Have a personal or library account? Click to login
Dose-response effects of the Savory (Satureja khuzistanica) essential oil and extract on rumen fermentation characteristics, microbial protein synthesis and methane production in vitro Cover

Dose-response effects of the Savory (Satureja khuzistanica) essential oil and extract on rumen fermentation characteristics, microbial protein synthesis and methane production in vitro

Open Access
|Jul 2022

References

  1. Abbasi A., Maddah S.M., Mahboubi A., Khaledi A., Vazini H., Esmaeili D. (2017). Investigate the inhibitory effects of Satureja khuzestanica essential oil against housekeeping fabD and exoA genes of Pseudomonas aeruginosa from hospital isolates using RT-PCR technique. Ann. Med. Health Sci. Res., 7: 246–250.
  2. Adams R.P. (2007). Identification of essential oil components by gas chromatography/ mass spectroscopy, Allured Publishing Corporation, Illinois.
  3. AOAC (2000). Official Methods of Analysis. Association of Official Analytical Chemists (AOAC). VA, USA, Arlington, 17th ed.
  4. Belanche A., De la Fuente G., Pinloche E., Newbold C.J., Balcells J. (2012). Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis. J. Anim. Sci., 90: 3924–3936.
  5. Benchaar C., Greathead H. (2011). Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol., 166: 338–355.
  6. Benchaar C., Duynisveld J., Charmley E. (2006). Effects of monensin and increasing dose levels of a mixture of essential oil compounds on intake, digestion and growth performance of beef cattle. Can. J. Anim. Sci., 86: 91–96.
  7. Benchaar C., Chaves A., Fraser G., Beauchemin K., McAllister T. (2007). Effects of essential oils and their components on in vitro rumen microbial fermentation. Can. J. Anim. Sci., 87: 413–419.
  8. Blümmel M., Makkar H., Becker K. (1997 a). In vitro gas production: a technique revisited. J. Anim. Physiol. Anim. Nutr., 77: 24–34.10.1111/j.1439-0396.1997.tb00734.x
  9. Blümmel M., Steingab H., Becker K. (1997 b). The relationship between in vitro gas production, in vitro microbial biomass yield and N-15 incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr., 77: 911–921.10.1079/BJN19970089
  10. Bodas R., Prieto N., García-González R., Andrés S., Giráldez F.J., López S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol., 176: 78–93.
  11. Broderick G., Kang J. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci., 63: 64–75.
  12. Broudiscou L.-P., Papon Y., Broudiscou A.F. (2002). Effects of dry plant extracts on feed degradation and the production of rumen microbial biomass in a dual outflow fermenter. Anim. Feed Sci. Technol., 101: 183–189.
  13. Burt S. (2004). Essential oils: their antibacterial properties and potential applications in foods – a review. Int. J. Food Microbiol., 94: 223–253.
  14. Busquet M., Calsamiglia S., Ferret A., Kamel C. (2005). Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Anim. Feed Sci. Technol., 123: 597–613.
  15. Calabrò S. (2015). Plant secondary metabolites. Rumen microbiology: From evolution to revolution, Springer, New Delhi, India.
  16. Calsamiglia S., Busquet M., Cardozo P.W., Castillejos L., Ferret A. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci., 90: 2580–2595.
  17. Cardozo P., Calsamiglia S., Ferret A., Kamel C. (2006). Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. J. Anim. Sci., 84: 2801–2808.
  18. Castillejos L., Calsamiglia S., Ferret A. (2006). Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci., 89: 2649–2658.
  19. Castillejos L., Calsamiglia S., Ferret A., Losa R. (2007). Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol., 132: 186–201.
  20. Chaves A., Stanford K., Gibson L., McAllister T., Benchaar C. (2008). Effects of carvacrol and cinnamaldehyde on intake, rumen fermentation, growth performance, and carcass characteristics of growing lambs. Anim. Feed Sci. Technol., 145: 396–408.
  21. Christaki E., Bonos E., Giannenas I., Florou-Paneri P. (2012). Aromatic plants as a source of bioactive compounds. Agriculture, 2: 228–243.
  22. Cieslak A., Szumacher-Strabel M., Stochmal A., Oleszek W. (2013). Plant components with specific activities against rumen methanogens. Animal, 7: 253–265.
