Have a personal or library account? Click to login
Effect of Different Levels of Copper Nanoparticles and Copper Sulfate on Morphometric Indices, Antioxidant Status and Mineral Digestibility in the Small Intestine of Turkeys Cover

Effect of Different Levels of Copper Nanoparticles and Copper Sulfate on Morphometric Indices, Antioxidant Status and Mineral Digestibility in the Small Intestine of Turkeys

Open Access
|Aug 2020

References

  1. Adegbenjo A.A., Idowu O.M.O., Oso A.O., Adeyemi O.A., Aobayo R.A., Akinloye O.A., Jegede A.V., Osho S.O., Williams G.A. (2014). Effects of dietary supplementation with copper sulphate and copper proteinate on plasma trace minerals, copper residues in meat tissues, organs, excreta and tibia bone of cockerels. Slovak J. Anim. Sci., 47: 164–171.
  2. Aebi H. (1984). Catalase in vitro. Methods Enzymol., 105: 121–126.10.1016/S0076-6879(84)05016-3
  3. Anwar M.I., Awais M.M., Akhtar M., Navid M.T., Muhammad F. (2019). Nutritional and immunological effects of nano-particles in commercial poultry. World’s Pout. Sci. J., 75:262–271.10.1017/S0043933919000199
  4. Ajuwon O.R., Idowu O.M.O., Afolabi S.A., Kehinde B.O., Oguntola O.O., Olatunbosun K.O. (2011). The effects of dietary copper supplementation on oxidative and antioxidant systems in broiler chickens. Arch. Zootec., 60: 275–282.10.4321/S0004-05922011000200012
  5. Albanese A., Tang P.S., Chan W.C.W. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 14: 1–16.10.1146/annurev-bioeng-071811-150124
  6. Arias V.J., Koutsos E.A. (2006). Effect of copper source and level on intestinal physiology and growth of broiler chickens. Poult. Sci., 85: 999–1007.10.1093/ps/85.6.999
  7. Awad W.A., Ghareeb K., Abdel-Raheem S., Bohm J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci., 88: 49–55.10.3382/ps.2008-00244
  8. Bao Y.M., Choct M., Iji P., Bruerton A. (2007). Effect of organically complexed copper. iron. manganese. and zinc on broiler performance. mineral excretion. and accumulation in tissues. J. Appl. Poultry Res., 16: 448–455.10.1093/japr/16.3.448
  9. Bunglavan S.J., Dass A.K.G., Shrivastava S. (2014). Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livestock Res. Int., 2: 36–47.
  10. Crater J.S., Carrier R.L. (2010). Barrier properties of gastrointestinal mucus to nanoparticles transport Macromol. Biosci., 10: 1473-1483.10.1002/mabi.201000137
  11. Chen Z., Meng H., Xing G., Chen C., Zhao Y., Jia G., Wang T., Yuan H., Ye C., Zhao F., Chai Z., Zhu C., Fang X., Ma, B., Wan, L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett., 163: 109–120.10.1016/j.toxlet.2005.10.003
  12. Chiou P.W.S., Chen C.L., Chen K.L., Wu C.P. (1999). Effect of high dietary copper on the morphology of gastro-intestinal tract in broiler chickens. Asian Austral. J. Anim. Sci., 12: 548–553.10.5713/ajas.1999.548
  13. Cholewińska E., Juśkiewicz J., Ognik K. (2018a). Comparison of the effct of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in a rat model. J. Trace Elem. Med Biol., 48: 111–117.10.1016/j.jtemb.2018.03.01729773169
