mini-review. Ann. Anim. Sci., 23: 691–701.
- Nam B.H., Moon J.Y., Kim Y.O., Kong H.J., Kim W.J., Lee S.J., Kim K.K. (2010). Multiple β-defensin isoforms identified in early developmental stages of the teleost Paralichthys olivaceus. Fish Shellfish Immunol., 28: 267–274.
- Negus V.E. (1963). The function of mucus. Acta Otolaryngol., 56: 204–214.
- Nguyen L.T., Haney E.F., Vogel H.J. (2011). The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 29: 464–472.
- Niu S.F., Jin Y., Xu X., Qiao Y., Wu Y., Mao Y., Su Y.Q., Wang J. (2013). Characterization of a novel piscidin-like antimicrobial peptide from Pseudosciaena crocea and its immune response to Cryptocaryon irritans. Fish Shellfish Immunol., 35: 513–524.
- Noga E.J., Fan Z., Silphaduang U. (2001). Histone-like proteins from fish are lethal to the parasitic dinoflagellate amyloodinium ocellatum. Parasitology, 123: 57–65.
- Noga E.J., Silphaduang U., Park N.G., Seo J.K., Stephenson J., Kozlowicz S. (2009). Piscidin 4, a novel member of the piscidin family of antimicrobial peptides. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 152: 299–305.
- Nonaka L., Maruyama F., Suzuki S., Masuda M. (2015). Novel macrolide-resistance genes, mef(C) and mph(G), carried by plasmids from Vibrio and Photobacterium isolated from sediment and sea-water of a coastal aquaculture site. Lett. Appl. Microbiol., 61: 1–6.
- O’Neil J. (2014). Review on antibiotic resistance. Antimicrobial resistance : Tackling a crisis for the health and wealth of nations. Health and Wealth Nations, 1–16.
- Okella H., Ikiriza H., Ochwo S., Ajayi C.O., Ndekezi C., Nkamwesiga J., Kaggwa B., Aber J., Mtewa A.G., Koffi T.K., Odongo S., Vertommen D., Kato C.D., Ogwang P.E. (2021). Identification of antimicrobial peptides isolated from the skin mucus of African catfish, Clarias gariepinus (Burchell, 1822). Front. Microbiol., 12: 3895.
- Oren Z., Shai Y. (1996). A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Fish epidermal mucus-derived antimicrobial peptides
- Moses sole fish Pardachirus marmoratus. Eur. J. Biochem., 237: 303–310.
- Oshima Y., Hashimoto Y. (1976). Separation of grammistins A1 and A2 from a soapfish Pogonoperca punctata. Toxicon, 10: 279-284.
- Oshima Y., Shiomi K., Hashimoto Y. (1974). Comparison of gram-mistins from four species of grammistid fishes. Nippon Suisan Gakkaishi., 40: 223–230.
- Paknejad H., Hosseini Shekarabi S.P., Shamsaie Mehrgan M., Hajimoradloo A., Khorshidi Z., Rastegari S. (2020). Dietary peppermint (Mentha piperita) powder affects growth performance, hemato-logical indices, skin mucosal immune parameters, and expression of growth and stress-related genes in Caspian roach (Rutilus caspicus). Fish Physiol. Biochem., 46: 1883–1895.
- Pal R., Barenholz Y., Wagner R.R. (1981 a). Pardaxin, a hydrophobic toxin of the red sea flatfish, disassembles the intact membrane of vesicular stomatitis virus. J. Biol. Chem., 256: 10209–10212.
- Pal R., Barenholz Y., Wagner R.R. (1981 b). Transcription of vesicular stomatitis virus activated by pardaxin, a fish toxin that permeabilizes the virion membrane. J. Virol., 39: 641–645.
- Palaksha K.J., Shin G.W., Kim Y.R., Jung T.S. (2008). Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 24: 479–488.
- Pan C.Y., Lin C.N., Chiou M.T., Yu C.Y., Chen J.Y., Chien C.H. (2015). The antimicrobial peptide pardaxin exerts potent anti-tumor activity against canine perianal gland adenoma. Oncotarget., 6: 2290–2301.