  23. Cotta M.A., Russell J.B., (1997). Digestion of nitrogen in the rumen: a model for metabolism of nitrogen compounds in gastrointestinal environments. In: Gastrointestinal microbiology, Mackie R.I., White B.A. (eds). Boston, US, Springer, pp. 380–423.10.1007/978-1-4615-4111-0_11
  24. Dehority B.A. (2003). Rumen microbiology. Nottingham, Nottingham University Press, 372 pp.
  25. Dewanto V., Wu X., Adom K.K., Liu R.H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 50: 3010–3014.
  26. Dorman H., Deans S.G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol., 88: 308–316.
  27. El-Zaiat H.M., Abdalla A.L. (2019). Potentials of patchouli (Pogostemon cablin) essential oil on ruminal methanogenesis, feed degradability, and enzyme activities in vitro. Environ. Sci. Pollut. Res., 26: 30220–30228.
  28. El-Zaiat H.M., Ré D.D., Patino H.O., Sallam S.M. (2019). Assessment of using dried vinasse rice to replace soybean meal in lambs diets: In vitro, lambs performance and economic evaluation. Small Rumin. Res., 173: 1–8.
  29. Fair R.J., Tor Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 6: 25–64.
  30. Finlay B.J., Esteban G., Clarke K.J., Williams A.G., Embley T.M., Hirt R.P. (1994). Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett., 117: 157–161.
  31. France J., Dhanoa M., Theodorou M., Lister S., Davies D., Isac D. (1993). A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. J. Theor. Biol., 163: 99–111.
  32. Garcia F., Colombatto D., Brunetti M.A., Martínez M.J., Moreno M.V., Scorcione Turcato M., Lucini E., Frossasco G., Martínez Ferrer J. (2020). The reduction of methane production in the in vitro ruminal fermentation of different substrates is linked with the chemical composition of the essential oil. Animals, 10: 786.
  33. Hadian J., Hossein Mirjalili M., Reza Kanani M., Salehnia A., Ganjipoor P. (2011). Phytochemical and morphological characterization of Satureja khuzistanica Jamzad populations from Iran. Chem. Biodivers., 8: 902–915.
  34. Hart K., Yáñez-Ruiz D.R., Duval S., McEwan N., Newbold C. (2008). Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Technol., 147: 8–35.
  35. Hashemi M.B., Niakousari M., Saharkhiz M.J., Eskandari M.H. (2012). Effect of Satureja khuzestanica essential oil on oxidative stability of sunflower oil during accelerated storage. Nat. Prod. Res., 26: 1458–1463.
  36. Honan M., Feng X., Tricarico J.M., Kebreab E. (2021). Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. Anim. Prod. Sci., doi: https://doi.org/10.1071/AN20295.10.1071/AN20295
  37. Hundal J.S., Wadhwa M., Bakshi M.P.S. (2019). Herbal feed additives containing essential oil: 1. Impact on the nutritional worth of complete feed in vitro. Trop. Anim. Health Prod., 51: 1909–1917.
  38. Joch M., Kudrna V., Hakl J., Božik M., Homolka P., Illek J., Tyrolová Y., Výborná A. (2019). In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Anim. Feed Sci. Technol., 251: 176–186.
  39. Jouany J.P., Morgavi D. (2007). Use of ‘natural’products as alternatives to antibiotic feed additives in ruminant production. Animal, 1: 1443–1466.
  40. Kahvand M., Malecky M. (2018). Dose-response effects of sage (Salvia officinalis) and yarrow (Achillea millefolium) essential oils on rumen fermentation in vitro. Ann. Anim. Sci., 18: 125–142.
  41. Kamra D.N., Agarwal N., Chaudhary L.C. (2006). Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Int. Congr. Ser., 1293: 156–163.
  42. Khattab M., Abd El Tawab A., Hadhoud F., Shaaban M. (2020). Utilizing of celery and thyme as ruminal fermentation and digestibility modifier and reducing gas production. Int. J. Dairy Sci., 15: 22–27.
  43. Khiaosa-Ard R., Zebeli Q. (2013). Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants. J. Anim. Sci., 91: 1819–1830.
  44. Kholif A.E., Olafadehan O.A. (2021). Essential oils and phytogenic feed additives in ruminant diet: chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem. Rev. https://doi.org/10.1007/s11101-021-09739-3.10.1007/s11101-021-09739-3
  45. Kim H., Jung E., Lee H.G., Kim B., Cho S., Lee S., Kwon I., Seo J. (2019). Essential oil mixture on rumen fermentation and microbial community – an in vitro study. Asian-Australas J. Anim. Sci., 32: 808.
