Cheng Y.H., Su L.W., Horng Y.B., Yu Y.H. (2019). Effects of soybean meal fermented by Lacto-bacillus species and Clostridium butyricum on growth performance, diarrhea incidence, and fecal bacteria in weaning piglets. Ann. Anim. Sci., 19: 1051–1062.10.2478/aoas-2019-0042
Chi C.H., Cho S.J. (2016). Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT – Food Sci. Tech., 68: 619–625.10.1016/j.lwt.2015.12.002
Chiang G., Lu W.Q., Piao X.S., Hu J.K., Gong L.M., Thacker P.A. (2010). Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian Austral. J. Anim. Sci., 23: 263–271.10.5713/ajas.2010.90145
Choct M., Dersjant-Li Y., Mc Leish J., Peisker M. (2010). Soy oligosaccharides and soluble non-starch polysaccharides: A review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian Austral. J. Anim. Sci., 23: 1386–1398.10.5713/ajas.2010.90222
Czech A., Grela E.R. (2004). Biochemical and haematological blood parameters of sows during pregnancy and lactation fed the diet with different source and activity of phytase. Anim. Feed Sci. Tech., 116: 211–223.10.1016/j.anifeedsci.2004.07.013
Czech A., Grela E.R., Mokrzycka A., Pejsak Z. (2010). Efficacy of mannanoligosaccharides additive to sows diets on colostrum, blood immunoglobulin content and production parameters of piglets. Pol. J. Vet. Sci., 13: 525–531.
Czech A., Grela E., Klebaniuk R., Ognik K., Samolińska W. (2018). Polish crossbred pigs’ blood haematological parameters depending on their age and physiological state. Ann. Warsaw Univ. Life Sci. – SGGW – Anim. Sci., 56: 185–195.10.22630/AAS.2017.56.2.20
Dingyuan F., Jianjun Z. (2007). Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. International Consultative Group for Research on Rapeseed, Wuhan, China, pp. 265–271.
El-Batal A., Abdel Karem H. (2001). Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation. Food Res. Int., 34: 715–720.10.1016/S0963-9969(01)00093-X
Fazhi X., Lvmu L., Jiaping X., Kun Q., Zhide Z., Zhangyi L. (2011). Effects of fermented rapeseed meal on growth performance and serum parameters in ducks. Asian Austral. J. Anim. Sci., 24: 678–684.10.5713/ajas.2011.10458
Florou-Paneri P., Christaki E., Giannenas I., Bonos E., Skoufos I., Tsinas A., Tzora A., Peng J. (2014). Alternative protein sources to soybean meal in pig diets. J. Food Agric. Environ., 12: 655–660.
Friendship R.M., Henry S.C. (1996). Cardiovascular system, haematology and clinical chemistry. In: Diseases of swine, Leman A.D., Straw B.E., Mengeling W.L., D’Allaire S., Taylor D.J. (eds). Iowa State Univ. Press, USA, pp. 3–11.
Giannini E., Botta F., Fasoli A., Ceppa P., Risso D., Lantieri P.B., Celle G., Tes-ta R. (1999). Progressive liver functional impairment is associated with an increase in AST/ALT ratio. Dig. Dis. Sci., 44: 1249–1253.
Grela E.R., Czech A., Kiesz M., Wlazło Ł., Nowakowicz-Dębek B. (2019). A fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr., 5: 373–379.10.1016/j.aninu.2019.05.004
Gu C., Pan H., Sun Z., Qin G. (2010). Effect of soybean variety on anti-nutritional factors content, and growth performance and nutrients metabolism in rat. Int. J. Mol. Sci., 11: 1048–1056.10.3390/ijms11031048
Guggenbuhl P., Simões Nunes C. (2007). Effects of two phytases on the ileal apparent digestibility of minerals and amino acids in ileo-rectal anastomosed pigs fed on a maize–rapeseed meal diet. Liv. Sci., 109: 261–263.10.1016/j.livsci.2007.01.110
Hu Y., Ge C., Yuan W., Zhu R., Zhang W., Du L., Xue J. (2010). Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. J. Sci. Food Agric., 90: 1194–1202.10.1002/jsfa.3947
Hung A.T.Y., Su T.M., Liao C.W., Lu J.J. (2008). Effect of probiotic combination fermented soybean meal on growth performance, lipid metabolism and immunological response of growing-finishing pigs. Asian J. Anim. Vet. Adv., 3: 431–436.10.3923/ajava.2008.431.436
Iqbal S., Younas U., Sirajuddin Chan K.W., Sarfraz R.A., Uddin K. (2012). Proximate composition and antioxidant potential of leaves from three varieties of Mulberry (Morus sp.): a comparative study. Int. J. Mol. Sci., 13: 6651–6664.10.3390/ijms13066651
Jakobsen G.V., Jensen B.B., Knudsen K.E.B., Canibe N. (2015). Improving the nutritional value of rapeseed cake and wheat dried distillers grains with solubles by addition of enzymes during liquid fermentation. Anim. Feed. Sci. Tech., 208: 198–213.10.1016/j.anifeedsci.2015.07.015
Jensen M.T. (1998). Microbial production of skatole in the digestive tract of entire male pigs. In: Skatole and boar taint, Jensen K. (ed.). Danish Meat Research Institute, Roskilde, pp. 41–75.
