References
- Abdel-Latif H.M.R., Abdel-Tawwab M., Dawood M.A.O., Menanteau-Ledouble S., El-Matbouli M. (2020). Benefits of dietary butyric acid, sodium butyrate, and their protected forms in aquafeeds: A Review. Rev. Fish. Sci. Aquac. 28: 421–448.10.1080/23308249.2020.1758899
- Adawi D., Ahrné S., Molin G. (2001). Effects of different probiotic strains of Lactobacillus and Bifidobacterium on bacterial translocation and liver injury in an acute liver injury model. Int. J. Food Microbiol., 70: 213–220.10.1016/S0168-1605(01)00550-5
- Adel M., Dawood M.A. (2021). Probiotics application: implications for sustainable aquaculture. In: Probiotic bacteria and postbiotic Metabolites: role in animal and human health, N. Mojgani, M. Dadar, (eds). Microorganisms for Sustainability Series 2, Springer Publishing, NY, USA, pp. 191–219.10.1007/978-981-16-0223-8_8
- Adeola O., Cowieson A.J. (2011). Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Anim. Sci. J., 89: 3189–3218.10.2527/jas.2010-3715
- Akbari H., Shekrabi S.P.H., Soltani M., Mehrgan M.S. (2021). Effects of potential probiotic Enterococcus casseliflavus (EC-001) on growth performance, immunity, and resistance to Aeromonas hydrophila infection in common carp (Cyprinus carpio). Prob. Antimicrob. Proteins., 13: 1316–1325.10.1007/s12602-021-09771-x
- AOAC (1995). Association of Official Analytical Chemists. Official Methods of Analysis 16th edition. AOAC, Arlington, Virginia, pp. 532.
- Assan D., Kuebutornye F.K.A., Hlordzi V., Chen H., Mraz J., Mustapha U.F., Abarike E.D. (2022). Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini-review. Comp. Biochem. Physiol. – B Biochem. Mol., 257: 110653.10.1016/j.cbpb.2021.110653
- Barham W.T., Smit G.L., Schoonbee H.J. (1980). The haematological assessment of bacterial infection in rainbow trout, Salmo gairdneri Richardson. J. Fish Biol., 17: 275–281.10.1111/j.1095-8649.1980.tb02761.x
- Campbell T. (2004). Hematology of lower vertebrates. American College of Veterinary Pathologists and American Society for Veterinary Clinical Pathology, Middleton WI, USA, pp. 1104–1108.
- Dai B., Hou Y., Hou Y., Qian L. (2019). Effects of multienzyme complex and probiotic supplementation on the growth performance, digestive enzyme activity and gut microorganisms composition of snakehead (Channa argus). Aquacult. Nutr., 25: 15–25.10.1111/anu.12825
- Dawood M.A.O. (2021). Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev. Aquacult., 13: 642–663.10.1111/raq.12492
- Dawood M.A.O., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquacult., 12: 987–1002.10.1111/raq.12368
- Dawood M.A.O., Koshio S., Ishikawa M., El-Sabagh M., Yokoyama S., Wang W.-L., Yukun Z., Olivier A. (2017). Physiological response, blood chemistry profile and mucus secretion of red sea bream (Pagrus major) fed diets supplemented with Lactobacillus rhamnosus under low salinity stress. Fish Physiol. Biochem., 43: 179–192.10.1007/s10695-016-0277-4
- Dawood M.A.O., Abo-Al-Ela H.G., Hasan M.T. (2020). Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. Fish Shellfish Immunol., 97: 268–282.10.1016/j.fsi.2019.12.054
- Dawood M.A.O., Noreldin A.E., Sewilam H. (2021). Long term salinity disrupts the hepatic function, intestinal health, and gills antioxidative status in Nile tilapia stressed with hypoxia. Ecotoxicol. Environ. Saf., 220: 112412.10.1016/j.ecoenv.2021.112412
- El-Saadony M.T., Alagawany M., Patra A.K., Kar I., Tiwari R., Dawood M.A.O., Dhama K., Abdel-Latif H.M.R. (2021). The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immunol., 117: 36–52.10.1016/j.fsi.2021.07.007
- Ellis A.E. (1990). Lysozyme assays. In: Techniques in fish immunology, J.S. Stolen, T.C. Fletcher, D.P. Anderson, B.S. Roberson, W.B. Van Muiswinkel (eds). USA, SOS Publ., Fair Haven, NJ, pp. 101–103.