  46. Lemos B.J.M., Souza F.M., Arnhold E., Conceição E.C., Couto V.R.M., Fernandes J.J.R. (2021). Effects of plant extracts from Stryphnodendron adstringens (mart.) coville, Lafoensia pacari a. st.-hil, copaifera spp., and Pterodon emarginatus Vogel on in vitro rumen fermentation. J. Anim. Physiol. Anim. Nutr., 105: 639–652.
  47. Liu W.-R., Qiao W.-L., Liu Z.-Z., Wang X.-H., Jiang R., Li S.-Y., Shi R.-B., She G.-M. (2013). Gaultheria: Phytochemical and pharmacological characteristics. Molecules, 18: 12071–12108.
  48. Lowry J., Kennedy P. (1996). Fermentation of flavonols by rumen organisms. Proc. Australian Society of Animal Production, pp. 366–366.
  49. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265–275.
  50. Luis J., Pérez R.M., González F.V. (2007). UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants. Food Chem., 101: 1211–1215.
  51. Mahboubi M., Kazempour N. (2016). Antioxidant and antimicrobial activity of Satureja khuzistanica Jamzad essential oil, ethanol and aqueous extracts. Biharean Biologist, pp. 1–12.
  52. Makkar H., Sharma O., Dawra R., Negi S. (1982). Simple determination of microbial protein in rumen liquor. J. Dairy Sci., 65: 2170–2173.
  53. Makkar H.P.S., Blümmel M., Becker K. (1995). Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr., 73: 897–913.
  54. McDougall E.I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J., 43: 99–109.
  55. Menke K., Steingass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev., 28: 7–55.
  56. Minson D.J. (1997). Ruminants: the protein producers. Biologist, 44: 463–464.
  57. Moss A.R., Jouany J.-P., Newbold J. (2000). Methane production by ruminants: its contribution to global warming. Ann. Zootech., 49: 231–253.
  58. Nagaraja T.G., Newbold C.J., Van Nevel C.J., Demeyer D.I., (1997). Manipulation of ruminal fermentation. In: The rumen microbial ecosystem, Hobson P.N., Stewart C.S. (eds.). Dordrecht, Springer, pp. 523–632.10.1007/978-94-009-1453-7_13
  59. Nel T.C., Hassen A., Akanmu A.M., Adejoro F.A. (2021). Use of essential oils in combination with fibrolytic enzymes to decrease in vitro ruminal methane production. S. Afr. J. Anim. Sci., 50: 680–686.
  60. Nolan J.V., Dobos R.C. (2005). Nitrogen transactions in ruminants. In: Quantitative aspects of ruminant digestion and metabolism, Dijkstra J., Forbes J.M., France J. (eds.). Walingford, UK, CABI Publishing, pp. 177–206.10.1079/9780851998145.0177
  61. Oh J., Harper M., Hristov A. (2019). Effects of lowering crude protein supply alone or in a combination with essential oils on productivity, rumen function and nutrient utilization in dairy cows. Animal, 13: 2510–2518.
  62. Olijhoek D., Hellwing A.L.F., Grevsen K., Haveman L., Chowdhury M.R., Løvendahl P., Weisbjerg M.R., Noel S.J., Højberg O., Wiking L. (2019). Effect of dried oregano (Origanum vulgare L.) plant material in feed on methane production, rumen fermentation, nutrient digestibility, and milk fatty acid composition in dairy cows. J. Dairy Sci., 102: 9902–9918.
  63. Oskoueian E., Abdullah N., Oskoueian A. (2013). Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Bio. Med. Res. Int., 2013: 1–8.
  64. Ottenstein D.M., Bartley D.A. (1971). Separation of free acids C2-C5 in diluted aqueous solution column technology. J. Chromatogr. Sci., 9: 673–681.
  65. Patra A., Kamra D., Agarwal N. (2006). Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol., 128: 276–291.
  66. Patra A.K., Saxena J. (2010). A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry, 71: 1198–1222.
  67. Patra A.K., Yu Z. (2012). Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol., 78: 4271–4280.
  68. Patra A.K., Yu Z. (2013). Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques. J. Dairy Sci., 96: 4592–4600.
  69. Russell J.B., Hespell R.B. (1981). Microbial rumen fermentation. J. Dairy Sci., 64: 1153–1169.
  70. SAS (2002). Statistical Analytical System Users Guide. SAS Institute, Cary, NC, USA.
  71. Sefidkon F., Ahmadi S. (2000). Essential oil of Satureja khuzistanica Jamzad. J. Essent. Oil Res., 12: 427–428.
  72. Singleton V.L., Rossi J.A. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Vitic., 16: 144–158.
  73. Skendi A., Irakli M., Chatzopoulou P. (2017). Analysis of phenolic compounds in Greek plants of Lamiaceae family by HPLC. J. Appl. Res. Med. Aromat. Plants, 6: 62–69.
