Have a personal or library account? Click to login

Nitrate supplementation at two forage levels in dairy cows feeding: milk production and composition, fatty acid profiles, blood metabolites, ruminal fermentation, and hydrogen sink

Open Access
|May 2022

References

  1. Anderson R.C., Huwe J.K., Smith D.J., Stanton T.B., Krueger N.A., Callaway T.R., Edrington T.S., Harvey R.B., Nisbet D.J. (2010). Effect of nitroethane, dimethyl-2-nitroglutarate and 2-nitro-methyl-propionate on ruminal methane production and hydrogen balance in vitro. Bioresour. Technol., 101: 5345–5349.10.1016/j.biortech.2009.11.108
  2. AOAC (2005). Official Methods of Analysis of AOAC International. AOAC International. Maryland, USA.
  3. Atyabi N., Yasini S.P., Jalali S.M., Shaygan H. (2012). Antioxidant effect of different vitamins on methemoglobin production: An in vitro study. Vet. Res. Forum., 3: 97–101.
  4. Aytekin I., Aypak S.U. (2011). Levels of selected minerals, nitric oxide, and vitamins in aborted Sakis sheep raised under semitropical conditions. Trop. Anim. Health Prod., 43: 511–514.10.1007/s11250-010-9724-x
  5. Bae Y.J., Kratzsch J. (2018). Vitamin D and calcium in the human breast milk. Best Pract. Res. Clin. Endocrinol. Metab., 32: 39–45.10.1016/j.beem.2018.01.007
  6. Capelari M.G.M. (2018). Investigating the potential of supplementary nitrate and monensin as dietary additives for enteric methane mitigation in ruminants. Michigan State University.
  7. Danielsson R., Dicksved J., Sun L., Gonda H., Müller B., Schnürer A., Bertilsson J. (2017). Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front. Microbiol., 8: 226.10.3389/fmicb.2017.00226
  8. Darabighane B., Aghjehgheshlagh F.M., Mahdavi A., Navidshad B., Bernard J.K. (2020). Replacing alfalfa hay with dry corn gluten feed alters eating behavior, nutrient digestibility, and performance of lactating dairy cows. Ital. J. Anim. Sci., 19: 1266–1276.10.1080/1828051X.2020.1830722
  9. de Raphelis-Soissan V., Nolan J.V., Godwin I.R., Newbold J.R., Perdok H.B., Hegarty R.S. (2017). Paraffin-wax-coated nitrate salt inhibits short-term methane production in sheep and reduces the risk of nitrite toxicity. Anim. Feed Sci. Technol., 229: 57–64.10.1016/j.anifeedsci.2017.04.026
  10. Demeyer D.I. (1991). Quantitative aspects of microbial metabolism in the rumen and hindgut. In: Rumen microbial metabolism and ruminant digestion, Jouany J.P. (ed.). INRA Paris, pp. 217–237.