- Parish C.A., Jiang H., Tokiwa Y., Berova N., Nakanishi K., McCabe D., Zuckerman W., Xia M.M., Gabay J.E. (2001). Broad-spectrum antimicrobial activity of hemoglobin. Bioorg. Med. Chem., 9: 377–382.
- Park C.B., Kim M.S., Kim S.C. (1996). A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun., 218: 408–413.
- Park C.B., Kim H.S., Kim S.C. (1998 a). Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun., 244: 253–257.
- Park I.Y., Park C.B., Kim M.S., Kim S.C. (1998 b). Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett., 437: 258–262.
- Park C.H., Valore E. V., Waring A.J., Ganz T. (2001). Hepcidin, a uri-nary antimicrobial peptide synthesized in the liver. J. Biol. Chem., 276: 7806–7810.
- Park N.G., Silphaduang U., Moon H.S., Seo J.K., Corrales J., Noga E.J. (2011). Structure-activity relationships of piscidin 4, a piscine antimicrobial peptide. Biochemistry, 50: 3288–3299.
- Patat S.A., Carnegie R.B., Kingsbury C., Gross P.S., Chapman R., Schey K.L. (2004). Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur. J. Biochem., 271: 4825–4833.
- Patrzykat A., Zhang L., Mendoza V., Iwama G.K., Hancock R.E.W. (2001). Synergy of histone-derived peptides of coho salmon with lysozyme and flounder pleurocidin. Antimicrob. Agents Chemother., 45: 1337–1342.
- Patrzykat A., Friedrich C.L., Zhang L., Mendoza V., Hancock R.E.W. (2002). Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob. Agents Chemother., 46: 605–614.
- Patrzykat A., Gallant J.W., Seo J.K., Pytyck J., Douglas S.E. (2003). Novel antimicrobial peptides derived from flatfish genes. Antimicrob. Agents Chemother., 47: 2464–2470.
- Pelletier N., Tyedmers P., Sonesson U., Scholz A., Ziegler F., Flysjo A., Kruse S., Cancino B., Silverman H. (2009). Not all salmon are created equal: Life cycle assessment (LCA) of global salmon farming systems. Environ. Sci. Technol., 43: 8730–8736.
- Peng K.C., Lee S.H., Hour A.L., Pan C.Y., Lee L.H., Chen J.Y. (2012). Five different piscidins from Nile tilapia, Oreochromis niloticus: Analysis of their expressions and biological functions. PLoS One., 7: e50263.
- Pereiro P., Varela M., Diaz-Rosales P., Romero A., Dios S., Figueras A., Novoa B. (2015). Zebrafish Nk-lysins: First insights about their cellular and functional diversification. Dev. Comp. Immunol., 51: 148–159.
- Pereiro P., Romero A., Díaz-Rosales P., Estepa A., Figueras A., Novoa B. (2017). Nucleated teleost erythrocytes play an Nk-lysin- and autophagy-dependent role in antiviral immunity. Front Immunol., 8.
- Peschel A., Sahl H.G. (2006). The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol., 4: 529–536.
- Peter Chiou P., Khoo J., Bols N.C., Douglas S., Chen T.T. (2006). Effects of linear cationic α-helical antimicrobial peptides on immune-relevant genes in trout macrophages. Dev. Comp. Immunol., 30: 797–806.
- Poirel L., Cattoir V., Nordmann P. (2012). Plasmid-mediated quino-lone resistance; interactions between human, animal, and environmental ecologies. Front. Microbiol., 3.
- Primor N., Tu A.T. (1980). Conformation of pardaxin, the toxin of the flatfish Pardachirus marmoratus. BBA Protein Struct., 626: 299–306.
- Pukala T.L., Bowie J.H., Maselli V.M., Musgrave I.F., Tyler M.J. (2006). Host-defence peptides from the glandular secretions of amphibians: Structure and activity. Nat. Prod. Rep., 23: 368–393.
