Have a personal or library account? Click to login
The Effect of Catabolic Transformations of Proteins and Fats on the Quality and Nutritional Value of Raw Ripened Products from Zlotnicka Spotted and Zlotnicka White Meat Cover

The Effect of Catabolic Transformations of Proteins and Fats on the Quality and Nutritional Value of Raw Ripened Products from Zlotnicka Spotted and Zlotnicka White Meat

Open Access
|Oct 2021

References

  1. Abellán A., Salazar E., Vázquez J., Cayuela J. M., Tejada L. (2018). Changes in proteolysis during the dry-cured processing of refrigerated and frozen loin. LWT-Food Sci. Technol., 96: 507–512.
  2. Bartkiene E., Bartkevics V., Mozuriene E., Krungleviciute V., Novoslavskij A., Santini A., Rozentale I., Juodeikiene G., Cizeikiene D. (2017). The impact of lactic acid bacteria with antimicrobial properties on biodegradation of polycyclic aromatic hydrocarbons and biogenic amines in cold smoked pork sausages. Food Control, 71: 285–292.
  3. Belitz H. D., Grosch W., Schieberle P. (2009). Food Chemistry, 4th revised and extended edition. Springer-Verlag Berlin Heidelberg, pp. 341, 359, 386, 838, 903, 923, 975.
  4. Berardo A., Devreese B., De Maere H., Stavropoulou D. A., Van Royen G., Leroy F., De Smet S. (2017). Actin proteolysis during ripening of dry fermented sausages at different pH values. Food Chem., 221: 1322–1332.
  5. Bermúdez R., Franco D., Carballo J., Sentandreu M. Á., Lorenzo J. M. (2014). Influence of muscle type on the evolution of free amino acids and sarcoplasmic and myofibrillar proteins through the manufacturing process of Celta dry-cured ham. Food Res. Int., 56: 226–235.
  6. Breene W. M. (1975). Application of texture profile analysis to instrumental food texture evaluation. J. Texture Stud., 6: 53–82.
  7. Burdock G. A. (2010). Fenaroli’s Handbook of Flavor Ingredients, 6th ed. CRC Press Taylor & Francis Group, p. 54.
  8. Calik J., Krawczyk J., Świątkiewicz S., Gąsior R., Wojtycza K., Połtowicz K., Obrzut J., Puchała M. (2017). Comparison of the physicochemical and sensory characteristics of Rhode Island Red (R-11) capons and cockerels. Ann. Anim. Sci., 17: 903–917.
  9. Cebulska A. (2018). Quality and dietary value of pork meat of the Puławska and Złotnicka Spotted breeds, and commercial fattening pigs. Ann. Anim. Sci., 18: 281–291.
  10. Chang-Yu Z., Ying W., Dao-Dong P., Jin-Xuan C., Yin-Ji C., Yuan L., Yang-Ying S., Chang-Rong O. (2017). The changes in the proteolysis activity and the accumulation of free amino acids during Chinese traditional dry-cured loins processing. Food Sci. Biotechnol., 26: 679–687.
  11. Corral S., Salvador A., Belloch C., Flores M. (2015). Improvement the aroma of reduced fat and salt fermented sausages by Debaromyces hansenii inoculation. Food Control, 47: 526–535.
  12. Coton E., Coton M. (2005). Multiplex PCR for colony direct detection of Gram positive histamineand tyramine-producing bacteria. J. Microbiol. Methods, 63: 296–304.
  13. Debrecéni O., Lípová P., Bučko O., Cebulska A., Kapelánski W. (2018). Effect of pig genotypes from Slovak and Polish breeds on meat quality. Arch. Anim. Breed., 61: 99–107.
  14. Degnes K. F., Kvitvang H. F. N., Haslene-Hox H., Aasen I. M. (2017). Changes in the profiles of metabolites originating from protein degradation during ripening of dry cured ham. Food Bioprocess Tech., 10: 1122–1130.
  15. Dunkel A., Steinhaus M., Kotthoff M., Nowak B., Krautwurst D., Schieberle P., Hofmann T. (2014). Nature’s chemical signatures in human olfaction: a foodborne perspective for future biotechnology. Angew. Chem. Int. Ed. Engl., 53: 7124–7143.
