Have a personal or library account? Click to login

References

  1. AOAC International (2000). Official Methods of Analysis, 17th ed. Association of official analytical chemists, Arlington, VA, USA, 2200 pp.
  2. Arriola K.G., Oliveira A.S., Ma Z.X., Lean I.J., Giurcanu M.C., Adesogan A.T. (2017). A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. J. Dairy Sci., 100: 4513–4527.10.3168/jds.2016-12103
  3. Bernard J.K., Tao S. (2015). Short communication: Production response of lactating dairy cows to brachytic forage sorghum silage compared with corn silage from first or second harvest. J. Dairy Sci., 98: 8994–9000.10.3168/jds.2015-9716
  4. Casali A.O., Detmann E., Valadares Filho S.C., Pereira J.C., Henriques L.T., Freitas S.G., Paulino M.F. (2008). Influence of incubation time and particles size on indigestible compounds contents in cattle feeds and feces obtained by in situ procedures. Rev. Bras. Zootec., 37: 335–342.10.1590/S1516-35982008000200021
  5. Danner H., Holzer M., Mayrhuber E., Braun R. (2003). Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol., 69: 562–567.10.1128/AEM.69.1.562-567.2003
  6. Dehghani M.R., Weisbjerg M.R., Hvelplund T., Kristensen N.B. (2012). Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics. Livest. Sci., 150: 51–58.10.1016/j.livsci.2012.07.031
  7. Del Valle T.A., Antonio G., Zenatti T.F., Campana M., Zilio E.M.C., Ghizzi L.G., Gandra J.R., Osório J.A.C., de Morais J.P.G. (2019). Effects of xylanase on the fermentation profile and chemical composition of sugarcane silage. J. Agric. Sci., 156: 1123–1129.10.1017/S0021859618001090
  8. Drews M., Larsen M.A.D., Balderrama J.G.P. (2020). Projected water usage and land-use-change emissions from biomass production (2015–2050). Energy Strategy Rev., 29: 100487.10.1016/j.esr.2020.100487
  9. Fernandes T., Paula E.M., Sultana H., Ferraretto L.F. (2020). Short communication: Influence of sorghum cultivar, ensiling storage length, and microbial inoculation on fermentation profile, N fractions, ruminal in situ starch disappearance and aerobic stability of whole-plant sorghum silage. Anim. Feed Sci. Tech., 266: 114535.10.1016/j.anifeedsci.2020.114535
  10. Gorosito A.R., Russell J.B., Van Soest P.J. (1985). Effect of carbon-4 and carbon-5 volatile fatty acids on digestion of plant cell wall in vitro. J. Dairy Sci., 68: 840–847.10.3168/jds.S0022-0302(85)80901-2
  11. Holden L.A. (1999). Comparison of methods of in vitro dry matter digestibility for ten feeds. J. Dairy Sci., 82: 1791–1794.10.3168/jds.S0022-0302(99)75409-3
  12. Jobim C.C., Nussio L.G., Reis R.A., Schmidt P. (2007). Methodological advances in evaluation of preserved forage quality. Ver. Bras. Zootec., 36: 101–119.10.1590/S1516-35982007001000013
  13. Kung Jr. L. (2018). Silage fermentation and additives. Arch. Latinoam. Prod. Anim., 26: 3–4.
  14. Kung Jr. L., Muck R.E. (2015). Silage additives: Where are we going? Proc. XVII International Silage Conference, Piracicaba, Sao Paulo, Brazil, pp. 72–81.
  15. Kung Jr. L., Shaver R.D., Grant R.J., Schmidt R.J. (2018). Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci., 101: 4020–4033.10.3168/jds.2017-13909
  16. Liu Q.H., Li X.Y., Desta S.T., Zhang J.G., Shao T. (2016). Effects of Lactobacillus plantarum and fibrolytic enzyme on the fermentation quality and in vitro digestibility of total mixed rations silage including rape straw. J. Integr. Agric., 15: 2087–2096.10.1016/S2095-3119(15)61233-3
  17. Maulfair D.D., Fustini M., Heinrichs A.J. (2011). Effect of varying total mixed ration particle size on rumen digesta and fecal particle size and digestibility in lactating dairy cows. J. Dairy Sci., 94: 3527–3536.10.3168/jds.2010-3718
  18. McCary C.L., Vyas D., Faciola A.P., Ferraretto L.F. (2020). Graduate Student Literature Review: Current perspectives on whole-plant sorghum silage production and utilization by lactating dairy cows. J. Dairy Sci., 103: 5783–5790.10.3168/jds.2019-18122
  19. McDonald P., Henderson A.R., Heron S.J.E. (1991). The biochemistry of silage, 2nd ed. Marlow, UK, Chalcomb Publications, 207 pp.