- Pundir P., Catalli A., Leggiadro C., Douglas S.E., Kulka M. (2014). Pleurocidin, a novel antimicrobial peptide, induces human mast cell activation through the FPRL1 receptor. Mucosal Immunol., 7: 177–187.
- Qiao Y., Ma X., Zhang M., Zhong S. (2021). Cerocin, a novel piscidin-like antimicrobial peptide from black seabass, Centropristis striata. Fish Shellfish Immunol., 110: 86–90.
- Rahmanpour A., Ghahremanpour M.M., Mehrnejad F., Moghaddam M.E. (2013). Interaction of piscidin-1 with zwitterionic versus anionic membranes: A comparative molecular dynamics study. J. Biomol. Struct. Dyn., 31: 1393–1403.
- Rajanbabu V., Chen J.Y. (2011). Applications of antimicrobial peptides from fish and perspectives for the future. Peptides, 32: 415–420.
- Raju S.V., Sarkar P., Kumar P., Arockiaraj J. (2021). Piscidin, fish antimicrobial peptide: structure, classification, properties, mechanism, gene regulation and therapeutical importance. Int. J. Pept. Res. Ther., 27: 91–107.
- Rakers S., Gebert M., Uppalapati S., Meyer W., Maderson P., Sell A.F., Kruse C., Paus R. (2010). ‘Fish matters’: The relevance of fish skin biology to investigative dermatology. Exp. Dermatol., 19: 313–324.
- Ramos A.D., Conceição K., Silva P.I., Richardson M., Lima C., Lopes-Ferreira M. (2012). Specialization of the sting venom and skin mucus of Cathorops spixii reveals functional diversification of the toxins. Toxicon, 59: 651–665.
- Rana M., Chatterjee S., Kochhar S., Bmj P. (2006). Antimicrobial peptides: a new dawn for regulating fertility and reproductive tract infections. J. Endocrinol. Reprod., 88–95.
- Rapaport D., Shai Y. (1991). Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. J. Biol. Chem., 266: 23769–23775.
- Richards R.C., O’Neil D.B., Thibault P., Ewart K.V. (2001). Histone H1: An antimicrobial protein of Atlantic salmon (Salmo salar). Biochem. Biophys. Res. Commun., 284: 549–555.
- Rico A., Phu T.M., Satapornvanit K., Min J., Shahabuddin A.M., Henriksson P.J.G., Murray F.J., Little D.C., Dalsgaard A., Brink P.J. Van den (2013). Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquac., 412–413: 231–243.
- Roberts M.C. (2009). The evolution of antibiotic- and host ecosystems. In: Food-borne microbes: shaping the host ecosystem, Jaykus L.A., Wang H.H., Schlesinger L.S. (eds). pp. 213–230.
- Robinette D., Wada S., Arroll T., Levy M.G., Miller W.L., Noga E.J. (1998). Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: Characterization of broad-spectrum histone-like antimicrobial proteins. Cell. Mol. Life Sci., 54: 467–475.
- Robinson T.P., Wertheim H.F.L., Kakkar M., Kariuki S., Bu D., Price L.B. (2016). Animal production and antimicrobial resistance in the clinic. The Lancet, 387: e1–e3.
- Rodgers C.J., Furones M.D. (2009). Antimicrobial agents in aquaculture: practice, needs and issues. In: The use of veterinary drugs and vaccines in Mediterranean aquaculture, Rogers C., Basurco B. (eds). Zaragoza, CIHEAM. pp. 41–59.
- Rogers L.A. (1928). The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J. Bacteriol., 16: 321–325.
- Ruangsri J., Salger S.A., Caipang C.M.A., Kiron V., Fernandes J.M.O. (2012). Differential expression and biological activity of two piscidin paralogues and a novel splice variant in Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol., 32: 396–406.
- Ruysschaert J.M., Goormaghtigh E., Homblé F., Andersson M., Liepinsh E., Otting G. (1998). Lipid membrane binding of NK-lysin. FEBS Lett., 425: 341–344.
- Saint N., Cadiou H., Bessin Y., Molle G. (2002). Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers. Biochim. Biophys. Acta Biomembr., 1564: 359–364.
