References
- Abdelhiee E.Y., Elbialy Z.I., Saad A.H., Dawood M.A.O., Aboubakr M., El-Nagar S.H., El-Diasty E.M., Salah A.S., Saad H.M., Fadl S.E. (2021). The impact of Moringa oleifera on the health status of Nile tilapia exposed to aflatoxicosis. Aquaculture, 533:736110.10.1016/j.aquaculture.2020.736110
- Abdul Kari Z., Kabir M.A., Mat K., Rusli N.D., Razab M.K.A.A., Ariff N.S.N.A., Edinur H.A., Rahim M.Z.A., Pati S., Dawood M.A.O., Wei L.S. (2021). The possibility of replacing fish meal with fermented soy pulp on the growth performance, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquac. Rep., 21:100815.10.1016/j.aqrep.2021.100815
- Alzaid A., Castro R., Wang T., Secombes C.J., Boudinot P., Macqueen D.J., Martin S.A.M. (2016). Cross-talk between growth and immunity: coupling of the IGF axis to conserved cytokine pathways in rainbow trout. Endocrinology, 157:1942–1955.10.1210/en.2015-2024
- AOAC (2012). Official Methods of Analysis of AOAC international. 19th edition. AOAC International, Gaithersburg, Maryland, USA. www.eoma.aoac.org.
- Bakke-McKellep A.M., Sanden M., Danieli A., Acierno R., Hemre G.I., Maffia M., Krogdahl Å. (2008). Atlantic salmon (Salmo salar L.) parr fed genetically modified soybeans and maize: Histological, digestive, metabolic, and immunological investigations. Res. Vet. Sci., 84:395–408.10.1016/j.rvsc.2007.06.008
- Bandara T. (2018). Alternative feed ingredients in aquaculture: Opportunities and challenges. J. Entomol. Zool. Stud., 6:3087–3094.
- Dawood M.A.O. (2021). Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev. Aquac., 13:642–663.10.1111/raq.12492
- Dawood M.A.O., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquac., 12:987–1002.10.1111/raq.12368
- Dawood M.A.O., Metwally A.E.-S., El-Sharawy M.E., Ghozlan A.M., Abdel-Latif H.M.R., Van Doan H., Ali M.A.M. (2020). The influences of ferulic acid on the growth performance, haemato-immunological responses, and immune-related genes of Nile tilapia (Oreochromis niloticus) exposed to heat stress. Aquaculture, 525:735320.10.1016/j.aquaculture.2020.735320
- Dawood M.A.O., Ali M.F., Amer A.A., Gewaily M.S., Mahmoud M.M., Alkafafy M., Assar D.H., Soliman A.A., Van Doan H. (2021). The influence of coconut oil on the growth, immune, and antioxidative responses and the intestinal digestive enzymes and histomorphometry features of Nile tilapia (Oreochromis niloticus). Fish Physiol. Biochem., 47(4):869–880.10.1007/s10695-021-00943-8
- De Santis C., Bartie K.L., Olsen R.E., Taggart J.B., Tocher D.R. (2015). Nutrigenomic profiling of transcriptional processes affected in liver and distal intestine in response to a soybean meal-induced nutritional stress in Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. Part D Genomics., 15:1–11.10.1016/j.cbd.2015.04.001
- Duan C. (1998). Nutritional and Developmental Regulation of Insulin-like Growth Factors in Fish. The Journal of Nutrition, 128:306S-314S.10.1093/jn/128.2.306S
- Elbialy Z.I., Salah A.S., Elsheshtawy A., Rizk M., Abualreesh M.H., Abdel-Daim M.M., Salem S.M.R., Askary A.E., Assar D.H. (2021). Exploring the Multimodal Role of Yucca schidigera Extract in Protection against Chronic Ammonia Exposure Targeting: Growth, Metabolic, Stress and Inflammatory Responses in Nile Tilapia (Oreochromis niloticus L.). Animals, 11.10.3390/ani11072072830016734359200
- Elumalai P., Prakash P., Musthafa M.S., Faggio C. (2019). Effect of alkoxy glycerol on growth performance, immune response and disease resistance in Nile Tilapia (Oreochromis niloticus). Res. Vet. Sci., 123:298–304.10.1016/j.rvsc.2019.01.006
- Faggio C., Pagano M., Alampi R., Vazzana I., Felice M.R. (2016). Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternion-15 in Mytilus galloprovincialis. Aquat. Toxicol., 180:258–265.10.1016/j.aquatox.2016.10.010
- FAO (2020). The state of world fisheries and aquaculture; p 200––200.