  20. McDougall E.I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J., 43: 99–109.10.1042/bj0430099
  21. Miron J., Zuckerman E., Sadeh D., Adin G., Nikbachat M., Yosef E., Ben-Ghedalia D., Carmi A., Kipnis T., Solomon R. (2005). Yield, composition and in vitro digestibility of new forage sorghum varieties and their ensilage characteristics. Anim. Feed Sci. Tech., 120: 17–32.10.1016/j.anifeedsci.2005.01.008
  22. Miura H., Horiguchi M., Matsumoto T. (1980). Nutritional interdependence among rumen bacteria, Bacteroides amylphilius, Megasphaera elsdenii, and Ruminococcus albus. Appl. Environ. Microbiol., 40: 294–300.10.1128/aem.40.2.294-300.1980
  23. Muck R.E. (2010). Silage microbiology and its control through additives. Rev. Bras. Zootec., 39: 183–191.10.1590/S1516-35982010001300021
  24. Muck R.E., Nadeau E.M.G., McAllister T.A., Contreras-Govea F.E., Santos M.C., Kung Jr. L. (2018). Silage review: Recent advances and future uses of silage additives. J. Dairy Sci., 101: 3980–4000.10.3168/jds.2017-13839
  25. Pryce J.D.A. (1969). A modification of the Barker-Summerson method for the determination of lactic acid. Analyst, 94: 1151–1152.10.1039/an9699401151
  26. Roby M.C., Salas Fernandez M.G., Heaton E.A., Miguez F.E., Van-Loocke A. (2017). Biomass sorghum and maize have similar water-use-efficiency under non-drought conditions in the rain-fed Midwest U.S. Agricult. Forest Meteorol., 247: 434–444.10.1016/j.agrformet.2017.08.019
  27. Savoie P., Jofriet J.C. (2003). Silage storage. In: Silage science and technology (agronomy series No. 42), Buxton D.R., Muck R.E., Harrison H.J. (eds). American Society of Agronomy, Madison, WI., pp. 405–467.10.2134/agronmonogr42.c9
  28. Saylor B.A., Fernandes T., Sultana H., Gallo A., Ferraretto L.F. (2020). Influence of microbial inoculation and length of storage on fermentation profile, N fractions, and ruminal in situ starch disappearance of whole-plant corn silage. Anim. Feed Sci. Tech., 267: 114557.10.1016/j.anifeedsci.2020.114557
  29. Tilley J.M.A., Terry R.A. (1963). A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci., 18: 104–111.10.1111/j.1365-2494.1963.tb00335.x
  30. Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597.10.3168/jds.S0022-0302(91)78551-2
  31. Wang Y., McAllister T.A. (2002). Rumen microbes, enzymes and feed digestion – a review. Asian-Australas. J. Anim. Sci., 15: 1659–1676.10.5713/ajas.2002.1659
  32. Yang C.M.J. (2002). Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides. J. Dairy Sci., 85: 1183–1190.10.3168/jds.S0022-0302(02)74181-7
  33. Yang Y., Ferreira G., Corl B.A., Campbell B.T. (2019). Production performance, nutrient digestibility, and milk fatty acid profile of lactating dairy cows fed corn silage- or sorghum silage-based diets with and without xylanase supplementation. J. Dairy Sci., 102: 2266–2274.10.3168/jds.2018-15801
DOI: https://doi.org/10.2478/aoas-2022-0038 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 165 - 172
Submitted on: Apr 6, 2021
Accepted on: Apr 29, 2022
Published on: Jan 27, 2023
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Mariana Campana, Jozivaldo Prudêncio Gomes de Morais, Estefani Capucho, Thaina Moreira Garcia, Cibeli Almeida Pedrini, Jefferson Rodrigues Gandra, Tiago Antônio Del Valle, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.