Have a personal or library account? Click to login
The multi-enzymes and probiotics mixture improves the growth performance, digestibility, intestinal health, and immune response of Siberian sturgeon (Acipenser baerii) Cover

The multi-enzymes and probiotics mixture improves the growth performance, digestibility, intestinal health, and immune response of Siberian sturgeon (Acipenser baerii)

Open Access
|Jul 2022

References

  1. Abdel-Latif H.M.R., Abdel-Tawwab M., Dawood M.A.O., Menanteau-Ledouble S., El-Matbouli M. (2020). Benefits of dietary butyric acid, sodium butyrate, and their protected forms in aquafeeds: A Review. Rev. Fish. Sci. Aquac. 28: 421–448.10.1080/23308249.2020.1758899
  2. Adawi D., Ahrné S., Molin G. (2001). Effects of different probiotic strains of Lactobacillus and Bifidobacterium on bacterial translocation and liver injury in an acute liver injury model. Int. J. Food Microbiol., 70: 213–220.10.1016/S0168-1605(01)00550-5
  3. Adel M., Dawood M.A. (2021). Probiotics application: implications for sustainable aquaculture. In: Probiotic bacteria and postbiotic Metabolites: role in animal and human health, N. Mojgani, M. Dadar, (eds). Microorganisms for Sustainability Series 2, Springer Publishing, NY, USA, pp. 191–219.10.1007/978-981-16-0223-8_8
  4. Adeola O., Cowieson A.J. (2011). Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Anim. Sci. J., 89: 3189–3218.10.2527/jas.2010-3715
  5. Akbari H., Shekrabi S.P.H., Soltani M., Mehrgan M.S. (2021). Effects of potential probiotic Enterococcus casseliflavus (EC-001) on growth performance, immunity, and resistance to Aeromonas hydrophila infection in common carp (Cyprinus carpio). Prob. Antimicrob. Proteins., 13: 1316–1325.10.1007/s12602-021-09771-x
  6. AOAC (1995). Association of Official Analytical Chemists. Official Methods of Analysis 16th edition. AOAC, Arlington, Virginia, pp. 532.
  7. Assan D., Kuebutornye F.K.A., Hlordzi V., Chen H., Mraz J., Mustapha U.F., Abarike E.D. (2022). Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini-review. Comp. Biochem. Physiol. – B Biochem. Mol., 257: 110653.10.1016/j.cbpb.2021.110653
  8. Barham W.T., Smit G.L., Schoonbee H.J. (1980). The haematological assessment of bacterial infection in rainbow trout, Salmo gairdneri Richardson. J. Fish Biol., 17: 275–281.10.1111/j.1095-8649.1980.tb02761.x
  9. Campbell T. (2004). Hematology of lower vertebrates. American College of Veterinary Pathologists and American Society for Veterinary Clinical Pathology, Middleton WI, USA, pp. 1104–1108.
  10. Dai B., Hou Y., Hou Y., Qian L. (2019). Effects of multienzyme complex and probiotic supplementation on the growth performance, digestive enzyme activity and gut microorganisms composition of snakehead (Channa argus). Aquacult. Nutr., 25: 15–25.10.1111/anu.12825
  11. Dawood M.A.O. (2021). Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev. Aquacult., 13: 642–663.10.1111/raq.12492
  12. Dawood M.A.O., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquacult., 12: 987–1002.10.1111/raq.12368
  13. Dawood M.A.O., Koshio S., Ishikawa M., El-Sabagh M., Yokoyama S., Wang W.-L., Yukun Z., Olivier A. (2017). Physiological response, blood chemistry profile and mucus secretion of red sea bream (Pagrus major) fed diets supplemented with Lactobacillus rhamnosus under low salinity stress. Fish Physiol. Biochem., 43: 179–192.10.1007/s10695-016-0277-4
  14. Dawood M.A.O., Abo-Al-Ela H.G., Hasan M.T. (2020). Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. Fish Shellfish Immunol., 97: 268–282.10.1016/j.fsi.2019.12.054
  15. Dawood M.A.O., Noreldin A.E., Sewilam H. (2021). Long term salinity disrupts the hepatic function, intestinal health, and gills antioxidative status in Nile tilapia stressed with hypoxia. Ecotoxicol. Environ. Saf., 220: 112412.10.1016/j.ecoenv.2021.112412
  16. El-Saadony M.T., Alagawany M., Patra A.K., Kar I., Tiwari R., Dawood M.A.O., Dhama K., Abdel-Latif H.M.R. (2021). The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immunol., 117: 36–52.10.1016/j.fsi.2021.07.007
  17. Ellis A.E. (1990). Lysozyme assays. In: Techniques in fish immunology, J.S. Stolen, T.C. Fletcher, D.P. Anderson, B.S. Roberson, W.B. Van Muiswinkel (eds). USA, SOS Publ., Fair Haven, NJ, pp. 101–103.
