Have a personal or library account? Click to login
Different dietary ratios of arginine, methionine and lysine for turkeys: effects on whole-body composition and nutrient utilization efficiency in the early growth stage
Belloir P., Lessire M., Lambert W., Corrent E., Berri C., Tesseraud S. (2019). Changes in body composition and meat quality in response to dietary amino acid provision in finishing broilers. Animal, 13: 1094–1102.10.1017/S1751731118002306
British United Turkeys (BUT): Aviagen Turkeys (2013). Management guidelines for raising commercial turkeys. Nutritional guidelines. Retrieved on 6 March 2016. https://www.aviagenturkeys.com/media/183481/aviagencommercialguide.pdf.
Chamruspollert M., Pesti G.M., Bakalli R.I. (2002). Dietary interrelationships among arginine, methionine, and lysine in young broiler chicks. Brit. J. Nutr., 88: 655–660.10.1079/BJN2002732
Chen J., Wang M., Kong Y., Ma H., Zou S. (2011). Comparison of the novel compounds creatine and pyruvate on lipid and protein metabolism in broiler chickens. J. Anim. Sci., 5: 1082–1089.10.1017/S1751731111000085
Conde-Aguilera J.A., Cobo-Ortega C., Tesseraud S., Lessire M., Mercier Y., van Milgen J. (2013). Changes in body composition in broilers by a sulfur amino acid deficiency during growth. Poultry Sci., 92: 1266–1275.10.3382/ps.2012-02796
Conde-Aguilera J.A., Cholet J.C.G., Lessire M., Mercier Y., Tesseraud S., van Milgen J. (2016). The level and source of free-methionine affect body composition and breast muscle traits in growing broilers. Poultry Sci., 95: 2322–2331.10.3382/ps/pew105
Corzo A., Moran E.T. Jr., Hoehler D. (2003). Arginine need of heavy broiler males: applying the ideal protein concept. Poultry Sci., 82: 402–407.10.1093/ps/82.3.402
Davidson I. (2003). Hydrolysis of samples for amino acid analysis. Methods in molecular biology. Vol. 211. Protein sequencing protocols. B.J. Smith (ed.). Humana Totowa, NJ.10.1385/1-59259-342-9:11112489425
Fatufe A.A., Rodehutscord M. (2005). Growth, body composition, and marginal efficiency of methionine utilization are affected by nonessential amino acid nitrogen supplementation in male broiler chicken. Poultry Sci., 84: 1584–1592.10.1093/ps/84.10.1584
Fatufe A.A., Timmler R., Rodehutscord M. (2004). Response to lysine intake in composition of body weight gain and efficiency of lysine utilization of growing male chickens from two genotypes. Poultry Sci., 83: 1314–1324.10.1093/ps/83.8.1314
Foye O.T., Uni Z., McMurtry J.P., Ferket P. (2006). The effects of amniotic nutrient administration, “in ovo feeding” of arginine and/or β-hydroxy-β-methyl butyrate (HMB) on insulin-like growth factors, energy metabolism and growth in turkey poults. Int. J. Poult. Sci., 5: 309–317.10.3923/ijps.2006.309.317
Jahanian R., Khalifeh-Gholi M. (2018). Marginal deficiencies of dietary arginine and methionine could suppress growth performance and immunological responses in broiler chickens. J. Anim. Physiol. Anim. Nutr., 109: 11–20.10.1111/jpn.12695
Jankowski J., Kubińska M., Juśkiewicz J., Czech A., Ognik K., Zduńczyk Z. (2017). Effect of different dietary methionine levels on the growth performance and tissue redox parameters of turkeys. Poultry Sci., 96: 1235–1243.10.3382/ps/pew383
Jankowski J., Mikulski D., Mikulska M., Ognik K., Całyniuk Z., Mróz E ., Zduńczyk Z. (2020 a). The effect of different dietary ratios of arginine, methionine, and lysine on the performance, carcass traits, and immune status of turkeys. Poultry Sci., 99: 1028–1037.10.1016/j.psj.2019.10.008758764132036960
Jankowski J., Ognik K., Konieczka P., Mikulski D. (2020 b). Effects of different levels of arginine and methionine in a high-lysine diet on the immune status, performance, and carcass traits of turkeys. Poultry Sci., 99: 4730–4740.10.1016/j.psj.2020.06.039759810832988507
Jankowski J., Ognik K., Całyniuk Z., Stępniowska A., Konieczka P., Mikulski D. (2021). The effect of different dietary ratios of lysine, arginine and methionine on biochemical parameters and hormone secretion in turkeys. Animal, 15: 100183.10.1016/j.animal.2021.100183
Khalifeh-Gholi M., Jahanian R. (2012). Immune functions as affected by dietary arginine by methionine interaction in broiler chicks. World. Poult. Sci. J., 68: 1–4.
