Have a personal or library account? Click to login
Hippocampus and Jejunum Biochemical Parameters Related to Physiological Ageing of Neurons in Rats Fed Diets With Copper Nanoparticles and Different Fiber Types Cover

Hippocampus and Jejunum Biochemical Parameters Related to Physiological Ageing of Neurons in Rats Fed Diets With Copper Nanoparticles and Different Fiber Types

Open Access
|Jul 2024

References

  1. Angelopoulou E., Paudel Y.N., Papageorgiou S.G., Piperi C. (2021). APOE genotype and Alzheimer’s disease: the influence of lifestyle and environmental factors. ACS Chem. Neurosci., 4: 2749–2764.
  2. Angelova M., Asenova S., Nedkova V., Koleva-Kolarova R. (2011). Copper in the human organism. Trakia J. Sci., 9: 11.
  3. Ansari S.A., Emerald B.S. (2019). The role of insulin resistance and protein O-GlcNAcylation in neurodegeneration. Front. Neurosci., 13: 473.
  4. Ashrafi G., Ryan T.A. (2017). Glucose metabolism in nerve terminals. Curr. Opin. Neurobiol. Epub., 2017 Jun 9.
  5. Bagheri S., Squitti R., Haertlé T., Siotto M., Saboury A.A. (2018). Role of copper in the onset of Alzheimer’s disease compared to other metals. Front. Aging. Neurosci., 23: 446.
  6. Barclay T., Petrovsky N. (2016). Vaccine adjuvant nanotechnologies. Micro and Nanotechnology in Vaccine Development., pp. 127– 147.
  7. Blomberg M.R.A. (2021). The redox-active tyrosine is essential for proton pumping in cytochrome c oxidase. Front. Chem., 9: 100.
  8. Calvo-Rodriguez M., Hou S.S., Snyder A.C., Kharitonova E.K., Russ A.N., Das S., Fan Z., Muzikansky A., Garcia-Alloza M., Serrano-Pozo A., Hudry E., Bacskai B.J. (2020). Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat. Commun., 11: 2146.
  9. Carabotti M., Scirocco A., Maselli M.A., Severi C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol., 28: 203–209.
  10. Cendrowska-Pinkosz M., Krauze M., Juśkiewicz J., Ognik K. (2021). The effect of the use of copper carbonate and copper nanoparticles in the diet of rats on the level of β-amyloid and acetylcholinesterase in selected organs. J. Trace Elem. Med. Biol., 67.
  11. Cendrowska-Pinkosz M., Ostrowska-Lesko M., Ognik K., Krauze M., Juśkiewicz J., Dąbrowska A., Szponar J., Mandziuk S. (2022). Dietary copper deficiency leads to changes in gene expression indicating an increased demand for NADH in the prefrontal cortex of the rat’s brain. Int. J. Mol. Sci., 23: 1–15.
  12. Chambonnière M.L., Mosnier-Damet M., Mosnier. J.F. (2001). Expression of microtubule-associated protein tau by gastrointestinal stromal tumors. Hum. Pathol., 32: 1166–1173.
  13. Chen C., Shang C., Xin L., Xiang M., Wang Y., Shen Z., Jiao L., Ding F., Cui X. (2022). Beneficial effects of psyllium on the prevention and treatment of cardiometabolic diseases. Food Funct., 18: 7473–7486.
  14. Cholewińska E., Juśkiewicz J., Ognik K. (2018 a). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in a rat model. J. Trace Elem. Med. Biol. 48: 111–117.
  15. Cholewińska E., Ognik K., Fotschki B., Zduńczyk Z., Juśkiewicz J. (2018 b). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One., 13: e0197083.
  16. Crane P.K., Walker R., Hubbard R.A., Li G., Nathan D.M., Zheng H., Haneuse S., Craft S., Montine T.J., Kahn S.E. (2013). Glucose levels and risk of dementia. N. Engl. J. Med., 369: 540–548.
  17. Cui Y., Zhang N.N., Wang D., Meng W.H., Chen H.S. (2022). Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome activation via TLR4/nf-ĸB signaling pathway in microglia. J. Inflamm. Res., 15: 3369–3385.
  18. De Leeuw J., Bolhuis J., Bosch G., Gerrits W. (2008). Effects of dietary fibre on behaviour and satiety in pigs: Symposium on Behavioral nutrition and energy balance in the young. Proc. Nutr. Soc., 67: 334–342.
  19. Dhahri M., Alghrably M., Mohammed H.A., Badshah S.L., Noreen N., Mouffouk F., Rayyan S., Qureshi K.A., Mahmood D., Lachowicz J.I., Jaremko M., Abdul-Hamid E. (2022). Natural polysaccha-rides as preventive and therapeutic horizon for neurodegenerative diseases. Pharmaceutics., 14: 1.