  11. Difford G.F., Plichta D.R., Løvendahl P., Lassen J., Noel S.J., Højberg O., Wright A.D.G., Zhu Z., Kristensen L., Nielsen H.B., Guldbrandtsen B. (2018). Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet., 14: e1007580.10.1371/journal.pgen.1007580
  12. Dolfing J., Hubert C.R.J. (2017). Using thermodynamics to predict the outcomes of nitrate-based oil reservoir souring control interventions. Front. Microbiol., 8: 2575.10.3389/fmicb.2017.02575
  13. Doreau M., Arbre M., Popova M., Rochette Y., Martin C. (2018). Linseed plus nitrate in the diet for fattening bulls: effects on methane emission, animal health and residues in offal. Animal, 12: 501–507.10.1017/S1751731117002014
  14. Duthie C.A., Troy S.M., Hyslop J.J., Ross D.W., Roehe R., Rooke J.A. (2018). The effect of dietary addition of nitrate or increase in lipid concentrations, alone or in combination, on performance and methane emissions of beef cattle. Animal, 12: 280–287.10.1017/S175173111700146X
  15. Fedorah P.M., Hrudey S.E. (1983). A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ. Technol., 4: 425–432.10.1080/09593338309384228
  16. Granja-Salcedo Y.T., Fernandes R.M., Araujo R.C.D., Kishi L.T., Berchielli T.T., Resende F.D.D., Berndt A., Siqueira G.R. (2019). Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. Front. Microbiol., 10: 614.10.3389/fmicb.2019.00614
  17. Guo W.S., Schaefer D.M., Guo X.X., Ren L.P., Meng Q.X. (2009). Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. Asian-Australas. J. Anim. Sci., 22: 542–549.10.5713/ajas.2009.80361
  18. Guyader J., Doreau M., Morgavi D.P., Gérard C., Loncke C., Martin C. (2016). Long-term effect of linseed plus nitrate fed to dairy cows on enteric methane emission and nitrate and nitrite residuals in milk. Animal, 10: 1173–1181.10.1017/S1751731115002852
  19. Hulshof R.B.A., Berndt A., Gerrits W.J.J., Dijkstra J., Van Zijderveld S.M., Newbold J.R., Perdok H.B. (2012). Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J. Anim. Sci., 90: 2317–2323.10.2527/jas.2011-4209
  20. Iwamoto M., Asanuma N., Hino T. (2001). Effects of energy substrates on nitrate reduction and nitrate reductase activity in a ruminal bacterium, Selenomonas ruminantium. Anaerobe, 7: 315–321.10.1006/anae.2001.0397
  21. Khachlouf K., Hamed H., Gdoura R., Gargouri A. (2018). Effects of zeolite supplementation on dairy cow production and ruminal parameters – a review. Ann. Anim. Sci., 18: 857–877.10.2478/aoas-2018-0025
  22. Kiss M., Petrikovics I., Thompson D.E. (2018). Methemoglobin forming effect of dimethyl trisulfide in mice. Hemoglobin, 42: 315–319.10.1080/03630269.2018.1553182
  23. Klop G., Hatew B., Bannink A., Dijkstra J. (2016). Feeding nitrate and docosahexaenoic acid affects enteric methane production and milk fatty acid composition in lactating dairy cows. J. Dairy Sci., 99: 1161–1172.10.3168/jds.2015-10214
  24. Ku-Vera J.C., Castelán-Ortega O.A., Galindo-Maldonado F.A., Arango J., Chirinda N., Jiménez-Ocampo R., Valencia-Salazar S.S., Flores-Santiago E.J., Montoya-Flores M.D., Molina-Botero. I.C. Piñeiro-Vázquez, A.T. Arceo-Castillo J.I., Aguilar-Pérez C.F., Ramírez-Avilés L., Solorio-Sánchez F.J. (2020). Strategies for enteric methane mitigation in cattle fed tropical forages. Animal, 14: s453–s463.10.1017/S1751731120001780
  25. Lan W., Yang C. (2019). Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ., 654: 1270–1283.10.1016/j.scitotenv.2018.11.180
  26. Latham E.A., Pinchak W.E., Trachsel J., Allen H.K., Callaway T.R., Nisbet D.J., Anderson R. C. (2018). Isolation, characterization and strain selection of a Paenibacillus species for use as a probiotic to aid in ruminal methane mitigation, nitrate/nitrite detoxification and food safety. Bioresour. Technol., 263: 358–364.10.1016/j.biortech.2018.04.116
