Have a personal or library account? Click to login

Biochemical and Haematological Blood Parameters of Sows and Piglets Fed a Diet with a Dried Fermented Rapeseed Meal

Open Access
|May 2020

References

  1. Canibe N., Jensen B.B. (2012). Fermented liquid feed – microbial and nutritional aspects and impact on enteric diseases in pigs. Anim. Feed. Sci. Tech., 173: 17–40.10.1016/j.anifeedsci.2011.12.021
  2. Canibe N., Højberg O., Badsberg J.H., Jensen B.B. (2007). Effect of feeding fermented liquid feed and fermented grain on gastrointestinal ecology and growth performance in piglets. J. Anim. Sci., 85: 2959–2971.10.2527/jas.2006-744
  3. Cheng Y.H., Su L.W., Horng Y.B., Yu Y.H. (2019). Effects of soybean meal fermented by Lacto-bacillus species and Clostridium butyricum on growth performance, diarrhea incidence, and fecal bacteria in weaning piglets. Ann. Anim. Sci., 19: 1051–1062.10.2478/aoas-2019-0042
  4. Chi C.H., Cho S.J. (2016). Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT – Food Sci. Tech., 68: 619–625.10.1016/j.lwt.2015.12.002
  5. Chiang G., Lu W.Q., Piao X.S., Hu J.K., Gong L.M., Thacker P.A. (2010). Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian Austral. J. Anim. Sci., 23: 263–271.10.5713/ajas.2010.90145
  6. Choct M., Dersjant-Li Y., Mc Leish J., Peisker M. (2010). Soy oligosaccharides and soluble non-starch polysaccharides: A review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian Austral. J. Anim. Sci., 23: 1386–1398.10.5713/ajas.2010.90222
  7. Czech A. (2007). Efficacy of phytase in animal diets. Med. Veter., 63: 1034–1039.
  8. Czech A., Grela E.R. (2004). Biochemical and haematological blood parameters of sows during pregnancy and lactation fed the diet with different source and activity of phytase. Anim. Feed Sci. Tech., 116: 211–223.10.1016/j.anifeedsci.2004.07.013
  9. Czech A., Grela E.R., Mokrzycka A., Pejsak Z. (2010). Efficacy of mannanoligosaccharides additive to sows diets on colostrum, blood immunoglobulin content and production parameters of piglets. Pol. J. Vet. Sci., 13: 525–531.
  10. Czech A., Grela E., Klebaniuk R., Ognik K., Samolińska W. (2018). Polish crossbred pigs’ blood haematological parameters depending on their age and physiological state. Ann. Warsaw Univ. Life Sci. – SGGW – Anim. Sci., 56: 185–195.10.22630/AAS.2017.56.2.20
  11. Dingyuan F., Jianjun Z. (2007). Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. International Consultative Group for Research on Rapeseed, Wuhan, China, pp. 265–271.
  12. El-Batal A., Abdel Karem H. (2001). Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation. Food Res. Int., 34: 715–720.10.1016/S0963-9969(01)00093-X
  13. Fazhi X., Lvmu L., Jiaping X., Kun Q., Zhide Z., Zhangyi L. (2011). Effects of fermented rapeseed meal on growth performance and serum parameters in ducks. Asian Austral. J. Anim. Sci., 24: 678–684.10.5713/ajas.2011.10458
  14. Florou-Paneri P., Christaki E., Giannenas I., Bonos E., Skoufos I., Tsinas A., Tzora A., Peng J. (2014). Alternative protein sources to soybean meal in pig diets. J. Food Agric. Environ., 12: 655–660.
  15. Friendship R.M., Henry S.C. (1996). Cardiovascular system, haematology and clinical chemistry. In: Diseases of swine, Leman A.D., Straw B.E., Mengeling W.L., D’Allaire S., Taylor D.J. (eds). Iowa State Univ. Press, USA, pp. 3–11.
  16. Giannini E., Botta F., Fasoli A., Ceppa P., Risso D., Lantieri P.B., Celle G., Tes-ta R. (1999). Progressive liver functional impairment is associated with an increase in AST/ALT ratio. Dig. Dis. Sci., 44: 1249–1253.
