Have a personal or library account? Click to login

The Effect of Diet with Fermented Soybean Meal on Blood Metabolites and Redox Status of Chickens

Open Access
|May 2020

References

  1. Ashayerizadeh A., Dastar B., Shams M., Shargh A.R., Mahoonak S., Zerehdaran S. (2017). Fermented rapeseed meal is effective in controlling Salmonella enterica serovar Typhimurium infection and improving growth performance in broiler chicks. Vet. Microbiol., 201: 93–102.
  2. Bering S., Suchdev S., Sjøltov L., Berggren A., Tetens I., Bukhave K. (2006). A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age. Br. J. Nutr., 96: 80–85.
  3. Chachaj R., Sembratowicz I., Krauze M., Ognik K. (2019 a). The effect of fermented soybean meal in chicken feed on performance and immune status. J. Anim. Feed Sci., 28: 263–271.
  4. Chachaj R., Sembratowicz I., Krauze M., Stępniowska A., Rusinek-Prystupa E., Czech A., Matusevičius P., Ognik K. (2019 b). The effect of fermented soybean meal on performance, and biochemical and immunological blood parameters in turkey. Ann. Anim. Sci., 19: 1035–1049.10.2478/aoas-2019-0040
  5. Champagne C.P., Tompkins T.A., Buckley N.D., Green-Johnson J.M. (2010). Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiol., 27: 968–972.
  6. Chatterjee C., Gleddie S., Xiao C.W. (2018). Soybean bioactive peptides and their functional properties. Nutrients, 10: 8–11.
  7. Chen W., Zhu X.Z., Wang J.P., Wang Z.X., Huang Y.Q. (2013). Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae fermented liquid feed on growth performance, relative organ weight, intestinal microflora, and organ antioxidant status in Landes geese. J. Anim. Sci., 91: 978–985.
  8. Choi J., Rahman Md M., Lee S.Y., Chang K.H., Lee S.M. (2016). Effects of dietary inclusion of fermented soybean meal with Phaffia rhodozyma on growth, muscle pigmentation, and antioxidant activity of juvenile rainbow trout (Oncorhynchus mykiss). Turk. J. Fish. Aq. Sci., 16: 91–101.
  9. Drażbo A., Ognik K., Zaworska A., Ferenc K., Jankowski J. (2018). The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poultry Sci., 97: 3910–3920.
  10. Drażbo A., Kozłowski K., Ognik K., Zaworska A., Jankowski J. (2019). The effect of raw and fermented rapeseed cake on growth performance, carcass traits and breast meat quality in turkey. Poultry Sci., 98: 6161–6169.
  11. Engberg R.M., Hammershoj M., Johansen N.F., Abousekken M.S,Steenfeldt S., Jensen B. (2009). Fermented feed for laying hens: Effects on egg production, egg quality, plumage condition and composition and activity of the intestinal microflora. Brit. Poult. Sci., 50: 228–239.
  12. Feng J., Liu Z.R., Xu Y., Liu Y., Lu Y.P. (2007 a). Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol., 134: 235–242.10.1016/j.anifeedsci.2006.08.018
  13. Feng J., Liu X., Xu Z.R,.Wang Y.Z,Liu J.X. (2007 b). Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers. Poultry Sci., 86: 1149–1154.10.1093/ps/86.6.114917495085
  14. Fevery J. (2008). Bilirubin in clinical practice: a review. Liver Int., 25: 592–605.
  15. Frias J., Song Y.S., Martínez-Villaluenga C., De Mejia E.G., Vidal-Valve-de C. (2008). Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem., 56: 99–105.
  16. Guobin C., Xiangping L., Jing L. (2011). Temporal and spatial expression of the pax-7 gene during chicken embryo and postnatal development. J. Anim. Vet. Adv., 10: 1785–1788.
  17. Hirabayashi M., Matsui T., Yano H. (1998). Fermentation of soybean flour with Aspergillus usamii improves availabilities of zinc and iron in rats. J. Nutr. Sci. Vitaminol. (Tokyo), 44: 877–886.
  18. Hong K.J., Lee C.H., Kim S.W. (2004). Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and soybean meal. J. Med. Food, 7: 430–435.
  19. Hubert J., Berger M., Nepveu F., Paul F., Dayde J. (2008). Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem., 109: 709–721.
  20. Hung A., Su T., Liso C. (2008). Effect of probiotic combination fermented soybean meal on growth performance lipid metabolism and immunological response of growing finishing pigs. Asian J. Anim. Vet. Adv., 3: 421–436.
  21. Jazi V., Ashayerizadeh A., Toghyani M., Shabani A., Tellez G., Toghyani M. (2018). Fermented soybean meal exhibits probiotic properties when included in Japanese quail diet in replacement of soybean meal. Poultry Sci., 97: 2113–2122.
  22. Jazi V., Mohebodini H., Ashayerizadeh A., Shabani A., Barekatain R. (2019). Fermented soybean meal ameliorates Salmonella typhimurium infection in young broiler chickens. Poultry Sci., 98: 5648–5660.