  16. Fabri R., Bergonzini E. (1981). Performance of pure and cross-bred Spotted Poland pigs. Rivista di Suinicoltura, 22: 25–33.
  17. Fadda S., López C., Vignolo G. (2010). Role of lactic acid bacteria during meat conditioning and fermentation. Peptides generated as sensorial and hygienic biomarkers. Meat Sci., 86: 66–79.
  18. FAO (2003). Food energy methods of analysis and conversion factors. Food and Agriculture Organization, Rome.
  19. Ferrocino I., Bellio A., Giordano M., Macori G., Romano A., Rantsiou K., Decastelli L., Cocolin L. (2017). Shotgun metagenomics and volatilome profile of the microbiota of fermented sausages. Appl. Environ. Microbiol., 84: 1–14.
  20. Flavornet (2020). http://www.flavornet.org/flavornet.html (retrieved 17.01.2020).
  21. Flores M., Toldrá F. (2011). Microbial enzymatic activities for improved fermented meats. Food Sci. Technol., 22: 81–90.
  22. Flores M., Aristoy M. C., Toldrá F. (1997). Curing agents affect aminopeptidase activity from porcine skeletal muscle. Z. Lebensm. Unters For., 205: 343–346.
  23. Folch J., Lees M., Sloane S. G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497–509.
  24. Gąsior R., Wojtycza K. (2016). Sense of smell and volatile aroma compounds and their role in the evaluation of the quality of products of animal origin – a review. Ann. Anim. Sci., 16: 3–31.
  25. Gorska E., Nowicka K., Jaworska D., Przybylski W., Tambor K. (2017). Relationship between sensory attributes and volatile compounds of Polish dry-cured loin. Asian-Austral. J. Anim. Sci., 30: 720–727.
  26. Hospital X., Barballo J., Fernandez M., Arnau J., Gratacos M., Hierro E. (2015). Technological implications of reducing nitrate and nitrite levels in dry-fermented sausages: Typical microbiota, residual nitrate and nitrite and volatile profile. Food Control, 57: 275–281.
  27. Innocente N., Biasutti M., Padovese M., Moret S. (2007). Determination of biogenic amines in cheese using HPLC technique and direct derivation of acid extract. Food Chem., 101: 1285–1289.
  28. Janiszewski P., Grześkowiak E., Szulc K., Borzuta K., Lisiak D. (2015). Effect of crossing Zlotnicka Spotted pigs with Duroc and Polish Large White breeds on quality of selected meat products. Food Sci. Technol. Quality, 5: 109–120.
  29. Jerkovic I., Kovacevic D., Subaric D., Marjianovic Z., Mastanjevic K., Suman K. (2010). Authentication study of volatile flavour compounds composition in Slavonian traditional dry fermented salami “kulen”. Food Chem., 119: 813–822.
  30. Kaban G., Bayrak D. (2015). The effects of using turkey meat on qualitative properties of heattreated sucuk. Czech J. Food Sci., 33: 377–382.
  31. Kapelański W., Buczyński T. J., Bocian M. (2006). Slaughter value and meat quality in the Polish native Zlotnicka Spotted pig. Anim. Sci. Pap. Rep., 24: 7–13.
  32. Karpiński P., Łątkowska M., Kruszewski B., Ku ź ma P., Obiedziński M. W. (2015). Profile of volatile compounds in European dry-cured hams as indicator of their quality and authenticity (in Polish). Żywność. Nauka. Technologia. Jakość, 2: 47–61.
  33. Kemp C. M., Sensky P. L., Bardsley R. G., Buttery P. J., Parr T. (2010). Tenderness – an enzymatic view. Meat Sci., 84: 248–256.
  34. Koło ż yn-Krajewska D., Dolatowski Z. (2012). Probiotic meat products and human nutrition. Proc. Biochem., 47: 1761–1772.
  35. Krupiński J. (2011). Conservation of genetic resources of livestock and wild animals. Warszawa, Poland, PWRiL.
  36. Kuchroo C. V., Ramilly I. P., Fox P. F. (1983). Assessment of proteolysis in cheese by reaction with trinitrobenzensulphonic acid. J. Food Technol., 7: 129–133.