- Falahatkar B. (2018). Nutritional requirements of the Siberian sturgeon: an updated synthesis. In: The Siberian sturgeon (Acipenser baerii, Brandt, 1869) Vol. 1 – Biology, P. Williot, G. Nonnotte, D. Vizziano-Cantonnet, M. Chebanov (eds). Springer International Publishing, Cham, pp. 207–228.10.1007/978-3-319-61664-3_11
- FAO (2020). The State of World Fisheries and Aquaculture. Sustainability in Action, Rome.
- Firmino J.P., Fernández-Alacid L., Vallejos-Vidal E., Salomón R., Sanahuja I., Tort L., Ibarz A., Reyes-López F.E., Gisbert E. (2021). Carvacrol, thymol, and garlic essential oil promote skin innate immunity in gilthead seabream (Sparus aurata) through the multifactorial modulation of the secretory pathway and enhancement of mucus protective capacity. Front. Immunol., 12.10.3389/fimmu.2021.633621799426933777020
- Galappaththi E.K., Ichien S.T., Hyman A.A., Aubrac C.J., Ford J.D. (2020). Climate change adaptation in aquaculture. Rev. Aquacult., 12: 2160–2176.10.1111/raq.12427
- Ghomi M.R., Shahriari R., Langroudi H.F., Nikoo M., von Elert E. (2012). Effects of exogenous dietary enzyme on growth, body composition, and fatty acid profiles of cultured great sturgeon Huso huso fingerlings. Aquacult. Int., 20: 249–254.10.1007/s10499-011-9453-9
- Hassaan M.S., Soltan M.A., Ghonemy M.M.R. (2014). Effect of synbiotics between Bacillus licheniformis and yeast extract on growth, hematological and biochemical indices of the Nile tilapia (Oreochromis niloticus). Egypt. J. Aquat. Res., 40: 199–208.10.1016/j.ejar.2014.04.001
- Hassaan M.S., Mohammady E.Y., Soaudy M.R., Elashry M.A., Moustafa M.M.A., Wassel M.A., El-Garhy H.A.S., El-Haroun E.R., Elsayed H.E. (2021). Synergistic effects of Bacillus pumilus and exogenous protease on Nile tilapia (Oreochromis niloticus) growth, gut microbes, immune response and gene expression fed plant protein diet. Anim. Feed Sci. Technol., 275: 114892.10.1016/j.anifeedsci.2021.114892
- Hedayati S.A., Sheikh Veisi R., Hosseini Shekarabi S.P., Shahbazi Naserabad S., Bagheri D., Ghafarifarsani H. (2021). Effect of dietary Lactobacillus casei on physiometabolic responses and liver histopathology in common carp (Cyprinus carpio) after exposure to iron oxide nanoparticles. Biol. Trace Elem. Res., 1–9.10.1007/s12011-021-02906-9
- Hosseini Shekarabi S.P., Shamsaie Mehrgan M., Banavreh A. (2021). Feasibility of superworm, Zophobas morio, meal as a partial fishmeal replacer in fingerling rainbow trout, Oncorhynchus mykiss, diet: growth performance, amino acid profile, proteolytic enzymes activity and pigmentation. Aquacult. Nutr., 27: 1077–1088.10.1111/anu.13249
- Huang Z., Li Z., Xu A., Zheng D., Ye Y., Wang Z. (2020). Effects of exogenous multienzyme complex supplementation in diets on growth performance, digestive enzyme activity and non-specific immunity of the Japanese seabass, Lateolabrax japonicus. Aquacult. Nutr., 26: 306–315.10.1111/anu.12991
- Kong Y., Li M., Chu G., Liu H., Shan X., Wang G., Han G. (2021). The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: Digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture, 531: 735852.10.1016/j.aquaculture.2020.735852
- Lowry O.H. (1951). Protein determination with the folin phenol reagent. J. Biol. Chem., 193: 265–275.10.1016/S0021-9258(19)52451-6
- Luo J., Li Y., Jin M., Zhu T., Li C., Zhou Q. (2020). Effects of dietary exogenous xylanase supplementation on growth performance, intestinal health, and carbohydrate metabolism of juvenile large yellow croaker, Larimichthys crocea. Fish Physiol. Bioch., 46: 1093–1110.10.1007/s10695-020-00774-z