Jongbloed A.W., Mroz Z., vander Weij-Jongbloed R., Kemme P.A. (2000). The effects of microbial phytase, organic acids and their interaction in diets for growing pigs. Liv. Prod. Sci., 67: 113–122.10.1016/S0301-6226(00)00179-2
Juanpere J., Pérez-Vendrell A.M., Angulo E., Brufau J. (2005). Assessment of potential interactions between phytase and glycosidase enzyme supplementation on nutrient digestibility in broilers. Poultry Sci., 84: 571–580.10.1093/ps/84.4.571
Kim J.C., Simmins P.H., Mullan B.P., Pluske J.R. (2005). The effect of wheat phosphorus content and supplemental enzymes on digestibility and growth performance of weaner pigs. Anim. Feed Sci. Tech., 118: 139–152.10.1016/j.anifeedsci.2004.08.016
Liesegang A., Loch L., Bürgi E., Risteli J. (2005). Influence of phytase added to a vegetarian diet on bone metabolism in pregnant and lactating sows. J. Anim. Physiol. Anim. Nutr., 89: 120–128.10.1111/j.1439-0396.2005.00549.x
Marco-Ramell A., Arroyo L., Peña R., Pato R., Saco Y., Fraile L., Bassols A. (2016). Biochemical and proteomic analyses of the physiological response induced by individual housing in gilts provide new potential stress markers. BMC Vet. Res., 12: 265.10.1186/s12917-016-0887-1
Missotten J.A., Michiels J., Degroote J., De Smet S. (2015). Fermented liquid feed for pigs: an ancient technique for the future. J Anim. Sci. Biotechnol., 6: 4.10.1186/2049-1891-6-4
Navarro D.M.D.L., Liu Y., Bruun T.S., Stein H.H. (2017). Amino acid digestibility by wean-ling pigs of processed ingredients originating from soybeans, 00-rapeseeds, or a fermented mixture of plant ingredients. J. Anim. Sci., 95: 2658–2669.10.2527/jas.2016.1356
Nega T. (2018). Review on nutritional limitations and opportunities of using rapeseed meal and other rape seed by-products in animal feeding. J. Nutr. Health Food Eng., 8: 43–48.10.15406/jnhfe.2018.08.00254
Pedersen C., Boersma M.G., Stein H.H. (2007). Digestibility of energy and phosphorus in ten samples of distillers dried grains with solubles fed to growing pigs. J. Anim. Sci., 85: 1168–1176.10.2527/jas.2006-252
Shi C., He J., Yu J., Yu B., Mao X., Zheng P., Huang Z., Chen D. (2015). Amino acid, phosphorus, and energy digestibility of Aspergillus niger fermented rapeseed meal fed to growing pigs. J. Anim. Sci., 93: 2916–2925.10.2527/jas.2014-8326
Shi C., He J., Wang J., Yu J., Yu B., Mao X., Zheng P., Huang Z., Chen D. (2016). Effects of Aspergillus niger fermented rapeseed meal on nutrient digestibility, growth performance and serum parameters in growing pigs. Anim. Sci. J., 87: 557–563.10.1111/asj.12457
Su L.W., Cheng Y.H., Hsiao F.S., Han J.C., Yu Y.H. (2018). Optimization of mixed solid-state fermentation of soybean meal by Lactobacillus species and Clostridium butyricum. Pol. J. Micro-biol., 67: 297–305.10.21307/pjm-2018-035
Tomaszewska E., Muszyński S., Dobrowolski P., Kamiński D., Czech A., Gre-la E.R., Wiącek D., Tomczyk-Warunek A. (2019). Dried fermented post-extraction rape-seed meal given to sows as an alternative protein source for soybean meal during pregnancy improves bone development of their offspring. Liv. Sci., 224: 60–68.10.1016/j.livsci.2019.04.009
Vig A.P., Walia A. (2001). Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal. Bioresour. Technol., 78: 309–312.10.1016/S0960-8524(01)00030-X
Woyengo T.A., Beltranena E., Zijlstra R.T. (2017). Effect of anti-nutritional factors of oil-seed co-products on feed intake of pigs and poultry. Anim. Feed. Sci. Tech., 233: 76–86.10.1016/j.anifeedsci.2016.05.006
Yang Y.X., Heo S., Jin Z., Yun J.H., Choi J.Y., Yoon S.Y., Park M.S., Yang B.K., Chae B.J. (2009). Effects of lysine intake during late gestation and lactation on blood metabolites, hormones, milk composition and reproductive performance in primiparous and multiparous sows. Anim Reprod. Sci., 112: 199–214.10.1016/j.anireprosci.2008.04.031
Yonejima Y., Ushida K., Mori Y. (2013). Effect of lactic acid bacteria on lipid metabolism and fat synthesis in mice fed a high-fat diet. Biosci. Microbiota Food Health, 32: 51–58.10.12938/bmfh.32.51