  37. Latorre-Moratalla M. L., Bosch-Fusté J., Bover-Cid S., Aymerich T., Vidal-Carou M. C. (2011). Contribution of enterococci to the volatile profile of slightly-fermented sausages. LWT-Food Sci. Technol., 44: 145–152.
  38. Leffingwell and Associates. Odor and flavor detection thresholds in water. http://www.leffingwell.com/odorthre.htm (retrieved 17.01.2020).
  39. Leroy F., Verluyten J., De Vuyst L. (2006). Functional meat starter cultures for improved sausage fermentation. Int. J. Food Microbiol., 106: 270–285.
  40. Leroy S., Gimmarinaro P., Chacornac J. P., Lebert I., Talon R. (2010). Biodiversity of indigenous staphylococci of naturally fermented dry sausages and manufacturing environments of small-scale processing units. Food Microbiol., 27: 294–301.
  41. Lucas P. M., Wolken W. A. M., Claisse O., Lolkema J. S., Lonvaud-Funel A. (2005). Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardii 0006. Appl. Environ. Microbiol., 71: 1417–1424.
  42. Lv S. D., Wu Y., Song Y. Z., Zhou J. S., Lian M., Wang C., Liu L., Meng Q. X. (2015). Multivariate analysis based on GC-MS fingerprint and volatile composition for the quality evaluation of pu-erh green tea. Food Anal. Methods, 8: 321–333.
  43. Majcher M. A., Kaczmarek A., Klensporf-Pawlik D., Pikul J., Jeleń H. H. (2015). SPME-MS-based electronic nose as a tool for determination of authenticity of PDO cheese, oscypek. Food Anal. Methods, 8: 2211–2217.
  44. Marney L. C., Siegler W. C., Parsons P. A., Hoggard J. C., Wright B. W., Synovec R. E. (2013). Tile-based Fisher-ratio software for improved feature selection analysis of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry data. Talanta, 115: 887–895.
  45. Martínez-Arellano I., Flores M., Toldrá F. (2016). The ability of peptide extracts obtained at different dry cured ham ripening stages to bind aroma compounds. Food Chem., 196: 9–16.
  46. Martínez-Onandi N., Rivas-Cañedo A., Picon A., Nuñez M. (2016). Influence of physicochemical parameters and high pressure processing on the volatile compounds of Serrano dry-cured ham after prolonged refrigerated storage. Meat Sci., 122: 101–108.
  47. Marušić Radovčić N., Vidaček S., Janči T., Medić H. (2016). Characterization of volatile compounds, physico-chemical and sensory characteristics of smoked dry-cured ham. J. Food Sci. Technol., 53: 4093–4105.
  48. Migdał W., Radivić Č., Ž ivković V., Gwiazda E., Migdał Ł., Migdał A., Walczycka M., Węsierska E., Zając M., Tkaczewska J., Kulawik P., Krępa-Stefanik K. (2017). Quality of meat from native pigs. In: Modern trends in livestock production, Petrović M.M. (ed.). Institute for Animal Husbandry, Serbia, pp. 189–203.
  49. Narváez-Rivas M., Pablos F., Jurado J. M., León-Camacho M. (2011). Authentication of fattening diet of Iberian pigs according to their volatile compounds profile from raw subcutaneous fat. Anal. Bioanal. Chem., 399: 2115–2122.
  50. Nicolotti L., Cordero C., Cagliero C., Liberto E., Sgorbini B., Rubiolo P., Bicchi B. (2013). Quantitative fingerprinting by headspace – Two-dimensional comprehensive gas chromatography–mass spectrometry of solid matrices: Some challenging aspects of the exhaustive assessment of food volatiles. Anal. Chim. Acta, 798: 115–125.
  51. Olivares A., Navarro J. L., Flores M. (2009). Establishment of the contribution of volatile compounds to the aroma of fermented sausages at different stages of processing and storage. Food Chem., 115: 1464–1472.
  52. Olivares A., Navarro J. L., Salvador A., Flores M. (2010). Sensory acceptability of slow fermented sausages based on fat content and ripening time. Meat Sci., 8: 251–257.
  53. Ordóñez J. A., Hierro E. M., Bruna J. M., Dela Hoz L. (2010). Changes in the components of dry-fermented sausages during ripening. Crit. Rev. Food Sci. Nutr., 39: 329–367.