- Maas R.M., Verdegem M.C.J., Lee C.-N., Schrama J.W. (2021 a). Effects and interactions between phytase, xylanase and β-glucanase on growth performance and nutrient digestibility in Nile tilapia. Anim. Feed Sci. Technol., 271: 114767.10.1016/j.anifeedsci.2020.114767
- Maas R.M., Verdegem M.C.J., Debnath S., Marchal L., Schrama J.W. (2021 b). Effect of enzymes (phytase and xylanase), probiotics (B. amyloliquefaciens) and their combination on growth performance and nutrient utilisation in Nile tilapia. Aquaculture, 533: 736226.10.1016/j.aquaculture.2020.736226
- Maas R.M., Deng Y., Dersjant-Li Y., Petit J., Verdegem M.C.J., Schrama J.W., Kokou F. (2021 c). Exogenous enzymes and probiotics alter digestion kinetics, volatile fatty acid content and microbial interactions in the gut of Nile tilapia. Sci. Rep., 11: 8221.10.1038/s41598-021-87408-3805005633859242
- Melo-Bolívar J.F., Ruiz Pardo R.Y., Hume M.E., Villamil Díaz L.M. (2021). Multistrain probiotics use in main commercially cultured freshwater fish: a systematic review of evidence. Rev. Aquacult., 1–23.10.1111/raq.12543
- Mohammad E., Mehran T. (2010). Effects of dietary inclusion of guar meal supplemented by β-mannanase on performance of laying hens, egg quality characteristics and diacritical counts of white blood cells. Am. J. Anim. Vet., 5.10.3844/ajavsp.2010.237.243
- Monier M.N. (2020). Efficacy of dietary exogenous enzyme supplementation on growth performance, antioxidant activity, and digestive enzymes of common carp (Cyprinus carpio) fry. Fish Physiol. Biochem., 46: 713–723.10.1007/s10695-019-00745-z
- Mori M., Ito T., Washio R., Shibasaki Y., Namba A., Yabu T., Iwazaki D., Wada N., Anzai H., Shiba H., Nakanishi T., Mano N. (2021). Enhancement of immune proteins expression in skin mucus of Japanese flounder Paralichthys olivaceus upon feeding a diet supplemented with high concentration of ascorbic acid. Fish Shellfish Immunol., 114: 20–27.10.1016/j.fsi.2021.04.009
- Nikiforov-Nikishin A., Nikiforov-Nikishin D., Kochetkov N., Smorodinskaya S., Klimov V. (2021). The influence of probiotics of different microbiological composition on histology of the gastrointestinal tract of juvenile Oncorhynchus mykiss. Microsc. Res. Tech., https://doi.org/10.1002/jemt.2392710.1002/jemt.2392734494700
- Randazzo B., Zarantoniello M., Gioacchini G., Cardinaletti G., Belloni A., Giorgini E., Faccenda F., Cerri R., Tibaldi E., Olivotto I. (2021). Physiological response of rainbow trout (Oncorhynchus mykiss) to graded levels of Hermetia illucens or poultry byproduct meals as single or combined substitute ingredients to dietary plant proteins. Aquaculture, 538: 736550.10.1016/j.aquaculture.2021.736550
- Roberts R.J. (2012). Fish Pathology. John Wiley & Sons.10.1002/9781118222942
- Sagada G., Gray N., Wang L., Xu B., Zheng L., Zhong Z., Ullah S., Tegomo A.F., Shao Q. (2021). Effect of dietary inactivated Lactobacillus plantarum on growth performance, antioxidative capacity, and intestinal integrity of black sea bream (Acanthopagrus schlegelii) fingerlings. Aquaculture, 535: 736370.10.1016/j.aquaculture.2021.736370
- Sakamoto K., Hirose H., Onizuka A., Hayashi M., Futamura N., Kawamura Y., Ezaki T. (2000). Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J. Surg. Res., 94: 99–106.10.1006/jsre.2000.5937
- Siwicki A.K., Anderson D.P. (1993). Nonspecific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum. In: Fish disease diagnosis and preventions methods, A.K. Siwicki, D.P. Anderson, J. Waluga (eds). Wyd. Inst. Ryb. Strodlad., pp. 105–111.