- Fuentes E.N., Valdés J.A., Molina A., Björnsson B.T. (2013). Regulation of skeletal muscle growth in fish by the growth hormone – insulin-like growth factor system. Gen. Comp. Endocrinol., 192:136––148.10.1016/j.ygcen.2013.06.009
- Galkanda-Arachchige H.S.C., Wilson A.E., Davis D.A. (2020). Success of fishmeal replacement through poultry by-product meal in aquaculture feed formulations: a meta-analysis. Rev. Aquac., 12:1624––1636.10.1111/raq.12401
- Gao C.Q., Ji C., Zhang J.Y., Zhao L.H., Ma Q.G. (2013). Effect of a novel plant phytase on performance, egg quality, apparent ileal nutrient digestibility and bone mineralization of laying hens fed corn-soybean diets. Anim. Feed Sci. Technol., 186:101––105.10.1016/j.anifeedsci.2013.09.011
- Ghaniem S., Nassef E., Zaineldin A.I., Bakr A., Hegazi S. (2022). A Comparison of the Beneficial Effects of Inorganic, Organic, and Elemental Nano-selenium on Nile Tilapia: Growth, Immunity, Oxidative Status, Gut Morphology, and Immune Gene Expression. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-021-03075-510.1007/s12011-021-03075-535028868
- Glencross B.D., Booth M., Allan G.L. (2007). A feed is only as good as its ingredients – a review of ingredient evaluation strategies for aquaculture feeds. Aquac. Nutr., 13:17––34.10.1111/j.1365-2095.2007.00450.x
- Gómez-Requeni P., Calduch-Giner J., Vega-Rubín de Celis S., Médale F., Kaushik S.J., Pérez-Sánchez J. (2005). Regulation of the somatotropic axis by dietary factors in rainbow trout (Oncorhynchus mykiss). Br. J. Nutr., 94:353––361.10.1079/BJN20051521
- Guarda G., Braun M., Staehli F., Tardivel A., Mattmann C., Förster I., Farlik M., Decker T., Du Pasquier Renaud A., Romero P., Tschopp J. (2011). Type I Interferon Inhibits Interleukin-1 Production and Inflammasome Activation. Immunity, 34:213–223.10.1016/j.immuni.2011.02.006
- Hazreen-Nita, M.K., Abdul Kari, Z., Mat, K., Rusli, N.D., Mohamad Sukri, S.A., Che Harun, H., Lee, S.W., Rahman, M.M., Norazmi-Lokman, N.H., Nur-Nazifah, M., Firdaus-Nawi, M., Dawood, M.A.O., 2022. Olive oil by-products in aquafeeds: Opportunities and challenges. Aquac. Rep. 22, 100998.10.1016/j.aqrep.2021.100998
- He M., Li X., Poolsawat L., Guo Z., Yao W., Zhang C., Leng X. (2020). Effects of fish meal replaced by fermented soybean meal on growth performance, intestinal histology and microbiota of largemouth bass (Micropterus salmoides). Aquac. Nutr., 26:1058–1071.10.1111/anu.13064
- Hemre G.I., Sanden M., Bakke-Mckellep A.M., Sagstad A., Krogdahl Å. (2005). Growth, feed utilization and health of Atlantic salmon Salmo salar L. fed genetically modified compared to non-modified commercial hybrid soybeans. Aquac. Nutr., 11:157–167.10.1111/j.1365-2095.2005.00328.x
- Hevrøy E.M., El-Mowafi A., Taylor R.G., Olsvik P.A., Norberg B., Espe M. (2007). Lysine intake affects gene expression of anabolic hormones in Atlantic salmon, Salmo salar. Gen. Comp. Endocrinol., 152:39–46.10.1016/j.ygcen.2007.02.015
- Honore P., Wade C.L., Zhong C., Harris R.R., Wu C., Ghayur T., Iwakura Y., Decker M.W., Faltynek C., Sullivan J., Jarvis M.F. (2006). Interleukin-1αβ gene-deficient mice show reduced nociceptive sensitivity in models of inflammatory and neuropathic pain but not post-operative pain. Behav. Brain Res., 167:355–364.10.1016/j.bbr.2005.09.024
- Johnston I.A., Bower N.I., Macqueen D.J. (2011). Growth and the regulation of myotomal muscle mass in teleost fish. J. Exp. Biol., 214:1617–1628.10.1242/jeb.038620
- Jones S.W., Karpol A., Friedman S., Maru B.T., Tracy B.P. (2020). Recent advances in single-cell protein use as a feed ingredient in aquaculture. Curr. Opin. Biotechnol., 61:189–197.10.1016/j.copbio.2019.12.026
- Kari Z.A., Kabir M.A., Razab M.K.A.A., Munir M.B., Lim P.T., Wei L.S. (2020). A replacement of plant protein sources as an alternative of fish meal ingredient for African catfish, Clarias gariepinus: A review. Journal of Tropical Resources and Sustainable Science, 8:47–59.10.47253/jtrss.v8i1.164
