References
- Aluwé M., Heyrman E., Theis S., Sieland C., Thurman K., Millet S. (2017). Chicory fructans in pig diet reduce skatole in back fat of entire male pigs. Res. Vet. Sci., 115: 340–344.10.1016/j.rvsc.2017.06.016
- Bee G., Silacci P., Ampiero-Kragten S., Čandek-Potokar M., Wealleans A. L., Litten-Brown J., Salminen J. P., Mueller-Harvey I. (2017). Hydrolysable tanninbased diet rich in gallotannins has a minimal impact on pig performance but significantly reduces salivary and bulbourethral gland size. Animal, 11: 1617–1625.10.1017/S1751731116002597
- Bilić-Šobot D., Zamaratskaia G., Rasmussen M. K., Čandek-Potokar M., Škrlep M., Prevolnik Povše M., Škorjanc D. (2016). Chestnut wood extract in boar diet reduces intestinal skatole production, a boar taint compound. Agron. Sustain. Devel., 36: 62.10.1007/s13593-016-0399-1
- Borrisser-Pairó F., Rasmussen M. K., Ekstrand B., Zamaratskaia G. (2015). Gender- related differences in the formation of skatole metabolites by specific CYP450 in porcine hepatic S9 fractions. Animal, 9: 635–642.10.1017/S1751731114002808
- Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M. W., Shipley G. L., Vandesompele J., Wittwer C. T. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem., 55: 611–622.10.1373/clinchem.2008.112797
- Čítek J., Stupka R., Okrouhlá M., Vehovský K., Brzobohatý L., Šprysl M., Stádník L. (2015). Effects of dietary linseed and corn supplement on the fatty acid content in the pork loin and backfat tissue. Czech. J. Anim. Sci., 60: 319–326.10.17221/8278-CJAS
- Drag M., Hansen M. B., Kadarmideen H. N. (2018). Systems genomics study reveals expression quantitative trait loci, regulator genes and pathways associated with boar taint in pigs. PLoS One, 13: 2.10.1371/journal.pone.0192673
- Duijvesteijn N., Knol E. F., Merks J. W. M., Crooijmans R., Groenen M. A. M., Bovenhuis H., Harlizius B. (2010). A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genet., 11: 42.10.1186/1471-2156-11-42
- Erkens T., Van Poucke M., Vandesompele J., Goossens K., Van Zeveren A., Peelman L. J. (2006). Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotech., 6: 41.10.1186/1472-6750-6-41
- Gray M. A., Squires E. J. (2012). Effects of nuclear receptor transactivation on steroid hormone synthesis and gene expression in porcine Leydig cells. J. Ster. Bioch. Mol. Biol., 133: 93–100.10.1016/j.jsbmb.2012.09.014
- Grela E. R., Pietrzak K., Sobolewska S., Witkowski P. (2013). Effect of inulin and garlic supplementation in pig diets. Ann. Anim. Sci., 13: 63–71.10.2478/v10220-012-0059-6
- Han X., Zhou M., Cao X., Du X., Meng F., Bu G., Kong Huang A., Zeng X. (2019). Mechanistic insight into the role of immunocastration on eliminating skatole in boars. Theriogenology, 131: 32–40.10.1016/j.theriogenology.2019.03.017
- Hansen-Møller J. (1994). Rapid high-performance MDGC/MS – chromatography method for simultaneous determination of androstenone, skatole and indole in back fat from pigs. J. Chrom. B: Biom. Sci. Appl., 661: 219–230.10.1016/S0378-4347(94)80049-9
- Kjos N. P., Overland M., Fauske A. K., Sorum H. (2010). Feeding chicory inulin to entire male pigs during the last period before slaughter reduces skatole in digesta and backfat. Livest. Sci., 134: 1143–1145.10.1016/j.livsci.2010.06.120
- Kozłowska I., Maré-Pieńkowska J., Bednarczyk M. (2016). Beneficial aspects of inulin supplementation as a fructooligosaccharide prebiotic in monogastric animal nutrition – a review. Ann. Anim. Sci., 16: 315–331.10.1515/aoas-2015-0090
- Kubešová A., Šťastný K., Faldyna M., Sládek Z., Steinhauserová I., Bořilová G., Knoll A. (2019). mRNA Expression of CYP2E1, CYP2A19, CYP1A2, HSD3B, SULT1A1 and SULT2A1 genes in surgically castrated, immunologically castrated, entire male and female pigs and correlation with androstenone, skatole, indole and Improvac-specific antibody levels. Czech J. Anim. Sci., 64: 89–97.10.17221/159/2018-CJAS
- Okrouhlá M., Stupka R., Čítek J., Urbanová D., Vehovský K., Kouřimská L. (2016). Method for determination of androstenone, skatole and indole in dorsal fat of pigs (in Czech). Chemické Listy, 110: 593–597.