  18. Falahatkar B. (2018). Nutritional requirements of the Siberian sturgeon: an updated synthesis. In: The Siberian sturgeon (Acipenser baerii, Brandt, 1869) Vol. 1 – Biology, P. Williot, G. Nonnotte, D. Vizziano-Cantonnet, M. Chebanov (eds). Springer International Publishing, Cham, pp. 207–228.10.1007/978-3-319-61664-3_11
  19. FAO (2020). The State of World Fisheries and Aquaculture. Sustainability in Action, Rome.
  20. Firmino J.P., Fernández-Alacid L., Vallejos-Vidal E., Salomón R., Sanahuja I., Tort L., Ibarz A., Reyes-López F.E., Gisbert E. (2021). Carvacrol, thymol, and garlic essential oil promote skin innate immunity in gilthead seabream (Sparus aurata) through the multifactorial modulation of the secretory pathway and enhancement of mucus protective capacity. Front. Immunol., 12.10.3389/fimmu.2021.633621799426933777020
  21. Galappaththi E.K., Ichien S.T., Hyman A.A., Aubrac C.J., Ford J.D. (2020). Climate change adaptation in aquaculture. Rev. Aquacult., 12: 2160–2176.10.1111/raq.12427
  22. Ghomi M.R., Shahriari R., Langroudi H.F., Nikoo M., von Elert E. (2012). Effects of exogenous dietary enzyme on growth, body composition, and fatty acid profiles of cultured great sturgeon Huso huso fingerlings. Aquacult. Int., 20: 249–254.10.1007/s10499-011-9453-9
  23. Hassaan M.S., Soltan M.A., Ghonemy M.M.R. (2014). Effect of synbiotics between Bacillus licheniformis and yeast extract on growth, hematological and biochemical indices of the Nile tilapia (Oreochromis niloticus). Egypt. J. Aquat. Res., 40: 199–208.10.1016/j.ejar.2014.04.001
  24. Hassaan M.S., Mohammady E.Y., Soaudy M.R., Elashry M.A., Moustafa M.M.A., Wassel M.A., El-Garhy H.A.S., El-Haroun E.R., Elsayed H.E. (2021). Synergistic effects of Bacillus pumilus and exogenous protease on Nile tilapia (Oreochromis niloticus) growth, gut microbes, immune response and gene expression fed plant protein diet. Anim. Feed Sci. Technol., 275: 114892.10.1016/j.anifeedsci.2021.114892
  25. Hedayati S.A., Sheikh Veisi R., Hosseini Shekarabi S.P., Shahbazi Naserabad S., Bagheri D., Ghafarifarsani H. (2021). Effect of dietary Lactobacillus casei on physiometabolic responses and liver histopathology in common carp (Cyprinus carpio) after exposure to iron oxide nanoparticles. Biol. Trace Elem. Res., 1–9.10.1007/s12011-021-02906-9
  26. Hosseini Shekarabi S.P., Shamsaie Mehrgan M., Banavreh A. (2021). Feasibility of superworm, Zophobas morio, meal as a partial fishmeal replacer in fingerling rainbow trout, Oncorhynchus mykiss, diet: growth performance, amino acid profile, proteolytic enzymes activity and pigmentation. Aquacult. Nutr., 27: 1077–1088.10.1111/anu.13249
  27. Huang Z., Li Z., Xu A., Zheng D., Ye Y., Wang Z. (2020). Effects of exogenous multienzyme complex supplementation in diets on growth performance, digestive enzyme activity and non-specific immunity of the Japanese seabass, Lateolabrax japonicus. Aquacult. Nutr., 26: 306–315.10.1111/anu.12991
  28. Kong Y., Li M., Chu G., Liu H., Shan X., Wang G., Han G. (2021). The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: Digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture, 531: 735852.10.1016/j.aquaculture.2020.735852
  29. Lowry O.H. (1951). Protein determination with the folin phenol reagent. J. Biol. Chem., 193: 265–275.10.1016/S0021-9258(19)52451-6
  30. Luo J., Li Y., Jin M., Zhu T., Li C., Zhou Q. (2020). Effects of dietary exogenous xylanase supplementation on growth performance, intestinal health, and carbohydrate metabolism of juvenile large yellow croaker, Larimichthys crocea. Fish Physiol. Bioch., 46: 1093–1110.10.1007/s10695-020-00774-z