  17. Grela E.R., Czech A., Kiesz M., Wlazło Ł., Nowakowicz-Dębek B. (2019). A fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr., 5: 373–379.10.1016/j.aninu.2019.05.004
  18. Gu C., Pan H., Sun Z., Qin G. (2010). Effect of soybean variety on anti-nutritional factors content, and growth performance and nutrients metabolism in rat. Int. J. Mol. Sci., 11: 1048–1056.10.3390/ijms11031048
  19. Guggenbuhl P., Simões Nunes C. (2007). Effects of two phytases on the ileal apparent digestibility of minerals and amino acids in ileo-rectal anastomosed pigs fed on a maize–rapeseed meal diet. Liv. Sci., 109: 261–263.10.1016/j.livsci.2007.01.110
  20. Hu Y., Ge C., Yuan W., Zhu R., Zhang W., Du L., Xue J. (2010). Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. J. Sci. Food Agric., 90: 1194–1202.10.1002/jsfa.3947
  21. Hung A.T.Y., Su T.M., Liao C.W., Lu J.J. (2008). Effect of probiotic combination fermented soybean meal on growth performance, lipid metabolism and immunological response of growing-finishing pigs. Asian J. Anim. Vet. Adv., 3: 431–436.10.3923/ajava.2008.431.436
  22. Iqbal S., Younas U., Sirajuddin Chan K.W., Sarfraz R.A., Uddin K. (2012). Proximate composition and antioxidant potential of leaves from three varieties of Mulberry (Morus sp.): a comparative study. Int. J. Mol. Sci., 13: 6651–6664.10.3390/ijms13066651
  23. Jakobsen G.V., Jensen B.B., Knudsen K.E.B., Canibe N. (2015). Improving the nutritional value of rapeseed cake and wheat dried distillers grains with solubles by addition of enzymes during liquid fermentation. Anim. Feed. Sci. Tech., 208: 198–213.10.1016/j.anifeedsci.2015.07.015
  24. Jensen M.T. (1998). Microbial production of skatole in the digestive tract of entire male pigs. In: Skatole and boar taint, Jensen K. (ed.). Danish Meat Research Institute, Roskilde, pp. 41–75.
  25. Jongbloed A.W., Mroz Z., vander Weij-Jongbloed R., Kemme P.A. (2000). The effects of microbial phytase, organic acids and their interaction in diets for growing pigs. Liv. Prod. Sci., 67: 113–122.10.1016/S0301-6226(00)00179-2
  26. Juanpere J., Pérez-Vendrell A.M., Angulo E., Brufau J. (2005). Assessment of potential interactions between phytase and glycosidase enzyme supplementation on nutrient digestibility in broilers. Poultry Sci., 84: 571–580.10.1093/ps/84.4.571
  27. Kim J.C., Simmins P.H., Mullan B.P., Pluske J.R. (2005). The effect of wheat phosphorus content and supplemental enzymes on digestibility and growth performance of weaner pigs. Anim. Feed Sci. Tech., 118: 139–152.10.1016/j.anifeedsci.2004.08.016
  28. Kim Y.G., Shinde P., Choi J.Y., Kwon M.S., Chae B.J. (2007). Effects of feeding fungal and bacterial fermented soya proteins on blood hematology, enzymes and immune cell populations in weaned pigs. Ann. Anim. Res. Sci., 18: 32–37.
  29. Klem T.B., Bleken E., Morberg H., Thoresen S.I., Framstad T. (2010). Hematologic and biochemical reference intervals for Norwegian crossbreed grower pigs. Vet. Clin. Path., 39: 221–226.10.1111/j.1939-165X.2009.00199.x
  30. Liesegang A., Loch L., Bürgi E., Risteli J. (2005). Influence of phytase added to a vegetarian diet on bone metabolism in pregnant and lactating sows. J. Anim. Physiol. Anim. Nutr., 89: 120–128.10.1111/j.1439-0396.2005.00549.x
  31. Marco-Ramell A., Arroyo L., Peña R., Pato R., Saco Y., Fraile L., Bassols A. (2016). Biochemical and proteomic analyses of the physiological response induced by individual housing in gilts provide new potential stress markers. BMC Vet. Res., 12: 265.10.1186/s12917-016-0887-1
  32. Missotten J.A., Michiels J., Degroote J., De Smet S. (2015). Fermented liquid feed for pigs: an ancient technique for the future. J Anim. Sci. Biotechnol., 6: 4.10.1186/2049-1891-6-4
  33. Navarro D.M.D.L., Liu Y., Bruun T.S., Stein H.H. (2017). Amino acid digestibility by wean-ling pigs of processed ingredients originating from soybeans, 00-rapeseeds, or a fermented mixture of plant ingredients. J. Anim. Sci., 95: 2658–2669.10.2527/jas.2016.1356
  34. Nega T. (2018). Review on nutritional limitations and opportunities of using rapeseed meal and other rape seed by-products in animal feeding. J. Nutr. Health Food Eng., 8: 43–48.10.15406/jnhfe.2018.08.00254