- Salinas I., Zhang Y.A., Sunyer J.O. (2011). Mucosal immunoglobulins and B cells of teleost fish. Dev. Comp. Immunol., 35: 1346–1365.
- Sapkota A., Sapkota A.R., Kucharski M., Burke J., McKenzie S., Walker P., Lawrence R. (2008). Aquaculture practices and potential human health risks: Current knowledge and future priorities. Elsevier Ltd.
- Schnapp D., Kemp G.D., Smith V.J. (1996). Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur. J. Biochem., 240: 532–539.
- Seo J.K., Lee M.J., Jung H.G., Go H.J., Kim Y.J., Park N.G. (2014). Antimicrobial function of SHβAP, a novel hemoglobin β chain-related antimicrobial peptide, isolated from the liver of skipjack tuna, Katsuwonus pelamis. Fish Shellfish Immunol., 37: 173–183.
- Shabir U., Ali S., Magray A.R., Ganai B.A., Firdous P., Hassan T., Nazir R. (2018). Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: A review. Microb. Pathog., 114: 50–56.
- Shabir U., Dar J.S., Bhat A.H., Ganai B.A., Khan I.A. (2022). Isolation and characterization of β-defensin-like protein 1 from epidermal mucus of fungal infected fish (Cyprinus carpio) and assessment of its antimicrobial potencies. Aquac. Rep., 23: 101056.
- Shai Y. (2002). Mode of action of membrane active antimicrobial peptides. Biopolymers Pept. Sci. Sec., 66: 236–248.
- Shai Y., Fox J., Caratsch C., Shih Y.L., Edwards C., Lazarovici P. (1988). Sequencing and synthesis of pardaxin, a polypeptide from the Red Sea Moses sole with ionophore activity. FEBS Lett., 242: 161–166.
- Shai Y., Bach D., Yanovsky A. (1990). Channel formation properties of synthetic pardaxin and analogues. J. Biol. Chem., 265: 20202–20209.
- Shephard K.L. (1993). Mucus on the epidermis of fish and its influence on drug delivery. Adv Drug Deliv Rev., 11: 403–417.
- Sheshadri P., Abraham J. (2012). Antimicrobial properties of hemoglobin. Immunopharmacol. Immunotoxicol., 34: 896–900.
- Shiomi K., Hashimoto Y. (1975). Some chemical properties of the skin toxin in coral gobies Gobiodon spp. Toxicon, 13: 122–123.
- Shiomi K., Igarashi T., Yokota H., Nagashima Y., Ishida M. (2000). Isolation and structures of grammistins, peptide toxins from the skin secretion of the soapfish Grammistes sexlineatus. Toxicon, 38: 91–103.
- Shiomi K., Yokota H., Nagashima Y., Ishida M. (2001). Primary and secondary structures of grammistins, peptide toxins isolated from the skin secretion of the soapfish Pogonoperca punctata. Fish. Sci., 67: 163–169.
- Skarnes R.C., Watson D.W. (1957). Antimicrobial factors of normal tissues and fluids. Bacteriol. Rev., 21: 273–294.
- Smirnova M.P., Afonin V.G., Shpen V.M., Tyagotin Y. V., Kolodkin N.I. (2004). Structure-function relationship between analogues of the antibacterial peptide indolicidin. I. Synthesis and biological activity of analogues with increased amphipathicity and elevated net positive charge of the molecule. Russ. J. Bioorg. Chem., 30: 409–416.
- Smith V.J., Desbois A.P., Dyrynda E.A. (2010). Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs., 8: 1213–1262.
- Song R., Wei R.B., Luo H.Y., Wang D.F. (2012). Isolation and characterization of an antibacterial peptide fraction from the pepsin hydrolysate of half-fin anchovy (Setipinna taty). Molecules, 17: 2980–2991.
- Sørum H. (2019). Antimicrobial drug resistance in fish pathogens. In: Antimicrobial resistance in bacteria of animal origin, Aarestrup F.M. (ed). American Society of Microbiology, pp. 213–238.