  31. Maas R.M., Verdegem M.C.J., Lee C.-N., Schrama J.W. (2021 a). Effects and interactions between phytase, xylanase and β-glucanase on growth performance and nutrient digestibility in Nile tilapia. Anim. Feed Sci. Technol., 271: 114767.10.1016/j.anifeedsci.2020.114767
  32. Maas R.M., Verdegem M.C.J., Debnath S., Marchal L., Schrama J.W. (2021 b). Effect of enzymes (phytase and xylanase), probiotics (B. amyloliquefaciens) and their combination on growth performance and nutrient utilisation in Nile tilapia. Aquaculture, 533: 736226.10.1016/j.aquaculture.2020.736226
  33. Maas R.M., Deng Y., Dersjant-Li Y., Petit J., Verdegem M.C.J., Schrama J.W., Kokou F. (2021 c). Exogenous enzymes and probiotics alter digestion kinetics, volatile fatty acid content and microbial interactions in the gut of Nile tilapia. Sci. Rep., 11: 8221.10.1038/s41598-021-87408-3805005633859242
  34. Melo-Bolívar J.F., Ruiz Pardo R.Y., Hume M.E., Villamil Díaz L.M. (2021). Multistrain probiotics use in main commercially cultured freshwater fish: a systematic review of evidence. Rev. Aquacult., 1–23.10.1111/raq.12543
  35. Mohammad E., Mehran T. (2010). Effects of dietary inclusion of guar meal supplemented by β-mannanase on performance of laying hens, egg quality characteristics and diacritical counts of white blood cells. Am. J. Anim. Vet., 5.10.3844/ajavsp.2010.237.243
  36. Monier M.N. (2020). Efficacy of dietary exogenous enzyme supplementation on growth performance, antioxidant activity, and digestive enzymes of common carp (Cyprinus carpio) fry. Fish Physiol. Biochem., 46: 713–723.10.1007/s10695-019-00745-z
  37. Mori M., Ito T., Washio R., Shibasaki Y., Namba A., Yabu T., Iwazaki D., Wada N., Anzai H., Shiba H., Nakanishi T., Mano N. (2021). Enhancement of immune proteins expression in skin mucus of Japanese flounder Paralichthys olivaceus upon feeding a diet supplemented with high concentration of ascorbic acid. Fish Shellfish Immunol., 114: 20–27.10.1016/j.fsi.2021.04.009
  38. Nikiforov-Nikishin A., Nikiforov-Nikishin D., Kochetkov N., Smorodinskaya S., Klimov V. (2021). The influence of probiotics of different microbiological composition on histology of the gastrointestinal tract of juvenile Oncorhynchus mykiss. Microsc. Res. Tech., https://doi.org/10.1002/jemt.2392710.1002/jemt.2392734494700
  39. Randazzo B., Zarantoniello M., Gioacchini G., Cardinaletti G., Belloni A., Giorgini E., Faccenda F., Cerri R., Tibaldi E., Olivotto I. (2021). Physiological response of rainbow trout (Oncorhynchus mykiss) to graded levels of Hermetia illucens or poultry byproduct meals as single or combined substitute ingredients to dietary plant proteins. Aquaculture, 538: 736550.10.1016/j.aquaculture.2021.736550
  40. Roberts R.J. (2012). Fish Pathology. John Wiley & Sons.10.1002/9781118222942
  41. Sagada G., Gray N., Wang L., Xu B., Zheng L., Zhong Z., Ullah S., Tegomo A.F., Shao Q. (2021). Effect of dietary inactivated Lactobacillus plantarum on growth performance, antioxidative capacity, and intestinal integrity of black sea bream (Acanthopagrus schlegelii) fingerlings. Aquaculture, 535: 736370.10.1016/j.aquaculture.2021.736370
  42. Sakamoto K., Hirose H., Onizuka A., Hayashi M., Futamura N., Kawamura Y., Ezaki T. (2000). Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J. Surg. Res., 94: 99–106.10.1006/jsre.2000.5937
  43. Siwicki A.K., Anderson D.P. (1993). Nonspecific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum. In: Fish disease diagnosis and preventions methods, A.K. Siwicki, D.P. Anderson, J. Waluga (eds). Wyd. Inst. Ryb. Strodlad., pp. 105–111.