  35. NRS (2012). Nutrient Requirements of Swine. 11th rev. ed. National Academies Press, Washington, D.C.
  36. Pedersen C., Boersma M.G., Stein H.H. (2007). Digestibility of energy and phosphorus in ten samples of distillers dried grains with solubles fed to growing pigs. J. Anim. Sci., 85: 1168–1176.10.2527/jas.2006-252
  37. Shi C., He J., Yu J., Yu B., Mao X., Zheng P., Huang Z., Chen D. (2015). Amino acid, phosphorus, and energy digestibility of Aspergillus niger fermented rapeseed meal fed to growing pigs. J. Anim. Sci., 93: 2916–2925.10.2527/jas.2014-8326
  38. Shi C., He J., Wang J., Yu J., Yu B., Mao X., Zheng P., Huang Z., Chen D. (2016). Effects of Aspergillus niger fermented rapeseed meal on nutrient digestibility, growth performance and serum parameters in growing pigs. Anim. Sci. J., 87: 557–563.10.1111/asj.12457
  39. Smiricky-Tjardes M.R., Grieshop C.M., Flickinger E.A., Bauer L.L., Fahey G.C. (2003). Dietary galactooligosacharydes affect ileal total-tract nutrient digestibility, ileal and fecal bacterial concentrations, and ileal fermentative characteristics of growing pigs. J. Anim. Sci., 81: 2535–2545.10.2527/2003.81102535x
  40. Stein H.H., Sauber T.E., Rice D.W., Hinds M.A., Smith B.L., Dana G., Peters D.N., Hunst P. (2009). Growth performance and carcass composition of pigs fed corn grain from DASØ15Ø7-1 (Herculex I) Hybrids1. Prof. Anim. Sci., 25: 689–694.10.15232/S1080-7446(15)30776-2
  41. Su L.W., Cheng Y.H., Hsiao F.S., Han J.C., Yu Y.H. (2018). Optimization of mixed solid-state fermentation of soybean meal by Lactobacillus species and Clostridium butyricum. Pol. J. Micro-biol., 67: 297–305.10.21307/pjm-2018-035
  42. Swaminathan R. (2001). Biochemical markers of bone turnover. Clin. Chim. Acta, 313: 95–105.10.1016/S0009-8981(01)00656-8
  43. Tomaszewska E., Muszyński S., Dobrowolski P., Kamiński D., Czech A., Gre-la E.R., Wiącek D., Tomczyk-Warunek A. (2019). Dried fermented post-extraction rape-seed meal given to sows as an alternative protein source for soybean meal during pregnancy improves bone development of their offspring. Liv. Sci., 224: 60–68.10.1016/j.livsci.2019.04.009
  44. Vig A.P., Walia A. (2001). Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal. Bioresour. Technol., 78: 309–312.10.1016/S0960-8524(01)00030-X
  45. Webb P. (2010). Thyroid hormone receptor and lipid regulation. Curr. Opin. Invest. Drugs, 11: 1135–1142.
  46. Winnicka A. (2011). Reference values of basic laboratory tests in veterinary science (in Polish). 5th rev. exp. ed., SGGW, Warszawa.
  47. Woyengo T.A., Beltranena E., Zijlstra R.T. (2017). Effect of anti-nutritional factors of oil-seed co-products on feed intake of pigs and poultry. Anim. Feed. Sci. Tech., 233: 76–86.10.1016/j.anifeedsci.2016.05.006
  48. Yang Y.X., Heo S., Jin Z., Yun J.H., Choi J.Y., Yoon S.Y., Park M.S., Yang B.K., Chae B.J. (2009). Effects of lysine intake during late gestation and lactation on blood metabolites, hormones, milk composition and reproductive performance in primiparous and multiparous sows. Anim Reprod. Sci., 112: 199–214.10.1016/j.anireprosci.2008.04.031
  49. Yonejima Y., Ushida K., Mori Y. (2013). Effect of lactic acid bacteria on lipid metabolism and fat synthesis in mice fed a high-fat diet. Biosci. Microbiota Food Health, 32: 51–58.10.12938/bmfh.32.51
DOI: https://doi.org/10.2478/aoas-2019-0079 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 535 - 550
Submitted on: Sep 8, 2019
Accepted on: Nov 5, 2019
Published on: May 4, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Anna Czech, Eugeniusz Ryszard Grela, Martyna Kiesz, Sylwia Kłys, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.