  23. Kalavathy R., Abdullah N., Jalaludin S., Ho Y.W. (2003). Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. Brit. Poult. Sci., 44: 139–144.
  24. Kim S.K., Kim T.H., Lee S.K., Chang K.H., Cho S.J., Lee K.W., An B.K. (2016). The use of fermented soybean meals during early phase affects subsequent growth and physiological response in broiler chicks. Asian-Australas. J. Anim. Sci., 29: 1287–1293.
  25. Lin C.H., Wei Y.T., Chou C.C. (2006). Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food Microbiol., 23: 628–633.
  26. Liong M.T., Shah N.P. (2005). Bile salt deconjugation and BSH activity of five bifidobacterial strains and their cholesterol co-precipitating properties. Food Res. Int., 38: 135–142.
  27. Luo Z., Yu S., Zhu Y., Zhang J., Xu W., Xu J. (2018). Effect of various levels of isoflavone aglycone-enriched fermented soybean meal on redox status, serum hormones and milk quality in ewes. South J. Anim. Sci., 48: 673–682.
  28. Mah J.H., Park Y.K., Jin Y.H., Lee J.H., Hwang H.J. (2019). Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods, 8: 85; doi: 10.3390/foods8020085.10.3390/foods8020085640660130823593
  29. Makowska-Wąś J., Janeczko Z. (2004). Bioavailability of plant polyphenols (in Polish). Post. Fitoter., 3: 126–137.
  30. Mathivanan R., Selvaraj P., Nanjappan K. (2006). Feeding of fermented soybean meal on broiler performance. Int. J. Poult. Sci., 5: 868–872.
  31. Mukherjee R., Chakraborty R., Abhishek D. (2016). Role of fermentation in im- proving nutritional quality of soybean meal – a review. Asian-Australas. J. Anim. Sci., 29: 1523–1529.
  32. Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poult. Res., 21: 259–271.
  33. Otto-Ślusarczyk D., Graboń W., Mielczarek-Puta M. (2016). Aspartate aminotransferase – key enzyme in the human systemic metabolism. Post. Hig. Med. Dośw., 70: 219–230.
  34. Piotrowska A., Burlikowska K., Szymeczko R. (2011). Changes in blood chemistry in broiler chickens during the fattening period. Folia Biol., 59: 183–187.
  35. Seifi K., Karimi Torshizi M.A., Rahimi S., Kazemifard M. (2017). Efficiency of early, single-dose probiotic administration methods on performance, small intestinal morphology, blood biochemistry, and immune response of Japanese quail. Poultry Sci., 96: 2151–2158.
  36. Smulikowska S., Rutkowski A. (2005). Nutrient requirements of poultry. Feeding recommendations and nutritive value of feed (in Polish). 4th ed. The Kielanowski Institute of Animal Physiology and Nutrition of the Polish Academy of Sciences, Jabłonna by Warszawa.
  37. Soumeh E.A., Mohebodini H., Toghyani M., Shabani A., Ashayerizadeh A., Ja-zi V. (2019). Synergistic effects of fermented soybean meal and mannan-oligosaccharide on growth performance, digestive functions, and hepatic gene expression in broiler chickens. Poultry Sci., 98: 6797–6807.
  38. Sugiharto S., Ranjitkar S. (2019). Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim. Nutr., 5: 1–10.
  39. Teng D., Gao M., Yang Y., Liu B., Tian Z., Wang J. (2012). Biomodification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatal. Agric. Biotechnol., 1: 32–38.
  40. Wang W., de Mejia G.E. (2005). A new frontier in soy bioactive peptides that may prevent age-related diseases. Compr. Rev. Food Sci. Food Saf., 4: 63–78.
  41. Wang L.C., Wen C., Jiang Z.Y., Zhou Y.M. (2012). Evaluation of the partial replacement of high-protein feedstuff with fermented soybean meal in broiler diets. J. Appl. Poult. Res., 21: 849–855.
  42. Wongputtisin P., Khanongnuch C., Pongpiachan P., Lumyong S. (2007). Antioxidant activity improvement of soybean meal by microbial fermentation. Res. J. Microbiol., 2: 577–583.
  43. Yuan L., Chang J., Yin Q., Lu M., Di Y., Wang P., Wang Z., Wang E., Lu F. (2017). Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Anim. Nutr., 3: 19–24.
  44. Zhu J., Gao M., Zhang R., Sun Z., Wang C., Yang F., Huang T., Qu S., Zhao L., Li Y., Hao Z. (2017). Effects of soybean meal fermented by L. plantarum, B. subtilis and S. cerevisieae on growth, immune function and intestinal morphology in weaned piglets. Microb. Cell Fact., 16: 191.
DOI: https://doi.org/10.2478/aoas-2020-0009 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 599 - 611
Submitted on: Oct 9, 2019
Accepted on: Jan 8, 2020
Published on: May 4, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Iwona Sembratowicz, Robert Chachaj, Magdalena Krauze, Katarzyna Ognik, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.