  27. Lee C., Beauchemin K.A. (2014). A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance. Canadian J. Anim. Sci., 94: 557–570.10.4141/cjas-2014-069
  28. Lee C., Araujo R.C., Koenig K.M., Beauchemin K.A. (2017). Effects of encapsulated nitrate on growth performance, nitrate toxicity, and enteric methane emissions in beef steers: backgrounding phase. J. Anim. Sci., 95: 3700–3711.10.2527/jas2017.1460
  29. Levêques A., Oberson J.M., Tissot E.A., Redeuil K., Thakkar S.K., Campos-Giménez E. (2019). Quantification of vitamins A, E, and K and carotenoids in submilliliter volumes of human milk. J. AOAC Inter., 102: 1059–1068.10.5740/jaoacint.19-0016
  30. Lin M., Schaefer D.M., Guo W.S., Ren L.P., Meng Q.X. (2011). Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian-Australas. J. Anim. Sci., 24: 471–478.10.5713/ajas.2011.10288
  31. Liu L., Xu X., Cao Y., Cai C., Cui H., Yao J. (2017). Nitrate decreases methane production also by increasing methane oxidation through stimulating NC10 population in ruminal culture. Amb. Express, 7: 76.10.1186/s13568-017-0377-2
  32. Maccarana L., Cattani M., Tagliapietra F., Bailoni L., Schiavon S. (2016). Influence of main dietary chemical constituents on the in vitro gas and methane production in diets for dairy cows. J. Anim. Sci. Biotech., 7: 54.10.1186/s40104-016-0109-5
  33. NRC (2001). Nutrient Requirements of Dairy Cattle. 7th ed. National Academies Press, Washington, DC, USA.
  34. Oh S., Shintani R., Koike S., Kobayashi Y. (2017). Ginkgo fruit extract as an additive to modify rumen microbiota and fermentation and to mitigate methane production. J. Dairy Sci., 100: 1923–1934.10.3168/jds.2016-11928
  35. Olijhoek D.W., Hellwing A.L.F., Brask M., Weisbjerg M.R., Højberg O., Larsen M.K., Dijkstra J., Erlandsen E.J., Lund P. (2016). Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J. Dairy Sci., 99: 6191–6205.10.3168/jds.2015-10691
  36. Palangi V., Macit M. (2020). Indictable mitigation of methane emission using some organic acids as additives towards a cleaner ecosystem. Waste Biomass Valor (2021). https://doi.org/10.1007/s12649-021-01347-8.10.1007/s12649-021-01347-8
  37. Patra A., Park T., Kim M., Yu Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotech., 8: 13.10.1186/s40104-017-0145-9
  38. Rooke J.A., Wallace R.J., Duthie C.A., McKain N., de Souza S.M., Hyslop J.J., Ross D.W., Waterhouse T., Roehe R. (2014). Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. Brit. J. Nutr., 112: 398–407.10.1017/S0007114514000932
  39. Sakthivel P.C., Kamra D.N., Agarwal N., Chaudhary L.C. (2012). Effect of sodium nitrate and nitrate reducing bacteria on in vitro methane production and fermentation with buffalo rumen liquor. Asian-Australas. J. Anim. Sci., 25: 812.10.5713/ajas.2011.11383
  40. Sharifi M., Hosseinkhani A., Sofizade M., Mosavi J. (2016). Effects of fat supplementation and chop length on milk composition and ruminal fermentation of cows fed diets containing Alfalfa silage. Iranian J. Appl. Anim. Sci., 6: 293–301.
  41. Sharifi M., Taghizadeh A., Khadem A.A., Hosseinkhani A., Mohammadzadeh H. (2019). Effects of nitrate supplementation and forage level on gas production, nitrogen balance and dry-matter degradation in sheep. Anim. Prod. Sci., 59: 515–523.10.1071/AN17759
  42. Sharifi M., Taghizadeh A., Hosseinkhani A., Palangi V., Macit M., Salem A.Z.M. (2021). Ruminal microbial methanotrophs and community, methane production, fermentation profile and lactation performance of two levels of forage with or without nitrate supplementation in dairy cows. Ann. Appl. Chem. (in press).