- Kari Z.A., Kabir M.A., Dawood M.A.O., Razab M.K.A.A., Ariff N.S.N.A., Sarkar T., Pati S., Edinur H.A., Mat K., Ismail T.A., Wei L.S. (2022). Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture, 546:737418.10.1016/j.aquaculture.2021.737418
- Khalidah N., Onas Somdare P., Abdullah Md Harashid K., Ain Othman N., Abdul Kari Z., Seong Wei L., Dawood M.A.O. (2022). Effect of papaya (Carica papaya) leaf extract as dietary growth promoter supplement in red hybrid tilapia (Oreochromis mossambicus × Oreochromis niloticus) diet. Saudi J. Biol. Sci. https://doi.org/10.1016/j.sjbs.2022.03.00410.1016/j.sjbs.2022.03.004928022435844420
- Kok B., Malcorps W., Tlusty M.F., Eltholth M.M., Auchterlonie N.A., Little D.C., Harmsen R., Newton R.W., Davies S.J. (2020). Fish as feed: Using economic allocation to quantify the Fish In : Fish Out ratio of major fed aquaculture species. Aquaculture, 528:735474.10.1016/j.aquaculture.2020.735474
- Lupatsch I., Kissil G.W. (2004). Successful replacement of fishmeal by plant proteins in diets for the gilthead seabream, Sparus aurata L. Isr. J. Aquac., 56:20378.10.46989/001c.20378
- Marjara I.S., Chikwati E.M., Valen E.C., Krogdahl Å., Bakke A.M. (2012). Transcriptional regulation of IL-17A and other inflammatory markers during the development of soybean meal-induced enteropathy in the distal intestine of Atlantic salmon (Salmo salar L.). Cytokine, 60:186––196.10.1016/j.cyto.2012.05.027
- Mathan M.M., Ponniah J., Mathan V. (1986). Epithelial cell renewal and turnover and relationship to morphologic abnormalities in jejunal mucosa in tropical sprue. Dig. Dis. Sci., 31:586––592.10.1007/BF01318689
- Ming J., Xie J., Xu P., Liu W., Ge X., Liu B., He Y., Cheng Y., Zhou Q., Pan L. (2010). Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish Shellfish Immunol., 28:407––418.10.1016/j.fsi.2009.11.018
- Mohammadi G., Rafiee G., Tavabe K.R., Abdel-Latif H.M.R., Dawood M.A.O. (2021). The enrichment of diet with beneficial bacteria (single- or multi-strain) in biofloc system enhanced the water quality, growth performance, immune responses, and disease resistance of Nile tilapia (Oreochromis niloticus). Aquaculture, 539:736640.10.1016/j.aquaculture.2021.736640
- Mohammadi G., Hafezieh M., Karimi A.A., Azra M.N., Van Doan H., Tapingkae W., Abdelrahman H.A., Dawood M.A.O. (2022a) The synergistic effects of plant polysaccharide and Pediococcus acidilactici as a synbiotic additive on growth, antioxidant status, immune response, and resistance of Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila. Fish Shellfish Immunol., 120:304–313.10.1016/j.fsi.2021.11.02834838702
- Mohammadi G., Karimi A.A., Hafezieh M., Dawood M.A.O., Abo-Al-Ela H.G. (2022b) Pistachio hull polysaccharide protects Nile tilapia against LPS-induced excessive inflammatory responses and oxidative stress, possibly via TLR2 and Nrf2 signaling pathways. Fish Shellfish Immunol., 121:276–284.10.1016/j.fsi.2021.12.04234968712
- Moriyama S., Ayson F.G., Kawauchi H. (2000). Growth Regulation by Insulin-like Growth Factor-I in Fish. Biosci. Biotechnol. Biochem., 64:1553–1562.10.1271/bbb.64.1553
- Napier J.A., Haslam R.P., Olsen R.-E., Tocher D.R., Betancor M.B. (2020). Agriculture can help aquaculture become greener. Nat. Food., 1:680–683.10.1038/s43016-020-00182-9
- Palka-Santini M., Schwarz-Herzke B., Hösel M., Renz D., Auerochs S., Brondke H., Doerfler W. (2003). The gastrointestinal tract as the portal of entry for foreign macromolecules: fate of DNA and proteins. Mol. Genet. Genom., 270:201–215.10.1007/s00438-003-0907-2
- Panserat S., Hortopan G.A., Plagnes-Juan E., Kolditz C., Lansard M., Skiba-Cassy S., Esquerré D., Geurden I., Médale F., Kaushik S., Corraze G. (2009). Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture, 294:123–131.10.1016/j.aquaculture.2009.05.013
- Pérez-Sánchez J., Martí-Palanca H., Kaushik S.J. (1995). Ration size and protein intake affect circulating growth hormone concentration, hepatic growth hormone binding and plasma insulin-like growth factor-I immunoreactivity in a marine teleost, the gilthead seabream (Sparus aurata). The Journal of Nutrition, 125:546–552.