- Steiner H., Hultmark D., Engström Å., Bennich H., Boman H.G. (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 292: 246–248.
- Su Y. (2011). Isolation and identification of pelteobagrin, a novel antimicrobial peptide from the skin mucus of yellow catfish (Pelteobagrus fulvidraco). Comp. Biochem. Physiol. B Biochem. Mol. Biol., 158: 149–154.
- Subramanian S., MacKinnon S.L., Ross N.W. (2007). A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 148: 256–263.
- Subramanian S., Ross N.W., MacKinnon S.L. (2008 a). Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 150: 85–92.
- Subramanian S., Ross N.W., MacKinnon S.L. (2008 b). Comparison of the biochemical composition of normal epidermal mucus and extruded slime of hagfish (Myxine glutinosa L.). Fish Shellfish Immunol., 25: 625–632.
- Subramanian S., Ross N.W., MacKinnon S.L. (2009). Myxinidin, a novel antimicrobial peptide from the epidermal mucus of hagfish, Myxine glutinosa L. Mar. Biotech., 11: 748–757.
- Sugiyama N., Araki M., Ishida M., Nagashima Y., Shiomi K. (2005). Further isolation and characterization of grammistins from the skin secretion of the soapfish Grammistes sexlineatus. Toxicon, 45: 595–601.
- Sugiyama N., Araki M., Nagashima Y., Shiomi K. (2006). Biological activities of synthetic grammistins and analogous peptides. Fish. Sci., 72: 1114–1120.
- Sumon T.A., Hussain M.A., Hasan M., Rashid A., Abualreesh M.H., Jang W.J., Sharifuzzaman S.M., Brown C.L., Lee E.W., Hasan M.T. (2021). Antiviral peptides from aquatic organisms: Functionality and potential inhibitory effect on SARS-CoV-2. Aquaculture, 541: 736783.
- Sun D., Wu S., Jing C., Zhang N., Liang D., Xu A. (2012). Identification, synthesis and characterization of a novel antimicrobial peptide HKPLP derived from Hippocampus kuda Bleeker. J. Antibiot., 65: 117–121.
- Sung W.S., Lee D.G. (2008). Pleurocidin-derived antifungal peptides with selective membrane-disruption effect. Biochem. Biophys. Res. Commun., 369: 858–861.
- Sung W.S., Lee J., Lee D.G. (2008). Fungicidal effect and the mode of action of piscidin 2 derived from hybrid striped bass. Biochem. Biophys. Res. Commun., 371: 551–555.
- Takahashi D., Shukla S.K., Prakash O., Zhang G. (2010). Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie, 92: 1236–1241.
- Tao R., Tong Z., Lin Y., Xue Y., Wang W., Kuang R., Wang P., Tian Y., Ni L. (2011). Antimicrobial and antibiofilm activity of pleurocidin against cariogenic microorganisms. Peptides, 32: 1748–1754.
- Thennarasu S., Nagaraj R. (1996). Specific antimicrobial and hemolytic activities of 18-residue peptides derived from the amino terminal region of the toxin pardaxin. Protein Eng., 9: 1219–1224.
- Thi P., Oa P.H., Anagaki S.M., Akada N.N., Akada H.T., Nh D.H. a, Iet P.H. V, Uzuki S.S. (2008). Occurrence rates of sulfamethoxazole and erythromycin- resistant bacteria and drug concentrations in wastewater of integrated aquaculture-agriculture (VAC) sites in Northern Vietnam. In: Interdisciplinary Studies on Environmental Chemistry –Biological Responses to Chemical Pollutants, Murakami Y., Nakayama K., Kitamura S.-I., Iwata H., Tanabe S. (eds). TERRAPUB: Terra Scientific Publishing Company, Vietnam, pp. 355–359.
- Thompson S.A., Tachibana K., Nakanishi K., Kubota I. (1986). Melittin-like peptides from the shark-repelling defense secretion of the sole Pardachirus pavoninus. Science, 233: 341–343.
