References
- Ahmed M.H., Elghandour M.M.Y., Salem A.Z.M., Zeweil H.S., Kholif A.E., Klie-ve A.V., Abdelrassol A.M.A. (2015). Influence of Trichoderma reesei or Saccharomyces cerevisiae on performance, ruminal fermentation, carcass characteristics and blood biochemistry of lambs fed Atriplex nummularia and Acacia saligna mixture. Livest. Sci., 180: 90–97.
- Anele U.Y., Yang W.Z., Mc Ginn P.J., Tibbetts S.M., Mc Allister T.A.(2016). Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Can. J. Anim. Sci., 96: 354–363.
- Azzaz H.H., Kholif A.E., Abd El Tawab A.M., Khattab M.S.A., Murad H.A., Ola-fadehan O.A. (2020). A newly developed tannase enzyme from Aspergillus terreus versus commercial tannase in the diet of lactating Damascus goats fed diet containing pomegranate peel. Livest. Sci., 241: 104228.
- Becker E.W.(2007 a). Micro-algae as a source of protein. Biotechnol. Adv., 25: 207–210.10.1016/j.biotechadv.2006.11.00217196357
- Becker E.W.(2007 b). Microalgae for aquaculture: the nutritional value of microalgae for aquaculture. In: Handbook of microalgal culture, Richmond A. (ed.), CRC Press Inc., Boca Raton, Florida, pp. 380–391.10.1002/9780470995280.ch21
- Becker E.W.(2013). Microalgae for human and animal nutrition. In: Handbook of microalgal culture: applied phycology and biotechnology. 2nd ed. John Wiley & Sons, Ltd, Oxford, UK, pp. 461–503.10.1002/9781118567166.ch25
- Berliner M.(1986). Proteins in Chlorella vulgaris. Microbios, 46: 199–203.
- Bogdanova A.A., Flerova E.A.(2018). Biochemical and hematological composition of blood of cattle fed with Chlorella. Regul. Mech. Biosyst., 9: 244–249.
- Cedillo J., Vázquez-Armijo J.F., González-Reyna A., Salem A.Z.M., Kho-lif A.E., Hernández-Meléndez J., Martínez-González J.C., de Oca Jimé-nez R.M., Rivero N., López D. (2014). Effects of different doses of Salix babylonica extract on growth performance and diet in vitro gas production in Pelibuey growing lambs. Ital. J. Anim. Sci., 13: 609–613.
- Chakraborty M., Mc Donald A.G., Nindo C., Chen S.(2013). An α-glucan isolated as a co-product of biofuel by hydrothermal liquefaction of Chlorella sorokiniana biomass. Algal Res., 2: 230–236.
- Choix F.J., de-Bashan L.E., Bashan Y.(2012). Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions. Enzyme Microb. Technol., 51: 294–299.
- Ebeid H.M., Mengwei L., Kholif A.E., Hassan F., Lijuan P., Xin L., Chengjian Y.(2020). Moringa oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations. Curr. Microbiol., 77: 1271–1282.
- Elghandour M.M.Y., Vázquez Chagoyán J.C., Salem A.Z.M., Kholif A.E., Mar-tínez Castañeda J.S., Camacho L.M., Buendía G. (2014). In vitro fermentative capacity of equine fecal inocula of 9 fibrous forages in the presence of different doses of Saccharomyces cerevisiae. J. Equine Vet. Sci., 34: 619–625.
- Elghandour M.M.Y., Kholif A.E., Hernández J., Mariezcurrena M.D., López S., Camacho L.M., Márquez O., Salem A.Z.M. (2016 a). Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds. Czech J. Anim. Sci., 61: 262–272.10.17221/52/2015-CJAS
- Elghandour M.M.Y., Kholif A.E., López S., Mendoza G.D., Odongo N.E., Sa-lem A.Z.M., (2016 b). In vitro gas, methane, and carbon dioxide productions of high fibrous diet incubated with fecal inocula from horses in response to the supplementation with different live yeast additives. J. Equine Vet. Sci., 38: 64–71.10.1016/j.jevs.2015.12.010
- Elghandour M.M.Y., Kholif A.E., Salem A.Z.M., Montesde Oca R., Barbabosa A., Mariezcurrena M., Olafadehan O.A. (2016 c). Addressing sustainable ruminal methane and carbon dioxide emissions of soybean hulls by organic acid salts. J. Clean. Prod., 135: 194–200.10.1016/j.jclepro.2016.06.081
- Elghandour M.M.Y., Kholif A.E., Salem A.Z.M., Olafadehan O.A., Kholif A.M.(2016 d). Sustainable anaerobic rumen methane and carbon dioxide productions from prickly pear cactus flour by organic acid salts addition. J. Clean. Prod., 139: 1362–1369.10.1016/j.jclepro.2016.08.075
- Elghandour M.M.Y., Kholif A.E., Hernández A., Salem A.Z.M., Mellado M., Odon-go N.E. (2017). Effects of organic acid salts on ruminal biogas production and fermentation kinetics of total mixed rations with different maize silage to concentrate ratios. J. Clean. Prod., 147: 523–530.