  20. Divyashri G., Sadanandan B., Chidambara Murthy K.N., Shetty K., Mamta K. (2021). Neuroprotective potential of non-digestible oligosaccharides: an overview of experimental evidence. Front. Pharmacol., 23: 712531.
  21. Dugger B.N., Whiteside C.M., Maarouf C.L., Walker D.G., Beach T.G., Sue LI. (2016). The presence of select tau species in human peripheral tissues and their relation to Alzheimer’s disease. J. Alzheimers Dis., 51: 345–356.
  22. Emmett S.R., Greenfield S.A. (2004). A peptide derived from the C-terminal region of acetylcholinesterase modulates extracellular concentrations of acetylcholinesterase in the rat substantia nigra. Neurosci. Lett., 358: 210–214.
  23. Fatma U., Afifi-Yazar H., Kasabri V. (2011). Medicinal plants from Jordan in the treatment of diabetes: traditional uses vs. in vitro and in vivo evaluations – Part 2. Planta Med., 77: 1210–1220.
  24. Ferenc K., Jarmakiewicz-Czaja S., Filip R. (2023). Components of the fiber diet in the prevention and treatment of IBD – an update. Nutrients., 15: 162.
  25. Fernando W.M., Rainey-Smith S.R., Gardener S.L., Villemagne V.L., Burnham S.C., Macaulay S.L., Brown B.M., Gupta V.B., Sohrabi H.R., Weinborn M., Taddei K., Laws S.L., Goozee K., Ames D., Fowler C., Maruff P., Masters C., Salvado O., Rowe C., Martins R. (2018). Associations of dietary protein and fiber intake with brain and blood amyloid-β. J. Alzheimer’s Dis., 61: 1589–1598.
  26. Ferrando M.R., Lay L., Polito L. (2021). Gold nanoparticle-based platforms for vaccine development. Drug. Discov. Today: Technol., 38: 57–67.
  27. Flanagan E., Lamport D., Brennan L., Burnet P., Calabrese V., Cunnane S.C., De Wilde M.C., Dye L., Farrimond J.A., Lombardo N.E., Hartmann T., Hartung, T., Kalliomäki M., Kuhnle G.G., La Fata, G., Sala-Vila A., Samieri C., Smith, A.D., Spencer, J.P.E., Vauzour D. (2020). Nutrition and the ageing brain: Moving towards clinical applications. ARR, 62: 101079.
  28. Gallo F., DeLuca V., Prystauka Y., Voits T., Rothman J., Abutalebi J. (2022). Bilingualism and aging: Implications for (delaying) neurocognitive decline. Front. Hum. Neurosci., 16: 819105.
  29. Gao X., Chen Q., Yao H., Tan J., Liu Z., Zhou Y., Zou Z. (2022). Epigenetics in Alzheimer’s disease. Front. Aging. Neurosci., 23: 911635.
  30. Götz J., Schild A., Hoerndli F., Pennanen L. (2004). Amyloid-induced neurofibrillary tangle formation in Alzheimer’s disease: insight from transgenic mouse and tissue-culture models. Int. J. Dev. Neurosci., 22: 453–465.
  31. Gu Y., Oyama F., Ihara Y. (1996). Tau is widely expressed in rat tissues. J. Neurochem., 67: 1235–1244.
  32. Kawahara M., Ohtsuka I., Yokoyama S., Kato-Negishi M., Sadakane Y. (2011). Membrane incorporation, channel formation, and disruption of calcium homeostasis by Alzheimer’s β-amyloid protein. Int. J. Alzheimers Dis., 12: 304583.
  33. Kimura Y., Yoshida D., Hirakawa Y., Hata J., Honda T., Shibata M., Sakata S., Uchida K., Kitazono T., Ninomiya T. (2021). Dietary fiber intake and risk of type 2 diabetes in a general Japanese population: The Hisayama study. J. Diabetes Investig., 12: 527–536.
  34. Krauze M., Ognik K., Mikulski D., Jankowski J. (2022). Assessment of neurodegenerative changes in turkeys fed diets with different proportions of arginine and methionine relative to lysine. Animals (Basel), 14: 1535.
  35. Krauze M., Jurczak P., Cendrowska-Pinkosz M., Stępniowska A., Matusevičius P., Ognik K. (2023). Feasibility of including a phytobiotic containing cinnamon oil in the diet to reduce the occur-rence of neurodegenerative changes in broiler chicken tissues. J. Anim. Feed Sci., 32: 164–173.
  36. Li Y., Shen M., Stockton M.E., Zhao X. (2019). Hippocampal deficits in neurodevelopmental disorders. Neurobiol. Learn Mem., 165: 106945.
