Have a personal or library account? Click to login
Differential Effects of Bacillus Species-Fermented Products on Antibiotic Resistome and Virulence Factor Gene Composition in the Cecal Digesta of Broilers Cover

Differential Effects of Bacillus Species-Fermented Products on Antibiotic Resistome and Virulence Factor Gene Composition in the Cecal Digesta of Broilers

Open Access
|Jul 2024

References

  1. Aljumaah M.R., Suliman G.M., Abdullatif A.A., Abudabos A.M. (2020). Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poultry Sci., 99: 5744–5751.
  2. Cassenego A.P., de Oliveira N.E., Laport M.S., Abranches J., Lemos J.A., Giambiagi-deMarval M. (2016). The CtsR regulator controls the expression of clpC, clpE and clpP and is required for the virulence of Enterococcus faecalis in an invertebrate model. Antonie Van Leeuwenhoek, 109: 1253–1259.
  3. Chen Y.C., Yu Y.H. (2020). Bacillus licheniformis-fermented products improve growth performance and the fecal microbiota community in broilers. Poultry Sci., 99: 1432–1443.
  4. Chen J.Y., Yu Y.H. (2021). Bacillus subtilis-fermented products ameliorate the growth performance and alter cecal microbiota community in broilers under lipopolysaccharide challenge. Poultry Sci., 100: 875–886.
  5. Chen J.Y., Yu Y.H. (2022 a). Bacillus subtilis-fermented products ameliorate the growth performance, alleviate intestinal inflammatory gene expression, and modulate cecal microbiota community in broilers during the starter phase under dextran sulfate sodium challenge. J. Poult. Sci., 59: 261–272.
  6. Chen Y.C., Yu Y.H. (2022 b). Bacillus licheniformis-fermented products and enramycin differentially modulate microbiota and antibiotic resistome in the cecal digesta of broilers. Poultry Sci., 101: 102010.
  7. Chen Y.W., Yu Y.H. (2023). Differential effects of Bacillus subtilis- and Bacillus licheniformis-fermented products on growth performance, intestinal morphology, intestinal antioxidant and barrier function gene expression, cecal microbiota community, and microbial carbohydrate-active enzyme composition in broilers. Poultry Sci., 102: 102670.
  8. Cheng Y.H., Horng Y.B., Chen W.J., Hua K.F., Dybus A., Yu Y.H. (2021). Effect of fermented products produced by Bacillus licheniformis on the growth performance and cecal microbial community of broilers under coccidial challenge. Animals, 11: 1245.
  9. Choules M.P., Wolf N.M., Lee H., Anderson J.R., Grzelak E.M., Wang Y., Ma R., Gao W., McAlpine J.B., Jin Y.Y., Cheng J., Lee H., Suh J.W., Duc N.M., Paik S., Choe J.H., Jo E.K., Chang C.L., Lee J.S., Jaki B.U., Pauli G.F., Franzblau S.G., Cho S. (2019). Rufomycin targets ClpC1 proteolysis in Mycobacterium tuberculosis and M. abscessus. Antimicrob. Agents Chemother., 63: e02204–18.
  10. De Cesare A., Oliveri C., Lucchi A., Savini F., Manfreda G., Sala C. (2022). Pilot study on poultry meat from antibiotic free and conventional farms: can metagenomics detect any difference? Foods, 11: 249.
  11. Dhariwal A., Chong J., Habib S., King I.L., Agellon L.B., Xia J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res., 45: W180–W188.
  12. Elshaghabee F.M.F., Rokana N., Gulhane R.D., Sharma C., Panwar H. (2017). Bacillus as potential probiotics: status, concerns, and future perspectives. Front. Microbiol., 8: 1490.
  13. Gavrish E., Sit C.S., Cao S., Kandror O., Spoering A., Peoples A., Ling L., Fetterman A., Hughes D., Bissell A., Torrey H., Akopian T., Mueller A., Epstein S., Goldberg A., Clardy J., Lewis K. (2014). Lassomycin, a ribosomally synthesized cyclic peptide, kills Myco-bacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol., 21: 509–518.
  14. Hafeez A., Shah S.A.A., Khan R.U., Ullah Q., Naz S. (2020). Effect of diet supplemented with phytogenics and protease enzyme on performance, serum biochemistry and muscle histomorphology in broilers. J. Appl. Anim. Res., 48: 326–330.
  15. Huang P., Zhang Y., Xiao K., Jiang F., Wang H., Tang D., Liu D., Liu B., Liu Y., He X., Liu H., Liu X., Qing Z., Liu C., Huang J., Ren Y., Yun L., Yin L., Lin Q., Zeng C., Su X., Yuan J., Lin L., Hu N., Cao H., Huang S., Guo Y., Fan W., Zeng J. (2018). The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome, 6: 211.
  16. Hussein E.O.S., Ahmed S.H., Abudabos A.M., Aljumaah M.R., Alkhlulaifi M.M., Nassan M.A., Suliman G.M., Naiel M.A.E., Swelum A.A. (2020). Effect of antibiotic, phytobiotic and probiotic supplementation on growth, blood indices and intestine health in broiler chicks challenged with Clostridium perfringens. Animals, 10: 507.
  17. Koorakula R., Schiavinato M., Ghanbari M., Wegl G., Grabner N., Koestelbauer A., Klose V., Dohm J.C., Domig KJ. (2022). Meta-transcriptomic analysis of the chicken gut resistome response to in-feed antibiotics and natural feed additives. Front. Microbiol., 13: 833790.