- Erickson P.S., Kalscheur K.F.(2019). Nutrition and feeding of dairy cattle. In: Animal agriculture: sustainability, challenges and innovations. Elsevier, pp. 157–180.
- Gomaa A.S., Kholif A.E., Kholif A.M., Salama R., El-Alamy H.A., Olafade-han O.A.(2018). Sunflower oil and Nannochloropsis oculata microalgae as sources of unsaturated fatty acids for mitigation of methane production and enhancing diets’ nutritive value. J. Agric. Food Chem., 66: 1751–1759.
- González-Fernández C., Sialve B., Bernet N., Steyer J.P.(2012). Impact of microalgae characteristics on their conversion to biofuel. Part I: Focus on cultivation and biofuel production. Biofuels Bioprod. Biorefining, 6: 105–113.
- Gonzalez L.E., Bashan Y.(2000). Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol., 66: 1527–1531.
- Han K.J., Mc Cormick M.E.(2014). Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues. J. Anim. Sci. Biotechnol., 5: 31.
- Hernández A., Kholif A.E., Elghandour M.M.Y., Camacho L.M., Cipriano M.M., Salem A.Z.M., Cruz H., Ugbogu E.A. (2017). Effectiveness of xylanase and Saccharomyces cerevisiae as feed additives on gas emissions from agricultural calf farms. J. Clean. Prod., 148: 616–62310.1016/j.jclepro.2017.01.070
- Janczyk P., Franke H., Souffrant W.B.(2007). Nutritional value of Chlorella vulgaris: Effects of ultrasonication and electroporation on digestibility in rats. Anim. Feed Sci. Technol., 132: 163–169.
- Khattab H.M., Gado H.M., Salem A.Z.M., Camacho L.M., El-Sayed M.M., Kho-lif A.M., El-Shewy A.A., Kholif A.E. (2013). Chemical composition and in vitro digestibility of Pleurotus ostreatus spent rice straw. Anim. Nutr. Feed Technol., 13: 507–516.
- Kholif A.E., Morsy T.A., Abd El Tawab A.M., Anele U.Y., Galyean M.L.(2016). Effect of supplementing diets of Anglo-Nubian goats with soybean and flaxseed oils on lactational performance. J. Agric. Food Chem., 64: 6163–6170.
- Kholif A.E., Abdo M.M., Anele U.Y., El-Sayed M.M., Morsy T.A.(2017 a). Saccharomyces cerevisiae does not work synergistically with exogenous enzymes to enhance feed utilization, ruminal fermentation and lactational performance of Nubian goats. Livest. Sci., 206: 17–23.10.1016/j.livsci.2017.10.002
- Kholif A.E., Elghandour M.M.Y., Salem A.Z.M., Barbabosa A., Márquez O., Odon-go N.E. (2017 b). The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro total gas, methane and carbon dioxide production. J. Agric. Sci., 155: 494–507.10.1017/S0021859616000812
- Kholif A.E., Matloup O.H., Morsy T.A., Abdo M.M., Abu Elella A.A., Anele U.Y., Swanson K.C. (2017 c). Rosemary and lemongrass herbs as phytogenic feed additives to im prove efficient feed utilization, manipulate rumen fermentation and elevate milk production of Damascus goats. Livest. Sci., 204: 39–46.10.1016/j.livsci.2017.08.001
- Kholif A.E., Morsy T.A., Matloup O.H., Anele U.Y., Mohamed A.G., El-Sayed A.B.(2017 d). Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. J. Agric. Sci. 155: 508–518.10.1017/S0021859616000824
- Kholif A.E., Gouda G.A., Olafadehan O.A., Abdo M.M.(2018 a). Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal, 12: 964–972.10.1017/S1751731117002336
- Kholif A.E., Kassab A.Y., Azzaz H.H., Matloup O.H., Hamdon H.A., Olafade-han O.A., Morsy T.A. (2018 b). Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics. Small Rumin. Res., 161: 43–50.10.1016/j.smallrumres.2018.02.011
- Kholif A.E., Hamdon H.A., Kassab A.Y., Farahat E.S.A., Azzaz H.H., Matloup O.H., Mohamed A.G., Anele U.Y. (2020). Chlorella vulgaris microalgae and/or copper supplementation enhanced feed intake, nutrient digestibility, ruminal fermentation, blood metabolites and lactational performance of Boer goat. J. Anim. Physiol. Anim. Nutr. (Berl.), 104: 1595–1605.