  37. Lionnet A., Wade M.A., Corbillé A.G. (2018). Characterisation of tau in the human and rodent enteric nervous system under physiological conditions and in tauopathy. Acta Neuropathol. Commun., 6: 65.
  38. Mayes J., Tinker-Mill C., Kolosov O., Zhang H., Tabner B.J., Allsop D. (2014). β-amyloid fibrils in Alzheimer disease are not inert when bound to copper ions but can degrade hydrogen peroxide and generate reactive oxygen species. J. Biol. Chem., 289: 12052–12062.
  39. Maynard C.J., Bush A.I., Masters C.L., Cappai R., Li Q.X. (2005). Metals and amyloid-beta in Alzheimer’s disease. Int. J. Exp. Pathol., 86: 147–159.
  40. McRorie J.W. (2015). Psyllium is not fermented in the human gut. Neurogastroenterol. Motil., 27: 1681–1682.
  41. Mello F.V.C., de Moraes G.N., Maia R.C., Kyeremateng J., Iram S.H., Santos-Oliveira R. (2020). The effect of nanosystems on ATP-binding cassette transporters: understanding the influence of nano-systems on multidrug resistance protein-1 and p-glycoprotein. Int. J. Mol. Sci., 21: 26–30.
  42. Michalicova A., Majerova P., Kovac A. (2020). Tau protein and its role in blood–brain barrier dysfunction. Front. Mol. Neurosci., 13: 570045.
  43. Muneer A. (2017). Wnt and GSK3 signaling pathways in bipolar disorder: clinical and therapeutic implications. Clin. Psychopharmacol. Neurosci., 31: 100–114.
  44. Nuzzo D., Pasquale P., Giardina C., Scordino M., Mudo G., Pagliaro M., Scurria A., Meneguzzo F., Ilharco L., Fidalgo A., Alduina R., Presentato A., Ciriminna R., Di Liberto V. (2021). New neuroprotective effect of lemon integropectin on neuronal cellular model. Antioxidants, 10: 669.
  45. Orr M.E., Garbarino V.R., Salinas A., Buffenstein R. (2015). Sustained high levels of neuroprotective, high molecular weight, phosphorylated tau in the longest-lived rodent. Neurobiol. Aging., 36: 1496– 1504.
  46. Patel R., Aschner M. (2021). Commonalities between copper neurotoxicity and Alzheimer’s disease. Toxics, 9: 4.
  47. Poulson B.G., Szczepski K., Lachowicz J.I., Jaremko L., Emwas A.-H., Jaremko M. (2020). Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv., 10: 215–227.
  48. Rauch J.N., Luna G., Guzman E., Audouard M., Challis C., Sibih Y.E., Leshuk C., Hernandez I., Wegmann S., Hyman B.T., Gradinaru V., Kampmann M., Kosik K.S. (2020). LRP1 is a master regulator of tau uptake and spread. Nature, 580: 381–385.
  49. Rossi L., Lombardo M.F., Ciriolo M.R., Rotilio G. (2004). Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem. Res., 29: 493–504.
  50. Rowe E.M., Xing V., Biggar K.K. (2019). Lysine methylation: Implications in neurodegenerative disease. Brain Res., 1707: 164–171.
  51. Ruiz L.M., Libedinsky A. Elorza A.A. (2021). Role of copper on mitochondrial function and metabolism. Front. Mol. Biosci., 8: 711227.
  52. Sáez-Valero J., Fodero L.R., Sjogren M., Andreasen N., Amici S., Gallai V., Vanderstichele H., Vanmechelen E., Parnetti L., Blennow B., Small D.H. (2003). Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer’s disease. J. Neur. Res., 72: 520–526.
  53. Santillán-Urquiza E., Arteaga-Cardona F., Hernandez-Herman E., Pacheco-García P.F., González-Rodríguez R., Coffer J.L., Mendoza-Alvarez M.E., Vélez-Ruiz J.F., Méndez-Rojas M.A. (2015). Inulin as a novel biocompatible coating: evaluation of surface affinities toward CaHPO4, α-Fe2O3, ZnO, CaHPO4, ZnO and α-Fe2O3,ZnO nanoparticles. J. Colloid. Interface. Sci., 15: 339–348.
  54. Schroeder B.O., Birchenough G.M.H., Stahlman M., Arike L., Johansson M.E.V., Hansson G.C., Bäckhed F. (2018). Bifidobacteria or fiber protects against diet induced microbiota mediated colonic mucus deterioration. Cell Host. Microbe., 23: 27–37.
  55. Shah A.R., Sharma P., Longvah T., Gour V.S., Kothari S., Shah Y.R., Ganie S.A. (2020). Nutritional composition and health benefits of psyllium (Plantago ovata) husk and seed. Nutr. Today, 55: 313–321.
