Have a personal or library account? Click to login

The Effect of a Rat Diet Without Added Cu on Redox Status in Tissues and Epigenetic Changes in the Brain

Open Access
|May 2020

References

  1. Angelova M., Asenova S., Nedkova V., Koleva-Kolarova R. (2011). Copper in the human organism. Trakia J. Sci., 9: 88–98.
  2. Aoki T. (2004). Copper deficiency and the clinical practice. Japan Med. Assoc. J., 47: 365–370.10.5124/jkma.2004.47.4.370
  3. Balevska P.S., Russanov E.M., Kassabova T.A. (1981). Studies on lipid peroxidation in rat liver by copper deficiency. Int. J. Biochem., 13: 489–493.10.1016/0020-711X(81)90122-1
  4. Bhattacharjee A., Chakraborty K., Shukla A. (2017). Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases. Metallomics, 10: 1376–1388.10.1039/C7MT00066A
  5. Bjorklund G. (2013). The role of zinc and copper in autism spectrum disorders. Acta Neurobiol. Exp. (Wars)., 73: 225–236.
  6. Bost M., Houdart S., Oberli M., Kalonji E., Huneau J.F., Margaritis I. (2016). Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol., 35: 107–115.10.1016/j.jtemb.2016.02.006
  7. Brewer G.J. (2010). Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol., 23: 319–326.10.1021/tx900338d
  8. Cakatay U., Telci A., Kayalì R., Tekeli F., Akçay T., Sivas A. (2001). Relation of oxidative protein damage and nitrotyrosine levels in the aging rat brain. Exp. Gerontol., 36: 221–229.10.1016/S0531-5565(00)00197-2
  9. Carmody R.J., Cotter T.G. (2000). Oxidative stress induces caspase-independent retinal apoptosis in vitro. Cell Death Differ., 7: 282–291.10.1038/sj.cdd.4400646
  10. Chauhan A., Sheikh A.M., Chauhan V. (2008). Increased copper-mediated oxidation of membrane phosphatidylethanolamine in autism. Am. J. Biochem. Biotechnol., 4: 95–100.10.3844/ajbbsp.2008.95.100
  11. Chen Y., Saari J., Kang Y. (1994). Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Radic. Biol. Med., 17: 529–536.10.1016/0891-5849(94)90092-2
  12. Chen Z., Meng H., Xing G., Chen C., Zhao Y., Jia G., Wang T., Yuan H., Ye C., Zhao F., Chai Z., Zhu C., Fang X., Ma B., Wan L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett., 163: 109–120.10.1016/j.toxlet.2005.10.003
  13. Cholewińska E., Juśkiewicz J., Ognik K. (2018 a). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in a rat model. J. Trace Elem. Med. Biol., 48: 111–117.10.1016/j.jtemb.2018.03.01729773169
  14. Cholewińska E., Fotschki B., Juśkiewicz J., Rusinek-Prystupa E., Ognik K. (2018 b). The effect of copper level in the diet on the distribution, and biological and immunological responses in a rat model. J. Anim. Feed Sci., 27: 349–360.10.22358/jafs/99893/2018
  15. Cholewińska E., Ognik K., Fotschki B., Zduńczyk Z., Juśkiewicz J. (2018 c). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One, 13: e0197083.10.1371/journal.pone.0197083595154629758074
  16. Cichoż-Lach H., Michalak A. (2014). Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol., 20: 8082–8091.10.3748/wjg.v20.i25.8082
  17. Di Nicolantonio J.J., Mangan D., O‘Keefe J.H. (2018). Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart, 5: e000784.10.1136/openhrt-2018-000784
  18. Dubick M.A., Barr J.L., Keen C.L., Atkins J.L. (2015). Ceruloplasmin and hypoferremia: studies in burn and non-burn trauma patients. Antioxidants (Basel), 4: 153–169.10.3390/antiox4010153