  44. Subramanian S., MacKinnon S.L., Ross N.W. (2007). A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. - B Biochem. Mol., 148: 256–263.10.1016/j.cbpb.2007.06.003
  45. Tachibana L., Telli G.S., de Carla Dias D., Gonçalves G.S., Ishikawa C.M., Cavalcante R.B., Natori M.M., Hamed S.B., Ranzani-Paiva M.J.T. (2020). Effect of feeding strategy of probiotic Enterococcus faecium on growth performance, hematologic, biochemical parameters and non-specific immune response of Nile tilapia. Aquacult. Rep., 16: 100277–100277.10.1016/j.aqrep.2020.100277
  46. Thrall M.A., Weiser G., Allison R.W., Campbell T.W. (2012). Veterinary hematology and clinical chemistry. John Wiley & Sons.
  47. Tidwell J.H., Coyle S.D., Rossi W., Rucker K. (2021). Evaluation of brewers spent grains with different levels of exogenous enzymes on the production performance and body composition of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). J. Appl. Aquac., 1–16.10.1080/10454438.2021.1956669
  48. Ushakova N.A., Pravdin V.G., Kravtsova L.Z., Ponomarev S.V., Gridina T.S., Ponomareva E.N., Rudoy D.V., Chikindas M.L. (2021). Complex bioactive supplements for aquaculture – evolutionary development of probiotic concepts. Prob. Antimicrob. Prot., 13: 1696–1708.10.1007/s12602-021-09835-y
  49. Velázquez-De Lucio B.S., Hernández-Domínguez E.M., Villa-García M., Díaz-Godínez G., Mandujano-Gonzalez V., Mendoza-Mendoza B., Álvarez-Cervantes J. (2021). Exogenous enzymes as zootechnical additives in animal feed: a review. Catalysts, 11.10.3390/catal11070851
  50. Williams B.A., Verstegen M.W.A., Tamminga S. (2001). Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev., 14: 207–228.10.1079/NRR200127
  51. Wuertz S., Schroeder A., Wanka K.M. (2021). Probiotics in fish nutrition – long-standing household remedy or native nutraceuticals? Water, 13.10.3390/w13101348
  52. Yin Z., Liu Q., Liu Y., Gao S., He Y., Yao C., Huang W., Gong Y., Mai K., Ai Q. (2021). Early life intervention using probiotic clostridium butyricum improves intestinal development, immune response, and gut microbiota in large yellow croaker (Larimichthys crocea) larvae. Front Immunol., 12: 640767.10.3389/fimmu.2021.640767
  53. Yu G., Liu C., Zheng Y., Chen Y., Li D., Qin W. (2021). Meta-analysis in the production chain of aquaculture: a review. Inf. Proc. Agricult., https://doi.org/10.1016/j.inpa.2021.04.00210.1016/j.inpa.2021.04.002
DOI: https://doi.org/10.2478/aoas-2022-0006 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1063 - 1072
Submitted on: Sep 27, 2021
Accepted on: Dec 7, 2021
Published on: Jul 19, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Seyed Pezhman Hosseini Shekarabi, Mojtaba Ghodrati, Mahmoud A.O. Dawood, Alireza Shenavar Masouleh, Amin Farahbod Roudbaraki, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.