  74. Stack R.J., Cotta M.A. (1986). Effect of 3-phenylpropanoic acid on growth of and cellulose utilization by cellulolytic ruminal bacteria. Appl. Environ. Microbiol., 52: 209–210.
  75. Stack R.J., Hungate R.E., Opsahl W.P. (1983). Phenylacetic acid stimulation of cellulose digestion by Ruminococcus albus 8. Appl. Environ. Microbiol., 46: 539–544.
  76. Stevanović Z.D., Bošnjak-Neumüller J., Pajić-Lijaković I., Raj J., Vasiljević M. (2018). Essential oils as feed additives – future perspectives. Molecules, 23: 1717.
  77. Sylvester J., Karnati S., Yu Z., Newbold C.J., Firkins J. (2005). Evaluation of a real-time PCR assay quantifying the ruminal pool size and duodenal flow of protozoal nitrogen. J. Dairy Sci., 88: 2083–2095.
  78. Tekippe J., Hristov A.N., Heyler K., Zheljazkov V., Ferreira J., Cantrell C., Varga G. (2012). Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation. Can. J. Anim. Sci., 92: 395–408.
  79. Torres R.N.S., Moura D.C., Ghedini C.P., Ezequiel J.M.B., Almeida M.T.C. (2020). Meta-analysis of the effects of essential oils on ruminal fermentation and performance of sheep. Small Rumin. Res., https://doi.org/10.1016/j.smallrumres.2020.106148.10.1016/j.smallrumres.2020.106148
  80. Ungerfeld E.M. (2015). Limits to dihydrogen incorporation into electron sinks alternative to methanogenesis in ruminal fermentation. Front. Microbiol., 6: 1272.
  81. Van Nevel C., Demeyer D. (1996). Control of rumen methanogenesis. Environ. Monit. Assess., 42: 73–97.
  82. Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597.
  83. Wallace R.J. (2004). Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc., 63: 621–629.
  84. Wang D., Huang J., Zhang Z., Tian X., Huang H., Yu Y., Zhang G., Ding J., Huang R. (2013). Influences of Portulaca oleracea extracts on in vitro methane emissions and rumen fermentation of forage. J. Food Agric. Environ., 11: 483–488.
  85. Williams A.G., Coleman G.S., (1992). Role of protozoa in the rumen. In: The rumen protozoa, New York, US. Springer, pp. 317–347.10.1007/978-1-4612-2776-2_10
  86. Yadeghari S., Malecky M., Banadaky M.D., Navidshad B. (2015). Evaluating in vitro dose-response effects of Lavandula officinalis essential oil on rumen fermentation characteristics, methane production and ruminal acidosis. Vet. Res. Forum., 6: 285–293.
  87. Yu J., Cai L., Zhang J., Yang A., Wang Y., Zhang L., Guan L.L., Qi D. (2020). Effects of thymol supplementation on goat rumen fermentation and rumen microbiota in vitro. Microorganisms, https://doi.org/10.3390/microorganisms8081160.10.3390/microorganisms8081160746360732751619
  88. Zhou R., Wu J., Zhang L., Liu L., Casper D.P., Jiao T., Liu T., Wang J., Lang X., Song S. (2019). Effects of oregano essential oil on the ruminal pH and microbial population of sheep. PLoS One, https://doi.org/10.1371/journal.pone.0217054.10.1371/journal.pone.0217054652722731107883
  89. Zhou R., Wu J., Lang X., Liu L., Casper D.P., Wang C., Zhang L., Wei S. (2020). Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J. Dairy Sci., 103: 2303–2314.
DOI: https://doi.org/10.2478/aoas-2021-0084 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1001 - 1014
Submitted on: Jul 26, 2021
Accepted on: Oct 11, 2021
Published on: Jul 19, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Mostafa Mehdipour Golbotteh, Mostafa Malecky, Hasan Aliarabi, Pouya Zamani, Mehdi Ganjkhanlou, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.