- Ting C.H., Huang H.N., Huang T.C., Wu C.J., Chen J.Y. (2014). The mechanisms by which pardaxin, a natural cationic antimicrobial peptide, targets the endoplasmic reticulum and induces c-FOS. Biomaterials, 35: 3627–3640.
- Tiralongo F., Messina G., Lombardo B.M., Longhitano L., Li Volti G., Tibullo D. (2020). Skin mucus of marine fish as a source for the development of antimicrobial agents. Front. Mar. Sci., 7: 760.
- Toldrá F., Mora L. (2022). Peptidomics as a useful tool in the follow-up of food bioactive peptides. In: Advances in food and nutrition research. Academic Press, 100: 1–47.
- Tomova A., Ivanova L., Buschmann A.H., Rioseco M.L., Kalsi R.K., Godfrey H.P., Cabello F.C. (2015). Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Environ. Microbiol. Rep., 7: 803–809.
- Tsao H.S., Spinella S.A., Lee A.T., Elmore D.E. (2009). Design of novel histone-derived antimicrobial peptides. Peptides, 30: 2168–2173.
- Uen W.C., Choong C.Y., Tai C.J., Tai C.J. (2019). Pardaxin promoted differentiation and maturation of leukemic cells via regulating TLR2/MyD88 signal against cell proliferation. Evid Based Complement Alternat Med., 24: 7035087.
- Ullal A.J., Noga E.J. (2010). Antiparasitic activity of the antimicrobial peptide HbβP-1, a member of the β-haemoglobin peptide family. J. Fish Dis., 33: 657–664.
- Ullal A.J., Wayne Litaker R., Noga E.J. (2008). Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). Dev. Comp. Immunol., 32: 1301–1312.
- Uzzell T., Stolzenberg E.D., Shinnar A.E., Zasloff M. (2003). Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides, 24: 1655–1667.
- Valero Y., Chaves-Pozo E., Meseguer J., Esteban M.A., Cuesta A. (2013). Biological role of fish antimicrobial peptides. In: Antimicrobial peptides, Phoenix D.A., Dennison S.R., Harris F. (eds). John Wiley & Sons, pp. 31–60.
- Valero Y., Cortés J., Mercado L. (2019). NK-lysin from skin-secreted mucus of Atlantic salmon and its potential role in bacteriostatic activity. Fish Shellfish Immunol., 87: 410–413.
- Valero Y., Chaves-Pozo E., Cuesta A. (2020 a). NK-lysin is highly conserved in European sea bass and gilthead seabream but differentially modulated during the immune response. Fish Shellfish Immunol., 99: 435–441.
- Valero Y., Saraiva-Fraga M., Costas B., Guardiola F.A. (2020 b). Antimicrobial peptides from fish: beyond the fight against pathogens. Rev. Aquac., 12: 224–253.
- Wang G.L., Wang M.C., Liu Y.L., Zhang Q., Li C.F., Liu P.T., Li E.Z., Nie P., Xie H.X. (2018). Identification, expression analysis, and antibacterial activity of NK-lysin from common carp Cyprinus carpio. Fish Shellfish Immunol., 73: 11–21.
- Wang L., Qin T., Zhang Y., Zhang H., Hu J., Cheng L., Xia X. (2024). Antimicrobial peptides from fish: Main forces for reducing and substituting antibiotics. Turk. J. Fish. Aquat. Sci., 24.
- Wang Q., Bao B., Wang Y., Peatman E., Liu Z. (2006). Characterization of a NK-lysin antimicrobial peptide gene from channel cat-fish. Fish Shellfish Immunol., 20: 419–426.
- Wang W.-F., Xie X.-Y., Huang Y., Li Y.-K., Liu H., Chen X.-L., Wang H.-L. (2022). Identification of a novel antimicrobial peptide from the ancient marine arthropod Chinese horseshoe crab, Tachypleus tridentatus. Front Immunol., 13: 1096.
- Wang Y., Griffiths W.J., Jörnvall H., Agerberth B., Johansson J. (2002). Antibacterial peptides in stimulated human granulocytes: Characterization of ubiquitinated histone H1A. Eur. J. Biochem., 269: 512–518.