  18. Krüger E., Witt E., Ohlmeier S., Hanschke R., Hecker M. (2000). The Clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J. Bacteriol., 182: 3259–3265.
  19. Lee A., Aldeieg M., Woodward M.J., Juniper D.T., Rymer C. (2021). The effect of Candida famata and Lactobacillus plantarum on the number of coliforms and the antibiotic resistance and virulence of Escherichia coli in the gut of broilers. Animal, 15: 100310.
  20. Noman S.M., Shafiq M., Bibi S., Mittal B., Yuan Y., Zeng M., Li X., Olawale O.A., Jiao X., Irshad M. (2022). Exploring antibiotic resistance genes, mobile gene elements, and virulence gene factors in an urban freshwater samples using metagenomic analysis. Environ. Sci. Pollut. Res., 30: 2977–2990.
  21. Pan Q., Garsin D.A., Losick R. (2001). Self-reinforcing activation of a cell-specific transcription factor by proteolysis of an anti-sigma factor in B. subtilis. Mol. Cell, 8: 873–883.
  22. Pedroso A.A., Hurley-Bacon A.L., Zedek A.S., Kwan T.W., Jordan A.P., Avellaneda G., Hofacre C.L., Oakley B.B., Collett S.R., Maurer J.J., Lee M.D. (2013). Can probiotics improve the environmental microbiome and resistome of commercial poultry production? Int. J. Environ. Res. Public Health., 10: 4534–4559.
  23. Qiu K., Li C.L., Wang J., Qi G.H., Gao J., Zhang H.J., Wu S.G. (2021). Effects of dietary supplementation with Bacillus subtilis, as an alternative to antibiotics, on growth performance, serum immunity, and intestinal health in broiler chickens. Front. Nutr., 8: 786878.
  24. Ramlucken U., Lalloo R., Roets Y., Moonsamy G., Jansen van Rensburg C., Thantsha M.S. (2020). Advantages of Bacillus-based probiotics in poultry production. Livest. Sci., 241: 104215.
  25. Shah M., Zaneb H., Masood S., Khan R.U., Mobashar M., Khan I., Din S., Khan M.S., Rehman H.U., Tinelli A. (2020). Single or combined applications of zinc and multi-strain probiotic on intestinal histomorphology of broilers under cyclic heat stress. Probiotics Antimicrob. Proteins, 12: 473–480.
  26. Sreejith S., Shajahan S., Prathiush P.R., Anjana V.M., Viswanathan A., Chandran V., Ajith Kumar G.S., Jayachandran R., Mathew J., Radhakrishnan E.K. (2020). Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Microb. Pathog., 149: 104562.
  27. Stoica R.M., Moscovici M., Tomulescu C., Cășărică A., Băbeanu N., Popa O., Kahraman H.A. (2019). Antimicrobial compounds of the genus Bacillus: A review. Rom. Biotechnol. Lett., 24: 1111–1119.
  28. Su J.Q., Wei B., Ou-Yang W.Y., Huang F.Y., Zhao Y., Xu H.J., Zhu Y.G. (2015). Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ. Sci. Technol., 49: 7356–7363.
  29. Sumi C.D., Yang B.W., Yeo I.C., Hahm Y.T. (2015). Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can. J. Microbiol., 61: 93–103.
  30. Szmolka A., Anjum M.F., La Ragione R.M., Kaszanyitzky E.J., Nagy B. (2012). Microarray based comparative genotyping of gentamicin resistant Escherichia coli strains from food animals and humans. Vet. Microbiol., 156: 110–118.
  31. Tran C., Cock I.E., Chen X., Feng Y. (2022). Antimicrobial Bacillus: metabolites and their mode of action. Antibiotics, 11: 88.
  32. Turgay K., Hahn J., Burghoorn J., Dubnau D. (1998). Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J., 17: 6730–6738.
  33. Wawrzynow A., Banecki B., Zylicz M. (1996). The Clp ATPases define a novel class of molecular chaperones. Mol. Microbiol., 21: 895–899.
  34. Winglee K., Howard A.G., Sha W., Gharaibeh R.Z., Liu J., Jin D., Fodor A.A., Gordon-Larsen P. (2017). Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome, 5: 121.
  35. Wu H.J., Wang A.H., Jennings M.P. (2008). Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Biol., 12: 93– 101.
  36. Xiong W., Wang Y., Sun Y., Ma L., Zeng Q., Jiang X., Li A., Zeng Z., Zhang T. (2018). Antibiotic-mediated changes in the fecal micro-biome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome, 6: 34.
  37. Yang L., Zeng X., Qiao S. (2021). Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms. Anim. Nutr., 7: 905–916.
  38. Zalewska M., Błażejewska A., Czapko A., Popowska M. (2021). Antibiotics and antibiotic resistance genes in animal manure – consequences of its application in agriculture. Front. Microbiol., 12: 610656.
DOI: https://doi.org/10.2478/aoas-2024-0021 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 925 - 937
Submitted on: Jun 26, 2023
Accepted on: Jan 5, 2024
Published on: Jul 18, 2024
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Felix Shih-Hsiang Hsiao, Yeong-Hsiang Cheng, Hsiu-Wei Chen, Yu-Hsiang Yu, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.