- Kholif A.E., Kassab A.Y., Hamdon H.A.(2021). Chlorella vulgaris microalgae and copper mixture supplementation enhanced the nutrient digestibility and milk attributes in lactating Boer goats. Ann. Anim. Sci., 21, https://doi.org/10.2478/aoas-2020-008910.2478/aoas-2020-0089
- Kong W., Liu N., Zhang J., Yang Q., Hua S., Song H., Xia C.(2014). Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. J. Food Sci. Technol., 51: 2006–2013.
- Kotrbáček V., Doubek J., Doucha J.(2015). The chlorococcalean alga Chlorella in animal nutrition: a review. J. Appl. Phycol., 27: 2173–2180.
- KovačD., SimeunovićJ., BabićO., Mišan A.Č., MilovanovićI.L. (2013). Algae in food and feed. Food Feed Res., 40: 21–31.
- Kwang H.C., Lee H.J., Koo S.Y., Song D.G., Lee D.U., Pan C.H.(2010). Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. J. Agric. Food Chem., 58: 793–797.
- Lamminen M., Halmemies-Beauchet-Filleau A., Kokkonen T., Simpura I., Jaakkola S., Vanhatalo A. (2017). Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Anim. Feed Sci. Technol., 234: 295–311.
- Lodge-Ivey S.L., Tracey L.N., Salazar A.(2014). Ruminant nutrition symposium: The utility of lipid extracted algae as a protein source in forage or starch-based ruminant diets. J. Anim. Sci., 92: 1331–1342.
- Madeira M.S., Cardoso C., Lopes P.A., Coelho D., Afonso C., Bandarra N.M., Prates J.A.M., (2017). Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci., 205: 111–121.
- Mahdy A., Mendez L., Tomás-PejóE., del Mar Morales M., Ballesteros M., González-Fernández C. (2016). Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp. J. Chem. Technol. Biotechnol., 91: 1299–1305.
- Marrez D.A., Cieślak A., Gawad R., Ebeid H.M., ChrenkováM., Gao M., Yanza Y.R., El-Sherbiny M., Szumacher-Strabel M. (2017). Effect of freshwater microalgae Nannochloropsis limnetica on the rumen fermentation in vitro. J. Anim. Feed Sci., 26: 359–364.
- Maruyama I., Nakao T., Shigeno I., Ando Y., Hirayama K.(1997). Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. In: Hydrobiologia. Springer Netherlands, Dordrecht, pp. 133–138.10.1007/978-94-017-2097-7_20
- Matloup O.H., Abd El Tawab A.M., Hassan A.A., Hadhoud F.I., Khattab M.S.A., Khalel M.S., Sallam S.M.A., Kholif A.E. (2017). Performance of lactating Friesian cows fed a diet supplemented with coriander oil: Feed intake, nutrient digestibility, ruminal fermentation, blood chemistry, and milk production. Anim. Feed Sci. Technol., 226: 88–97.
- Morris Quevedo H.J., Quintana Cabrales M.M., Almarales A., Hernandez L., (1999). Composición bioquímica y evaluación de la calidad proteica de la biomasa autotrófica de Chlorella vulgaris. Anal. Chem., 13: 123–128.
- Morsy T.A., Kholif S.M., Kholif A.E., Matloup O.H., Salem A.Z.M., Abu Elella A.(2015). Influence of sunflower whole seeds or oil on ruminal fermentation, milk production, composition, and fatty acid profile in lactating goats. Asian-Australas. J. Anim. Sci., 28: 1116–1122.
- Morsy T.A., Kholif A.E., Matloup O.H., Abu Elella A., Anele U.Y., Caton J.S.(2018). Mustard and cumin seeds improve feed utilisation, milk production and milk fatty acids of Damascus goats. J. Dairy Res., 85: 142–151.
- Olafadehan O.A.(2011). Changes in haematological and biochemical diagnostic parameters of Red Sokoto goats fed tannin-rich Pterocarpus erinaceus forage diets. Vet. Arh., 81: 471–483.