- Pervin M.A., Jahan H., Akter R., Omri A., Hossain Z. (2020). Appraisal of different levels of soybean meal in diets on growth, digestive enzyme activity, antioxidation, and gut histology of tilapia (Oreochromis niloticus). Fish Physiol. Biochem., 46:1397–1407.10.1007/s10695-020-00798-5
- Picha M.E., Turano M.J., Beckman B.R., Borski R.J. (2008). Endocrine Biomarkers of Growth and Applications to Aquaculture: A Minireview of Growth Hormone, Insulin-Like Growth Factor (IGF)-I, and IGF-Binding Proteins as Potential Growth Indicators in Fish. N. Am. J. Aquac., 70:196–211.10.1577/A07-038.1
- Roques S., Deborde C., Richard N., Skiba-Cassy S., Moing A., Fauconneau B. (2020). Metabolomics and fish nutrition: a review in the context of sustainable feed development. Rev. Aquac., 12:261–282.10.1111/raq.12316
- Sagstad A., Sanden M., Haugland Ø., Hansen A.C., Olsvik P.A., Hemre G.I. (2007). Evaluation of stress- and immune-response biomarkers in Atlantic salmon, Salmo salar L., fed different levels of genetically modified maize (Bt maize), compared with its near-isogenic parental line and a commercial suprex maize. J. Fish Dis., 30:201–212.10.1111/j.1365-2761.2007.00808.x
- Sanden M., Berntssen M.H.G., Krogdahl Å., Hemre G.I., Bakke-McKellep A.M. (2005). An examination of the intestinal tract of Atlantic salmon, Salmo salar L., parr fed different varieties of soy and maize. J. Fish Dis., 28:317–330.10.1111/j.1365-2761.2005.00618.x
- Thissen J.-P., Underwood L.E., Ketelslegers J.-M. (1999). Regulation of insulin-like growth factor–i in starvation and injury. Nutr. Rev., 57:167–176.10.1111/j.1753-4887.1999.tb06939.x
- UrÁN P.A., Schrama J.W., Jaafari S., Baardsen G., Rombout J.H.W.M., Koppe W., Verreth J.A.J. (2009). Variation in commercial sources of soybean meal influences the severity of enteritis in Atlantic salmon (Salmo salar L.). Aquac. Nutr., 15:492–499.10.1111/j.1365-2095.2008.00615.x
- Vong Q., Chan K., Cheng C. (2003). Quantification of common carp (Cyprinus carpio) IGF-I and IGF-II mRNA by real-time PCR: differential regulation of expression by GH. J J. Endocrinol., 178:513–521.10.1677/joe.0.1780513
- Yuan J.S., Reed A., Chen F., Stewart C.N. (2006). Statistical analysis of real-time PCR data. BMC Bioinformatics, 7:85.10.1186/1471-2105-7-85
- Zaineldin A.I., Hegazi S., Koshio S., Ishikawa M., El Basuini M.F., Dossou S., Dawood M.A.O. (2021). The influences of Bacillus subtilis C-3102 inclusion in the red sea bream diet containing high levels of soybean meal on growth performance, gut morphology, blood health, immune response, digestibility, digestive enzymes, and stress resistance. Aquac. Nutr., 27:2612–2628.10.1111/anu.13389
- Zou J., Secombes C.J. (2016). The function of fish cytokines. Biology 5.10.3390/biology5020023
- Zulhisyam A.K., Kabir M.A., Munir M.B., Wei L.S. (2020). Using of fermented soy pulp as an edible coating material on fish feed pellet in African catfish (Clarias gariepinus) production. Aquacult. Aquarium Conserv. Legis., 13:296–308.