Have a personal or library account? Click to login

Different dietary ratios of arginine, methionine and lysine for turkeys: effects on whole-body composition and nutrient utilization efficiency in the early growth stage

Open Access
|Oct 2022

References

  1. Association of Official Analytical Chemists (AOAC) (2005). Official methods of analysis. 18th edition. AOAC, Arlington, VA, USA.
  2. Baker D.H. (2006). Comparative species utilization and toxicity of sulfur amino acids. J. Nutr., 136: 1670S–1675S.10.1093/jn/136.6.1670S
  3. Belloir P., Lessire M., Lambert W., Corrent E., Berri C., Tesseraud S. (2019). Changes in body composition and meat quality in response to dietary amino acid provision in finishing broilers. Animal, 13: 1094–1102.10.1017/S1751731118002306
  4. British United Turkeys (BUT): Aviagen Turkeys (2013). Management guidelines for raising commercial turkeys. Nutritional guidelines. Retrieved on 6 March 2016. https://www.aviagenturkeys.com/media/183481/aviagencommercialguide.pdf.
  5. Brosnan J.T., Brosnan M.E. (2006). The sulfur-containing amino acids: an overview. J. Nutr., 136: 1636S–1640S.10.1093/jn/136.6.1636S
  6. Bunchasak C. (2009). Role of dietary methionine in poultry production. J. Poult. Sci., 46: 169–179.10.2141/jpsa.46.169
  7. Chamruspollert M., Pesti G.M., Bakalli R.I. (2002). Dietary interrelationships among arginine, methionine, and lysine in young broiler chicks. Brit. J. Nutr., 88: 655–660.10.1079/BJN2002732
  8. Chen J., Wang M., Kong Y., Ma H., Zou S. (2011). Comparison of the novel compounds creatine and pyruvate on lipid and protein metabolism in broiler chickens. J. Anim. Sci., 5: 1082–1089.10.1017/S1751731111000085
  9. Conde-Aguilera J.A., Cobo-Ortega C., Tesseraud S., Lessire M., Mercier Y., van Milgen J. (2013). Changes in body composition in broilers by a sulfur amino acid deficiency during growth. Poultry Sci., 92: 1266–1275.10.3382/ps.2012-02796
  10. Conde-Aguilera J.A., Cholet J.C.G., Lessire M., Mercier Y., Tesseraud S., van Milgen J. (2016). The level and source of free-methionine affect body composition and breast muscle traits in growing broilers. Poultry Sci., 95: 2322–2331.10.3382/ps/pew105
  11. Corzo A., Moran E.T. Jr., Hoehler D. (2003). Arginine need of heavy broiler males: applying the ideal protein concept. Poultry Sci., 82: 402–407.10.1093/ps/82.3.402
  12. Davidson I. (2003). Hydrolysis of samples for amino acid analysis. Methods in molecular biology. Vol. 211. Protein sequencing protocols. B.J. Smith (ed.). Humana Totowa, NJ.10.1385/1-59259-342-9:11112489425
  13. Fatufe A.A., Rodehutscord M. (2005). Growth, body composition, and marginal efficiency of methionine utilization are affected by nonessential amino acid nitrogen supplementation in male broiler chicken. Poultry Sci., 84: 1584–1592.10.1093/ps/84.10.1584
  14. Fatufe A.A., Timmler R., Rodehutscord M. (2004). Response to lysine intake in composition of body weight gain and efficiency of lysine utilization of growing male chickens from two genotypes. Poultry Sci., 83: 1314–1324.10.1093/ps/83.8.1314
  15. Fouad A.M., El-Senousey H.K., Yang X.J., Yao J.H. (2013). Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal, 7: 1239–1245.10.1017/S1751731113000347
  16. Foye O.T., Uni Z., McMurtry J.P., Ferket P. (2006). The effects of amniotic nutrient administration, “in ovo feeding” of arginine and/or β-hydroxy-β-methyl butyrate (HMB) on insulin-like growth factors, energy metabolism and growth in turkey poults. Int. J. Poult. Sci., 5: 309–317.10.3923/ijps.2006.309.317
  17. Jahanian R., Khalifeh-Gholi M. (2018). Marginal deficiencies of dietary arginine and methionine could suppress growth performance and immunological responses in broiler chickens. J. Anim. Physiol. Anim. Nutr., 109: 11–20.10.1111/jpn.12695
  18. Jankowski J., Kubińska M., Juśkiewicz J., Czech A., Ognik K., Zduńczyk Z. (2017). Effect of different dietary methionine levels on the growth performance and tissue redox parameters of turkeys. Poultry Sci., 96: 1235–1243.10.3382/ps/pew383
  19. Jankowski J., Mikulski D., Mikulska M., Ognik K., Całyniuk Z., Mróz E ., Zduńczyk Z. (2020 a). The effect of different dietary ratios of arginine, methionine, and lysine on the performance, carcass traits, and immune status of turkeys. Poultry Sci., 99: 1028–1037.10.1016/j.psj.2019.10.008758764132036960
  20. Jankowski J., Ognik K., Konieczka P., Mikulski D. (2020 b). Effects of different levels of arginine and methionine in a high-lysine diet on the immune status, performance, and carcass traits of turkeys. Poultry Sci., 99: 4730–4740.10.1016/j.psj.2020.06.039759810832988507
  21. Jankowski J., Ognik K., Całyniuk Z., Stępniowska A., Konieczka P., Mikulski D. (2021). The effect of different dietary ratios of lysine, arginine and methionine on biochemical parameters and hormone secretion in turkeys. Animal, 15: 100183.10.1016/j.animal.2021.100183