- Wang Y. Da, Kung C.W., Chi S.C., Chen J.Y. (2010). Inactivation of nervous necrosis virus infecting grouper (Epinephelus coioides) by epinecidin-1 and hepcidin 1-5 antimicrobial peptides, and downregulation of Mx2 and Mx3 gene expressions. Fish Shellfish Immunol., 28: 113–120.
- Wang Z., Choice E., Kaspar A., Hanson D., Okada S., Lyu S.-C., Krensky A.M., Clayberger C. (2000). Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin. J. Immunol., 165: 1486–1490.
- Whyte S.K. (2007). The innate immune response of finfish – A review of current knowledge. Fish Shellfish Immunol., 23: 1127–1151.
- Willyard C. (2017). The drug-resistant bacteria that pose the greatest health threats. Nature, 543: 15.
- Wu S.P., Huang T.C., Lin C.C., Hui C.F., Lin C.H., Chen J.Y. (2012). Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar. Drugs, 10: 1852–1872.
- Yeaman M.R., Yount N.Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev., 55: 27–55.
- Yin L.M., Edwards M.A., Li J., Yip C.M., Deber C.M. (2012). Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J. Biol. Chem., 287: 7738–7745.
- Yokota H., Nagashima Y., Shiomi K. (2001). Interaction of gram-mistins with lipids and their antibacterial activity. Fish. Sci., 67: 928–933.
- Yount N.Y., Bayer A.S., Xiong Y.Q., Yeaman M.R. (2006). Advances in antimicrobial peptide immunobiology. Biopolymers Pept. Sci. Sec., 84: 435–458.
- Yu Y., Wang Q., Huang Z., Ding L., Xu Z. (2020). Immunoglobulins, mucosal immunity and vaccination in teleost fish. Front. Immunol., 11: 567941.
- Zaccone G., Fasulo S., Licata A., Cascio P. Lo (1985). Binding of concanavalin A to secretory epidermis in the fish Blennius sanguinolentus Pallas: light microscopic and ultrastructural studies. Basic Appl. Histochem., 29: 135–147.
- Zafer M.M., Mohamed G.A., Ibrahim S.R.M., Ghosh S., Bornman C., Elfaky M.A. (2024). Biofilm-mediated infections by multidrug-resistant microbes: a comprehensive exploration and forward perspectives. Arch. Microbiol., 206: 101.
- Zanetti M., Gennaro R., Romeo D. (1995). Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett., 374: 1–5.
- Zasloff M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA., 84: 5449–5453.
- Zhang L., Dhillon P., Yan H., Farmer S., Hancock R.E.W. (2000). Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. 44: 3317–3321.
- Zhang M., Long H., Sun L. (2013). A NK-lysin from Cynoglossus semilaevis enhances antimicrobial defense against bacterial and viral pathogens. Dev. Comp. Immunol., 40: 258–265.
- Zhang M., Li M.F., Sun L. (2014). NKLP27: A teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection. PLoS One., 9: e106543.
- Zhao L., Lu W. (2014). Defensins in innate immunity. Curr. Opin. Hematol., 21: 37–42.
- Zhao X., Qiao J., Zhang P., Zhang Z., Aweya J.J., Chen X., Zhao Y., Zhang Y. (2021). Protein diversity and immune specificity of hemocyanin from shrimp Litopenaeus vannamei. Front. Immunol., 12: 772091.
- Zhou J.G., Wei J.G., Xu D., Cui H.C., Yan Y., Ou-Yang Z.L., Huang X.H., Huang Y.H., Qin Q.W. (2011). Molecular cloning and characterization of two novel hepcidins from orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol., 30: 559–568.
- Zhou Q.J., Wang J., Liu M., Qiao Y., Hong W.S., Su Y.Q., Han K.H., Ke Q.Z., Zheng W.Q. (2016). Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea. Fish Shellfish Immunol., 55: 195–202.
- Zhu S., Gao B. (2013). Evolutionary origin of β-defensins. Dev. Comp. Immunol., 39: 79–84.