  14. Cholewińska E., Ognik K., Fotschki B., Zduńczyk Z., Juśkiewicz J. (2018b). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS ONE, 13(5): e0197083.10.1371/journal.pone.0197083595154629758074
  15. EFSA, Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2016). Revision of the currently authorised maximum copper content in complete feed. EFSA J. 14: 4563.10.2903/j.efsa.2016.4563
  16. Gangadoo S., Stanley D., Hughus R., Moore R.J., Chapman J. (2016). Nanoparticles in feed: Progress and prospects in poultry research. Trends Food Sci. Tech., 58: 115–126.10.1016/j.tifs.2016.10.013
  17. Gonzales-Eguia A., Fu C.M., Lu F.Y., Lien T.F. (2009). Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livest. Sci., 126: 122–129.10.1016/j.livsci.2009.06.009
  18. Hill E.K., Li J. (2017). Current and future prospects for nanotechnology in animal production. J Anim. Sci. Biotechnol., 8: 26. DOI: 10.1186/s40104-017-0157-5.10.1186/s40104-017-0157-5535105428316783
  19. Hillery A.M., Jani P.U., Florence A.T. (1994). Comparative, quantitative study of lymphoid and nonlymphoid uptake of 60 nm polystyrene particles. J. Drug. Target., 2: 151–156.10.3109/10611869409015904
  20. Jachak A., Lai S.K., Hida K., Suk J.S., Markovic N., Biswal S., Breysse P.N., Hanes J. (2012). Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus. Nanotoxicology 6: 614–622.10.3109/17435390.2011.598244
  21. Jani P., Halbert G.W., Langridge J., Florence A.T. (1990). Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J. Pharm. Pharmacol., 42: 821–826.10.1111/j.2042-7158.1990.tb07033.x
  22. Jankowski J., Kozłowski K., Ognik K., Zduńczyk Z., Otowski K., Sawosz E., Juśkiewicz J. (2019). Redox and immunological status of turkeys fed diets with different levels and sources of copper. Ann. Anim. Sci., 19: 215–227.10.2478/aoas-2018-0054
  23. Jegede A.V., Oduguwa O.O., Oso A.O., Fafiolu A.O., Idowu O.M.O., Nollet L. (2012). Growth performance, blood characteristics and plasma lipids of growing pullet fed dietary concentrations of organic and inorganic copper sources. Livest. Sci., 145: 298–302.10.1016/j.livsci.2012.02.011
  24. Johnson E.L., Nicholoson J.L., Doerr J.A. (1985). Effect of dietary copper on litter microbial population and broiler performance. Br. Poult. Sci., 26: 171–177.10.1080/00071668508416801
  25. Jóźwik A., Marchewka J., Strzałkowska N. Horbńanczuk J.O., Szumacher-Strabel M., Cieślak A., Lipińska-Palka P., Józefiak D., Kamińska A., Atanasov A.G. (2018). The effect of different levels of Cu, Zn and Mn nanoparticles in hen turkey diet on the activity of aminopeptidases. Molecules 23, 1150; doi:10.3390/molecules23051150.10.3390/molecules23051150610058729751626
  26. Karimi A., Sadeghi G., Vaziry A. (2011). The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. J. Appl. Poult. Res., 20: 203–209.10.3382/japr.2010-00290
  27. King J.C., Shames D.M., Woodhouse L.R. (2000). Zinc homeostasis in humans. J. Nutr., 130: 1360S–1366S.10.1093/jn/130.5.1360S
  28. Lim H. S., Paik I. K. (2006). Effects of dietary supplementation of copper chelates in the form of methionine, chitosan and yeast in laying hens, Asian-Aust. J. Anim. Sci., 19: 1174–1178.10.5713/ajas.2006.1174