- Rasmussen M. K., Klausen C. L., Ekstrand B. (2014). Regulation of cytochrome P450 mRNA expression in primary porcine hepatocytes by selected secondary plant metabolites from chicory (Cichorium intybus L.). Food Chem., 146: 255–263.10.1016/j.foodchem.2013.09.068
- Rowe S. J., Karacaören B., De Koning D. J., Lukić B., Hastings-Clark N., Velander I., Haley C. S., Archibald A. L. (2014). Analysis of the genetics of boar taint reveals both single SNPs and regional effects. BMC Genom., 15: 424.10.1186/1471-2164-15-424
- Samolińska W., Grela E. R., Kiczorowska B. (2019). Effects of inulin extracts and inulincontaining plants on haematobiochemical responses, plasma mineral concentrations, and carcass traits in growing-finishing pigs. J. Elem., 24: 2711–726.10.5601/jelem.2018.23.4.1707
- Šimeček K., Zeman L., Heger J. (2000). Nutrient requirements and tables of dietary requirements of feeds for pigs (in Czech). 2nd ed. MZLU, Brno, 124 pp.
- Van Son M., Kent M. P., Growe H., Agarwal R., Hamland H., Lien S., Grindflek E. (2017). Fine mapping of a QTL affecting levels of skatole on pig chromosome 7. BMC Genet., 18: 85.10.1186/s12863-017-0549-8
- Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol., 3: 7.10.1186/gb-2002-3-7-research0034
- Vhile S. G., Kjos N. P., Sorum H., Overland M. (2012). Feeding Jerusalem artichoke reduced skatole level and changed intestinal microbiota in the gut of entire male pigs. Animal, 6: 807–814.10.1017/S1751731111002138
- Walstra A. P., Merkus G. S. M. (1995). Procedure for assessment of the lean meat percentage as a consequence of the new EU reference dissection method in pig carcass classification. DLO Research Institute for Animal Science and Health (ID-DLO). The Netherlands, Zeist.
- Wesoly R., Weiler U. (2012). Nutritional influences on skatole formation and skatole metabolism in the pig. Animals (Basel), 2: 221–242.10.3390/ani2020221
- Zadinová K., Stupka R., Stratil A., Čítek J., Vehovský K., Urbanová D. (2016). Boar taint – the effect of selected candidate genes associated with androstenone and skatole levels – a review. Anim. Sci. Pap. Rep., 34: 107–128.
- Zadinová K., Stupka R., Stratil A., Čítek J., Vehovský K., Lebedová N., Šprysl M., Okrouhlá M. (2017). Association analysis of SNPs in the porcine CYP2E1 gene with skatole, indole and androstenone levels in backfat of a crossbred pig population. Meat Sci., 131: 68–73.10.1016/j.meatsci.2017.04.236
- Zamaratskaia G., Squires E. J. (2009). Biochemical, nutritional and genetic effects on boar taint in entire male pigs. Animal, 3: 1508–1521.10.1017/S1751731108003674
- Zammerini D., Wood J. D., Whittington F. M., Nute G. R., Hughes S. I., Hazzledine M., Matthews K. (2012). Effect of dietary chicory on boar taint. Meat Sci., 91: 396–401.10.1016/j.meatsci.2012.01.020