  54. Ravyts F., De Vuyst L., Leroy F. (2012). Bacterial diversity and functionalities in food fermentations. Eng. Life Sci., 12: 356–357.
  55. Resconi V. C., Campo M. M., Montossi F., Ferreira V., Sañudo C., Escudero A. (2010). Relationship between odor-active compounds and flavor perception in meat from lambs fed different diets. Meat Sci., 85: 700–706.
  56. Rosmini M. R., Perlo F., Pérez-Alvarez J. A., Pagán-Moreno M. J., Gago-Gago A., López-Santovena F., Aranda-Catalá V. (1996). TBA test by an extractive method applied to ‘pate’. Meat Sci., 42: 103–110.
  57. Satomi M., Furushita M., Oikawa H., Yoshikawa-Takahashi M., Yano Y. (2008). Analysis of a 30 kbp plasmid encoding histidine decarboxylase gene in Tetragenococcus halophilus isolated from fish sauce. Int. J. Food Microbiol., 126: 202–209.
  58. Spano G., Russo P., Lonvaud-Funel A., Lucas P., Alexandre H., Grandvalet C., Coton E., Coton M., Barnavon L., Bach B., Rattray F., Bunte A., Magni C., Ladero V., Alvarez M., Fernández M., Lopez P., Palencia P. F., Corbi A., Trip H., Lolkema J. S. (2010). Biogenic amines in fermented foods. Eur. J. Clin. Nutr., 64: 95–100.
  59. Spaziani M., Del Torre M., Stecchini M. L. (2009). Changes of physicochemical, microbiological and textural properties during ripening of Italian low-acid sausages. Proteolysis, sensory and volatile profiles. Meat Sci., 81: 77–85.
  60. Szyndler-Nędza M., Luciński P., Skrzypczak E., Szulc K., Bajda Z. (2017). Pigs of native breeds – status of breeding and evaluation results. In: Protection of genetic resources of domestic breeds of pigs – status of breeding and results of evaluation for 2008, Eckert R. (ed.). IZ PIB, Kraków, Poland, pp. 37–39.
  61. The Good Scents Company. http://www.thegoodscentscompany.com (retrieved 17.01.2020).
  62. Toldrá F., Aristoy M. C., Flores M. (2000). Contribution of muscle aminopeptidases to flavor development in dry cured ham. Food Res. Int., 33: 181–185.
  63. Tyra M., Ż ak G., Eckert R., Mitka I. (2015). Daily feed intake and the effectiveness of its use in pigs fattening. Sci. Ann. Zootech., 42: 127–134.
  64. Van Gemert L. J. (2011). Odour Thesholds. Compilation of odour threshold values in air, water and other media; Oliemans Punter & Partners BV: Utrecht, Netherlands.
  65. Węsierska E., Szołtysik M., Rak L. (2013). Physico-chemical, biochemical and microbiological properties of traditional Polish pork fermented products during ripening. Food Bioprocess Tech., 6: 2986–2995.
  66. Węsierska E., Szmańko T., Krzysztoforski K. (2014). Ripening effect on chemical composition, microstructure, collagen solubility, shear force, texture parameters and sensory evaluation: a case study of “kumpia wieprzowa”. CYTA – J. Food, 12: 80–84.
  67. Wójciak K. M., Dolatowski Z. J. (2012). Oxidative stability of fermented meat products. Acta Sci. Pol. Technol. Aliment., 11: 99–109.
  68. Yalinkiliç B., Kaban G., Ertekín O., Mükerrem K. (2015). Determination of volatile compounds of sucuk with different orange fiber and fat level. J. Faculty Vet. Med., 21: 233–239.
  69. Yim D. G., Hong D. I., Chung K. Y. (2016). Quality characteristics of dry-cured ham made from two different three-way crossbred pigs. Asian-Austral. J. Anim. Sci., 29: 257–262.
DOI: https://doi.org/10.2478/aoas-2021-0031 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1571 - 1597
Submitted on: Sep 27, 2019
|
Accepted on: Apr 26, 2021
|
Published on: Oct 28, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2021 Ewelina Węsierska, Małgorzata Pasternak, Władysław Migdał, Katarzyna Niemczyńska, Robert Gąsior, Krzysztof Wojtycza, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.