  43. Thanh L.P., Suksombat W. (2015). Milk yield, composition, and fatty acid profile in dairy cows fed a high-concentrate diet blended with oil mixtures rich in polyunsaturated fatty acids. Asian-Australas. J Anim Sci., 28: 796–806.10.5713/ajas.14.0810
  44. Ungerfeld E.M. (2015). Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Front. Microbiol., 6: 37.10.3389/fmicb.2015.00037
  45. van Gastelen S., Antunes-Fernandes E.C., Hettinga K.A., Dijkstra J. (2017). Relationships between methane emission of Holstein Friesian dairy cows and fatty acids, volatile metabolites and non-volatile metabolites in milk. Animal, 11: 1539–1548.10.1017/S1751731117000295
  46. van Lingen H.J., Fadel J.G., Moraes L.E., Bannink A., Dijkstra J. (2019). Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen. J. Theor. Biol., 480: 150–165.10.1016/j.jtbi.2019.08.008
  47. van Zijderveld S.M., Gerrits W.J.J., Dijkstra J., Newbold J.R., Hulshof R.B.A., Perdok H.B. (2011). Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci., 94: 4028–4038.10.3168/jds.2011-4236
  48. Veneman J.B., Muetzel S., Hart K.J., Faulkner C.L., Moorby J.M., Perdok H.B., Newbold C.J. (2015). Does dietary mitigation of enteric methane production affect rumen function and animal productivity in dairy cows?. PloS One, 10: e0140282.10.1371/journal.pone.0140282
  49. Vlaeminck B., Fievez V. (2005). Milk odd and branched–chain fatty acids to predict ruminal methanogenesis in dairy cows. Commun. Agric. Appl. Biol. Sci., 70: 43–47.
  50. Wang M., Sun X.Z., Janssen P.H., Tang S.X., Tan Z.L. (2014). Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Anim. Feed Sci. Technol., 194: 1–11.10.1016/j.anifeedsci.2014.04.012
  51. Wang M., Wang R., Yang S., Deng J.P., Tang S.X., Tan Z.L. (2016). Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production, ruminal fermentation and hydrogen balance using in vitro technique. Anim. Sci. J., 87: 224–232.10.1111/asj.12423
  52. Wankhade P.R., Manimaran A., Kumaresan A., Jeyakumar S., Ramesha K.P., Sejian V., Rajendran D., Varghese M.R. (2017). Metabolic and immunological changes in transition dairy cows: A review. Vet. World., 10: 1367.10.14202/vetworld.2017.1367-1377
  53. Williams S.R.O., Hannah M., Jacobs J.L., Wales W.J., Moate P.J. (2019). Volatile fatty acids in ruminal fluid can be used to predict methane yield of dairy cows. Animals, 9: 1006.10.3390/ani9121006
  54. Yin Q., Gu M., Wu G. (2020). Inhibition mitigation of methanogenesis processes by conductive materials: A critical review. Bioresour. Technol., 317: 123977.10.1016/j.biortech.2020.123977
  55. Zhang X., Wang M., Wang R., Ma Z., Long D., Mao H., Wen J., Bernard L.A., Beauchemin K.A., Tan Z. (2018). Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in in vitro ruminal culture. J. Sci. Food Agri., 98: 5205–5211.10.1002/jsfa.9056
  56. Zhao L., Meng Q., Ren L., Liu W., Zhang X., Huo Y., Zhou Z. (2015). Effects of nitrate addition on rumen fermentation, bacterial biodiversity and abundance. Asian-Australas. J. Anim. Sci., 28: 1433.10.5713/ajas.15.0091
  57. Zhou Y., Liu B., Yang R., Liu J. (2017). Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Biocon. Chem., 28: 2903–2909.10.1021/acs.bioconjchem.7b00673
DOI: https://doi.org/10.2478/aoas-2021-0044 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 711 - 722
Submitted on: Feb 18, 2021
Accepted on: Jun 10, 2021
Published on: May 12, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Majid Sharifi, Akbar Taghizadeh, Ali Hosseinkhani, Hamid Mohammadzadeh, Valiollah Palangi, Muhlis Macit, Abdelfattah Z. M. Salem, Soheila Abachi, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.