Moore S., Stein W.H. (1954). A modified ninhydrin reagent for photometric determination of amino acids and related compounds. J. Biol. Chem., 211: 907–913.10.1016/S0021-9258(18)71178-2
Mróz E., Jankowski J., Skowroński M., Mikulski D. (2022). Plumage response of young turkeys to diets with increased methionine to lysine ratios at three dietary arginine levels. Animals, 12: 172.10.3390/ani12020172
Ognik K., Konieczka P., Mikulski D., Jankowski J. (2020). The effect of different dietary ratios of lysine and arginine in diets with high or low methionine levels on oxidative and epigenetic DNA damage, the gene expression of tight junction proteins and selected metabolic parameters in Clostridium perfringens-challenged turkeys. Vet. Res., 51:50.10.1186/s13567-020-00776-y
Ognik K., Całyniuk Z., Mikulski D., Stępniowska A., Konieczka P., Jankowski J. (2021). The effect of different dietary ratios of lysine, arginine and methionine on biochemical parameters and hormone secretion in turkeys. J. Anim. Physiol. Anim. Nutr., 105: 108–118.10.1111/jpn.13433
Oso A.O., Williams G.A., Oluwatosin O.O., Bamgbose A.M., Adebayo A.O., Olowofeso O., Pirgozliev V., Adegbenjo A.A., Osho S.O., Alabi J.O., Li F., Liu H., Yao K., Xin W. (2017). Effect of dietary supplementation with arginine on haematological indices, serum chemistry, carcass yield, gut microflora, and lymphoid organs of growing turkeys. Liv. Sci., 198: 58–64.10.1016/j.livsci.2017.02.005
Priyankarage N., Rose S.P., Silva S.S.P., Pirgozliev V.R. (2008). The efficiency of energy retention of broiler chickens and turkeys fed on diets with different lysine concentrations. Brit. Poult. Sci., 49: 721–730.10.1080/00071660802443577
Rivera-Torres V., Noblet J., Van Milgen J. (2011). Changes in chemical composition in male turkeys during growth. Poultry Sci., 90: 68–74.10.3382/ps.2010-00633
Sklan D., Noy Y. (2004). Catabolism and deposition of amino acids in growing chicks: effect of dietary supply. Poultry Sci., 83: 952–961.10.1093/ps/83.6.952
Stilborn H.L., Moran E.T. Jr., Gous R.M., Harrison M.D. (1997). Effect of age on feather amino acid content in two broiler strain crosses and sexes. J. Appl. Poult. Res., 6: 205–209.10.1093/japr/6.2.205
Stilborn H.L., Moran E.T. Jr., Gous R.M., Harrison M.D. (2010). Influence of age on carcass (feather-free) amino acid content for two broiler strain-crosses and sexes. J. Appl. Poult. Res., 19: 13–23.10.3382/japr.2009-00053
Waldroup P.W., England J.A., Kidd M.T., Kerr B.J. (1998). Dietary arginine and lysine in large white toms. 1. Increasing arginine:lysine ratios does not improve performance when lysine levels are adequate. Poultry Sci., 77: 1364−1370.10.1093/ps/77.9.1364
Wen C., Chen Y., Wu P., Wang T., Zhou Y. (2014 b). MSTN, mTOR and FoxO4 are involved in the enhancement of breast muscle growth by methionine in broilers with lower hatching weight. PLoS One, 9, e114236.10.1371/journal.pone.0114236425019625437444
Wen C., Jiang X.Y., Ding L.R., Wang T., Zhou Y.M. (2017). Effects of dietary methionine on growth performance, meat quality and oxidative status of breast muscle in fast- and slow-growing broilers. Poultry Sci., 96: 1707–1714.10.3382/ps/pew432
Wu G. (2014). Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J. Anim. Sci. Biotech., 5: 1–12.10.1186/2049-1891-5-34
Yu L.L., Gao T., Zhao M.M., Lv P.A., Zhang L., Li J.L., Jiang Y., Gao F., Zhou G.H. (2018). Effects of in ovo feeding of L-arginine on breast muscle growth and protein deposition in post-hatch broilers. Animal, 12: 2256–2263.10.1017/S1751731118000241