- Subramanian S., MacKinnon S.L., Ross N.W. (2007). A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. - B Biochem. Mol., 148: 256–263.10.1016/j.cbpb.2007.06.003
- Tachibana L., Telli G.S., de Carla Dias D., Gonçalves G.S., Ishikawa C.M., Cavalcante R.B., Natori M.M., Hamed S.B., Ranzani-Paiva M.J.T. (2020). Effect of feeding strategy of probiotic Enterococcus faecium on growth performance, hematologic, biochemical parameters and non-specific immune response of Nile tilapia. Aquacult. Rep., 16: 100277–100277.10.1016/j.aqrep.2020.100277
- Thrall M.A., Weiser G., Allison R.W., Campbell T.W. (2012). Veterinary hematology and clinical chemistry. John Wiley & Sons.
- Tidwell J.H., Coyle S.D., Rossi W., Rucker K. (2021). Evaluation of brewers spent grains with different levels of exogenous enzymes on the production performance and body composition of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). J. Appl. Aquac., 1–16.10.1080/10454438.2021.1956669
- Ushakova N.A., Pravdin V.G., Kravtsova L.Z., Ponomarev S.V., Gridina T.S., Ponomareva E.N., Rudoy D.V., Chikindas M.L. (2021). Complex bioactive supplements for aquaculture – evolutionary development of probiotic concepts. Prob. Antimicrob. Prot., 13: 1696–1708.10.1007/s12602-021-09835-y
- Velázquez-De Lucio B.S., Hernández-Domínguez E.M., Villa-García M., Díaz-Godínez G., Mandujano-Gonzalez V., Mendoza-Mendoza B., Álvarez-Cervantes J. (2021). Exogenous enzymes as zootechnical additives in animal feed: a review. Catalysts, 11.10.3390/catal11070851
- Williams B.A., Verstegen M.W.A., Tamminga S. (2001). Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev., 14: 207–228.10.1079/NRR200127
- Wuertz S., Schroeder A., Wanka K.M. (2021). Probiotics in fish nutrition – long-standing household remedy or native nutraceuticals? Water, 13.10.3390/w13101348
- Yin Z., Liu Q., Liu Y., Gao S., He Y., Yao C., Huang W., Gong Y., Mai K., Ai Q. (2021). Early life intervention using probiotic clostridium butyricum improves intestinal development, immune response, and gut microbiota in large yellow croaker (Larimichthys crocea) larvae. Front Immunol., 12: 640767.10.3389/fimmu.2021.640767
- Yu G., Liu C., Zheng Y., Chen Y., Li D., Qin W. (2021). Meta-analysis in the production chain of aquaculture: a review. Inf. Proc. Agricult., https://doi.org/10.1016/j.inpa.2021.04.00210.1016/j.inpa.2021.04.002