  22. Khalifeh-Gholi M., Jahanian R. (2012). Immune functions as affected by dietary arginine by methionine interaction in broiler chicks. World. Poult. Sci. J., 68: 1–4.
  23. Moore S., Stein W.H. (1954). A modified ninhydrin reagent for photometric determination of amino acids and related compounds. J. Biol. Chem., 211: 907–913.10.1016/S0021-9258(18)71178-2
  24. Mróz E., Jankowski J., Skowroński M., Mikulski D. (2022). Plumage response of young turkeys to diets with increased methionine to lysine ratios at three dietary arginine levels. Animals, 12: 172.10.3390/ani12020172
  25. National Research Council (NRC) (1994). Nutrient Requirements of Poultry. 9th revised edition. National Academy Press, Washington, DC, USA.
  26. Ognik K., Konieczka P., Mikulski D., Jankowski J. (2020). The effect of different dietary ratios of lysine and arginine in diets with high or low methionine levels on oxidative and epigenetic DNA damage, the gene expression of tight junction proteins and selected metabolic parameters in Clostridium perfringens-challenged turkeys. Vet. Res., 51:50.10.1186/s13567-020-00776-y
  27. Ognik K., Całyniuk Z., Mikulski D., Stępniowska A., Konieczka P., Jankowski J. (2021). The effect of different dietary ratios of lysine, arginine and methionine on biochemical parameters and hormone secretion in turkeys. J. Anim. Physiol. Anim. Nutr., 105: 108–118.10.1111/jpn.13433
  28. Oso A.O., Williams G.A., Oluwatosin O.O., Bamgbose A.M., Adebayo A.O., Olowofeso O., Pirgozliev V., Adegbenjo A.A., Osho S.O., Alabi J.O., Li F., Liu H., Yao K., Xin W. (2017). Effect of dietary supplementation with arginine on haematological indices, serum chemistry, carcass yield, gut microflora, and lymphoid organs of growing turkeys. Liv. Sci., 198: 58–64.10.1016/j.livsci.2017.02.005
  29. Priyankarage N., Rose S.P., Silva S.S.P., Pirgozliev V.R. (2008). The efficiency of energy retention of broiler chickens and turkeys fed on diets with different lysine concentrations. Brit. Poult. Sci., 49: 721–730.10.1080/00071660802443577
  30. Rivera-Torres V., Noblet J., Van Milgen J. (2011). Changes in chemical composition in male turkeys during growth. Poultry Sci., 90: 68–74.10.3382/ps.2010-00633
  31. Sklan D., Noy Y. (2004). Catabolism and deposition of amino acids in growing chicks: effect of dietary supply. Poultry Sci., 83: 952–961.10.1093/ps/83.6.952
  32. Stilborn H.L., Moran E.T. Jr., Gous R.M., Harrison M.D. (1997). Effect of age on feather amino acid content in two broiler strain crosses and sexes. J. Appl. Poult. Res., 6: 205–209.10.1093/japr/6.2.205
  33. Stilborn H.L., Moran E.T. Jr., Gous R.M., Harrison M.D. (2010). Influence of age on carcass (feather-free) amino acid content for two broiler strain-crosses and sexes. J. Appl. Poult. Res., 19: 13–23.10.3382/japr.2009-00053
  34. Waldroup P.W., England J.A., Kidd M.T., Kerr B.J. (1998). Dietary arginine and lysine in large white toms. 1. Increasing arginine:lysine ratios does not improve performance when lysine levels are adequate. Poultry Sci., 77: 1364−1370.10.1093/ps/77.9.1364
  35. Wen C., Chen X., Chen G.Y., Wu P., Chen Y.P., Zhou Y.M., Wang T. (2014 a). Methionine improves breast muscle growth and alters myogenic gene expression in broilers. J. Anim. Sci., 92: 1068–1073.10.2527/jas.2013-648524492548
  36. Wen C., Chen Y., Wu P., Wang T., Zhou Y. (2014 b). MSTN, mTOR and FoxO4 are involved in the enhancement of breast muscle growth by methionine in broilers with lower hatching weight. PLoS One, 9, e114236.10.1371/journal.pone.0114236425019625437444
  37. Wen C., Jiang X.Y., Ding L.R., Wang T., Zhou Y.M. (2017). Effects of dietary methionine on growth performance, meat quality and oxidative status of breast muscle in fast- and slow-growing broilers. Poultry Sci., 96: 1707–1714.10.3382/ps/pew432
  38. Wu G. (2014). Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J. Anim. Sci. Biotech., 5: 1–12.10.1186/2049-1891-5-34
  39. Yu L.L., Gao T., Zhao M.M., Lv P.A., Zhang L., Li J.L., Jiang Y., Gao F., Zhou G.H. (2018). Effects of in ovo feeding of L-arginine on breast muscle growth and protein deposition in post-hatch broilers. Animal, 12: 2256–2263.10.1017/S1751731118000241
  40. Zuidhof M.J., Schneider B.L., Carney V.L., Korver D.R., Robinson F.E. (2014). Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poultry Sci., 93: 2970–2982.10.3382/ps.2014-04291
DOI: https://doi.org/10.2478/aoas-2022-0024 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1341 - 1350
Submitted on: Jun 18, 2021
Accepted on: Feb 24, 2022
Published on: Oct 29, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Dariusz Mikulski, Katarzyna Ognik, Marzena Mikulska, Jan Jankowski, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.