  29. Linder M.C., Hazegh-Azam M. (1996). Copper biochemistry and molecular biology. Am. J. Clin. Nutr., 63: 797–811.
  30. Mabe I., Rapp C., Bain M.M., Nys Y. (2003). Supplementation of a corn-soybean meal diet with manganese, copper, and zinc from organic or inorganic sources improves eggshell quality in aged laying hens. Poultry Sci., 82: 1902–1913.10.1093/ps/82.12.1903
  31. Majewski M., Ognik K., Zduńczyk P., Juśkiewicz J. (2017). Effect of dietary copper nanoparticles versus one copper (II) salt: analysis of vasoreactivity in a rat model. Pharmacol. Rep., 69: 1282–1268.10.1016/j.pharep.2017.06.001
  32. Makarski B., Gortat M., Lechowski J., Żukiewicz-Sobczak W., Sobczak P., Zawiślak K. (2014). Impact of copper (Cu) at the dose of 50 mg on haematological and biochemical blood parameters in turkeys, and level of Cu accumulation in the selected tissues as a source of information on product safety for consumers. Ann. Agric. Environ. Med., 21: 567–570.10.5604/12321966.1120603
  33. McGill S., Smyth H.D.C. (2010). Disruption of the mucus barrier by topically applied exogenous particles. Mol. Pharmaceutics 7: 2280-2288.10.1021/mp100242r
  34. O’Connor J.M. (2001). Trace elements and DNA damage. Biochem. Soc. Trans., 39: 354–357.10.1042/bst0290354
  35. Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poultry Res., 2: 259–271.10.3382/japr.2011-00366
  36. Ognik K, Stępniowska A, Cholewińska E, Kozłowski K (2016). The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poult. Sci., 95: 2045-2051.10.3382/ps/pew200
  37. Ognik K., Sembratowicz I., Cholewińska E., Jankowski J., Kozłowski K., Juśkiewicz J., Zduńczyk Z. (2018). The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of blood. Anim. Sci. J., 89: 579–588.10.1111/asj.12956
  38. Ognik K., Cholewińska E., Juśkiewicz J., Zduńczyk Z., Tutaj K., Szlązak R. (2019). The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model. J. Anim. Physiol. Anim. Nutr., 103: 675–686.10.1111/jpn.13025
  39. Ognik K., Cholewińska E., Stępniowska A., Drażbo A., Kozłowski K., Jankowski J. (2019). The effect of administration of copper nanoparticles in drinking water on redox reactions in the liver and breast muscle of broiler chickens. Ann. Anim. Sci., 19: 663–677.10.2478/aoas-2019-0009
  40. Omaye S.T., Tumbull J.D., Sauberlich H.E. (1979). Selected methods for determination of ascorbic acid in animal cells, tissues and fluids. Meth. Enzymol., 62: 3–11.10.1016/0076-6879(79)62181-X
  41. Otowski K., Ognik K., Kozłowski K. (2019). Growth rate, metabolic parameters and carcass quality in turkeys fed diets with different inclusion levels and sources of supplemental copper. J. Anim. Feed Sci., 28: 272–281.10.22358/jafs/112186/2019
  42. Pekel A., Alp M. (2011). Effects of different dietary copper sources on laying hen performance and egg yolk cholesterol. J. Appl. Poult. Res., 20: 506–513.10.3382/japr.2010-00313
  43. Samanta B., Ghosh P.R., Biswas A., Das S.K. (2011). The effects of copper supplementation on the performance and hematological parameters of broiler chickens. Asian-Aust. J. Anim. Sci., 24: 1001–1006.10.5713/ajas.2011.10394
  44. Sawosz E., Łukasiewicz M., Łozicki A., Sosnowska M., Jaworski S., Niemiec J., Scott A., Jankowski J., Józefiak D., Chwalibog A. (2018). Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Archiv. Animal Nutr. https://doi.org/10.1080/1745039X.2018.150514610.1080/1745039X.2018.150514630183391
  45. Schoendorfer N., Davies P.S.W. (2012). Micronutrients interrelationships: synergism and antagonism. In: Micronutrients. Betencourt A.I. Gaitan H.F. (eds), pp. 159–179.
  46. Scott A., Vadalasetty K.P., Chwalibog A., Sawosz E. Copper nanoparticles as an alternative feed additive in poultry diet: a review. Nanotechnol Rev 2018; 7(1): 69–93,10.1515/ntrev-2017-0159
  47. Smulikowska S., Rutkowski A. (2005). Recommended Allowances and Nutritive Value of Feedstuffs - Poultry Feeding Standards (in Polish). 5th ed. Smulikowska, S., Rutkowski, A., Eds. The Kielanowski Institute of Animal Physiology and Nutrition, Jablonna, PAS Polish.
  48. Sukalski K.A., LaBerge T.P., Johnson W.T. (1997). In vivo oxidative modification of erythrocyte membrane proteins in copper deficiency. Free Radic. Biol. Med., 22: 835–842.10.1016/S0891-5849(96)00430-3
  49. Yang F., Zhao L., Peng X., Deng J.L., Cui H.M. (2009). Effect of dietary high copper on the bursa of Fabricius in ducklings. Chin. J. Vet. Sci., 29: 354–359.
DOI: https://doi.org/10.2478/aoas-2020-0013 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 975 - 990
Submitted on: Aug 27, 2019
Accepted on: Jan 9, 2020
Published on: Aug 1, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Jan Jankowski, Kamil Otowski, Krzysztof Kozłowski, Piotr Pietrzak, Karolina Ferenc, Katarzyna Ognik, Jerzy Juśkiewicz, Ewa Sawosz, Zenon Zduńczyk, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.