- Olafadehan O.A., Njidda A.A., Okunade S.A., Adewumi M.K., Awosanmi K.J., Ijanmi T.O., Raymond A. (2016). Effects of feeding Ficus polita foliage-based complete rations with varying forage: Concentrate ratio on performance and ruminal fermentation in growing goats. Anim. Nutr. Feed Technol., 16: 373–382.
- Panahi Y., Pishgoo B., Jalalian H.R., Mohammadi E., Taghipour H.R., Saheb-kar A., Abolhasani E. (2012). Investigation of the effects of Chlorella vulgaris as an adjunctive therapy for dyslipidemia: Results of a randomised open-label clinical trial. Nutr. Diet. 69: 13–19.
- Rani K., Sandal N., Sahoo P.K.(2018). A comprehensive review on chlorella – its composition, health benefits, market and regulatory scenario. The Pharma Innov. J., 7: 584–589.
- Rayman M.P.(2000). The importance of selenium to human health. Lancet. https://doi.org/10.1016/S0140-6736(00)02490-910.1016/S0140-6736(00)02490-9
- Ru I.T.K., Sung Y.Y., Jusoh M., Wahid M.E.A., Nagappan T.(2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Appl. Phycol., 1: 2–11.
- Safi C., Charton M., Pignolet O., Silvestre F., Vaca-Garcia C., Pontalier P.Y.(2013). Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J. Appl. Phycol., 25: 523–529.
- Safi C., Zebib B., Merah O., Pontalier P.Y., Vaca-Garcia C.(2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev., 35: 265–278.
- Sallam S.M.A., Abdelmalek M.L.R., Kholif A.E., Zahran S.M., Ahmed M.H., Ze-weil H.S., Attia M.F.A., Matloup O.H., Olafadehan O.A. (2020). The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows. Anim. Biotechnol., 31: 491–497.
- Singh J., Gu S.(2010). Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev., https://doi.org/10.1016/j.rser.2010.06.01410.1016/j.rser.2010.06.014
- Spolaore P., Joannis-Cassan C., Duran E., Isambert A. (2006). Commercial applications of microalgae. J. Biosci. Bioeng., 101: 87–96.
- Sucu E.(2020). Effects of microalgae species on in vitro rumen fermentation pattern and methane production. Ann. Anim. Sci., 20: 207–218.
- Takeda H.(1991). Sugar composition of the cell wall and the taxonomy of chlorella (Chlorophyceae). J. Phycol., 27: 224–232.
- Tibbetts S.M., Milley J.E., Lall S.P.(2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol., 27: 1109–1119.
- TokuşogluÖ., Ünal M.K.(2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J. Food Sci., 68: 1144–1148.
- Trávníček J., KroupováV., KonečnýR., StaňkováM., ŠťastnáJ., HasoňováL., MikulováM. (2010). Iodine status in ewes with the intake of iodine enriched alga Chlorella. Czech J. Anim. Sci., 55: 58–65.
- Tsiplakou E., Abdullah M.A.M., Skliros D., Chatzikonstantinou M., Flemeta-kis E., Labrou N., Zervas G. (2017). The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. J. Anim. Physiol. Anim. Nutr. (Berl.), 101: 275–283.
- Tsiplakou E., Abdullah M.A.M., Mavrommatis A., Chatzikonstantinou M., Skliros D., Sotirakoglou K., Flemetakis E., Labrou N.E., Zervas G. (2018). The effect of dietary Chlorella vulgaris inclusion on goat’s milk chemical composition, fatty acids profile and enzymes activities related to oxidation. J. Anim. Physiol. Anim. Nutr. (Berl.), 102: 142–151.
- Vanegas J.L., González J., Carro M.D.(2017). Influence of protein fermentation and carbohydrate source on in vitro methane production. J. Anim. Physiol. Anim. Nutr. (Berl.), 101: e288–e296.
- Wild K.J., SteingaßH., Rodehutscord M.(2019). Variability of in vitro ruminal fermentation and nutritional value of cell-disrupted and nondisrupted microalgae for ruminants. GCB Bioenergy, 11: 345–359.
- Yeh K.L., Chang J.S.(2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour. Technol., 105: 120–127.
- Yusof Y.A.M., Basari J.M.H., Mukti N.A., Sabuddin R., Muda A.R., Sulaiman S., Makpol S., Ngah W.Z.W. (2011). Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture. African J. Biotechnol., 10: 13536–13542.