  56. Shi H., Ge X., Ma X., Zheng M., Cui X., Pan W., Zheng P., Yang X., Zhang P., Hu M. (2021). A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome, 9: 223.
  57. Šimić G., Vukić V., Babić M., Banović M., Berečić I,. Španić E., Zubčić K., Golubić A.T., Barišić Kutija M., Merkler Šorgić A., Vogrinc Ž., Lehman I., Hof P.R., Sertić J., Barišić N. (2022). Total tau in cerebrospinal fluid detects treatment responders among spinal muscular atrophy types 1–3 patients treated with nusinersen. CNS Neurosci Ther., 13.
  58. Stefaniak O., Dobrzyńska M., Drzymała-Czyż S., Przysławski J. (2022). Diet in the prevention of Alzheimer’s disease: current knowledge and future research requirements. Nutrients, 30: 45–64.
  59. Tam P.K. (1999). An immunohistological study of the human enteric nervous system with microtubule-associated proteins. Gastroenterology, 99: 1841–1844.
  60. Tamaki C., Ohtsuki S., Iwatsubo T., Hashimoto T., Yamada K., Yabuki C., Terasaki T. (2006). Major involvement of low-density lipo-protein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharm Res., 23: 1407–1416.
  61. Tapiero H., Townsend D.M., Tew K.D. (2003). Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother., 57: 386–398.
  62. Taylor M.K., Sullivan D.K., Swerdlow R.H., Vidoni E.D., Morris J.K., Mahnken J.D., Burns J.M. (2017). A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am. J. Clin. Nutr., 106: 1463–1470.
  63. Tönnies E., Trushina E. (2017). Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis., 57: 1105–1121.
  64. Uddin M.S., Al Mamun A., Rahman M.A., Behl T., Perveen A., Hafeez A., Bin-Jumah M.N., Abdel-Daim M.M., Ashraf G.M. (2020). Emerging proof of protein misfolding and interactions in multifactorial Alzheimer’s disease. Curr. Top. Med. Chem., 20: 2380–2390.
  65. Underhill S.M., Amara S.G. (2021). Acetylcholine receptor stimulation activates protein kinase C mediated internalization of the dopamine transporter. Front. Cell. Neurosci., 15: 662216.
  66. Voss K., Harris C., Ralle M., Duffy M., Murchison C., Quinn J.F. (2014). Modulation of tau phosphorylation by environmental copper. Transl. Neurodegener., 3: 24.
  67. Wahl D., Cogger V., Solon-Biet S. (2016). Nutritional strategies to optimize cognitive function in the aging brain Ageing. Res Rev., 31: 80–92.
  68. Wang N., Wang X., He M., Zheng W., Qi D., Zhang Y., Han C.C. (2021). Ginseng polysaccharides: A potential neuroprotective agent. J. Ginseng. Res., 45: 211–217.
  69. Wang Y., Tang H., Xu M., Luo J., Zhao L., Shi F., Ye G., Lv C., Li Y. (2019). Effect of copper nanoparticles on brain cytochrome P-450 enzymes in rats. Mol. Med. Rep., 20: 771–778.
  70. Wu Y.H., Hsieh H.L. (2023). Effects of redox homeostasis and mitochondrial damage on Alzheimer’s disease. Antioxidants, 12: 1816.
  71. Yamagishi K., Maruyama K., Ikeda A., Nagao M., Noda H., Umesawa M., Hayama-Terada M., Muraki I., Okada C., Tanaka M., Kishida R., Kihara T., Ohira T., Imano H., Brunner E.J., Sankai T., Okada T., Tanigawa T., Kitamura A., Kiyama M., Iso H. (2023). Dietary fiber intake and risk of incident disabling dementia: The circula-tory risk in communities study. Nutr Neurosci., 26: 148–155.
  72. Yanckello L.M., Fanelli B., McCulloch S., Xing X., Sun M., Hammond T.C., Colwell R., Gu Z., Ericsson A.C., Chang Y.H., Bach-stetter A.D., Lin A.L. (2022). Inulin supplementation mitigates gut dysbiosis and brain impairment induced by mild traumatic brain injury during chronic phase. J. Cell Immunol., 4: 50–64.
  73. Zubčić K., Hof P.R., Šimić G., Jazvinšćak J.M. (2020). The role of copper in tau-related pathology in Alzheimer’s disease. Front. Mol. Neurosci., 10: 572308.
DOI: https://doi.org/10.2478/aoas-2024-0019 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 803 - 817
Submitted on: Jul 31, 2023
Accepted on: Jan 3, 2024
Published on: Jul 18, 2024
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Magdalena Krauze, Jerzy Juśkiewicz, Bartosz Fotschki, Michalina Pinkosz, Katarzyna Ognik, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.