  19. El Meskini R., Crabtree K.L., Cline L.B., Mains R.E., Eipper B.A., Ronnett G.V. (2007). ATP7A (Menkes protein) functions in axonal targeting and synaptogenesis. Mol. Cell. Neurosci., 34: 409–421.10.1016/j.mcn.2006.11.018
  20. Fossati P., Prencipe L., Berti G. (1980). Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem., 26: 227–231.10.1093/clinchem/26.2.0227
  21. Fotschki B., Jurgoński A., Fotschki J., Majewski M., Ognik K., Juśkiewicz J. (2019). Dietary chicory inulin-rich meal exerts greater healing effects than fructooligosaccharides preparation in rats with trinitrobenzenesulfonic acid-induced necrotic colitis. Pol. J. Food Nutr. Sci., 69: 147–155.10.31883/pjfns-2019-0013
  22. Gaetke L.M., Chow C.K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189: 147–163.10.1016/S0300-483X(03)00159-8
  23. Gaetke L.M., Chow-Johnson H.S., Chow C.K. (2014). Copper: toxicological relevance and mechanisms. Arch. Toxicol., 88: 1929–1938.10.1007/s00204-014-1355-y
  24. Gamez P., Caballero A.B. (2015). Copper in Alzheimer’s disease: Implications in amyloid aggregation and neurotoxicity. AIP Advances, 5: 092503.10.1063/1.4921314
  25. Gürler H.Ş., Bilgici B., Akar A.K., Tomak L., Bedir A. (2014). Increased DNA oxidation (8-OHdG) and protein oxidation (AOPP) by low level electromagnetic field (2.45 GHz) in rat brain and protective effect of garlic. Int. J. Radiat. Biol., 90: 892–896.10.3109/09553002.2014.922717
  26. Gybina A.A., Tkac I., Prohaska J.R. (2009). Copper deficiency alters the neurochemical profile of developing rat brain. Nutr. Neurosci., 12: 114–122.10.1179/147683009X423265
  27. Hellman N.E., Gitlin J.D. (2002). Ceruloplasmin metabolism and function. Annu. Rev. Nutr., 22: 439–458.10.1146/annurev.nutr.22.012502.114457
  28. Höhn T.J., Grune T. (2014). The proteasome and the degradation of oxidized proteins: part III – Redox regulation of the proteasomal system. Redox Biol., 14: 388–394.10.1016/j.redox.2013.12.029
  29. Hordyjewska A., Popiołek Ł., Kocot J. (2014). The many “faces” of copper in medicine and treatment. Biometals., 27: 611–621.10.1007/s10534-014-9736-5
  30. Huster D. (2010). Wilson disease. Best Pract. Res. Cl. Ga., 24: 531–539.10.1016/j.bpg.2010.07.014
  31. Jaiser S.R., Winston G.P. (2010). Copper deficiency myelopathy. J. Neurol., 257: 869–881.10.1007/s00415-010-5511-x
  32. Johnson W.M., Wilson-Delfosse A.L., Mieyal J.J. (2012). Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients, 4: 1399–1440.10.3390/nu4101399
  33. Jursa T., Smith D.R. (2008). Ceruloplasmin alters the tissue disposition and neurotoxicity of manganese, but not its loading onto transferrin. Toxicol Sci., 107: 182–193.10.1093/toxsci/kfn231
  34. Klevay L.M. (2008). Alzheimer’s disease as copper deficiency. Med. Hypotheses, 70: 802–807.10.1016/j.mehy.2007.04.051
  35. Kodama H., Fujisawa C., Bhadhprasit W. (2012). Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment. Curr. Drug Metab., 13: 237–250.10.2174/138920012799320455
  36. Kumar V., Kalita J., Misra U.K., Bora H.K. (2015). A study of dose response and organ susceptibility of copper toxicity in a rat model. J. Trace Elem. Med. Biol., 29: 269–274.10.1016/j.jtemb.2014.06.004
  37. Kumar V., Kalita J., Bora H.K., Misra U.K. (2016). Temporal kinetics of organ damage in copper toxicity: A histopathological correlation in rat model. Regul. Toxicol. Pharmacol., 81: 372–380.10.1016/j.yrtph.2016.09.025
  38. Lawrence R.A., Jenkinson S.G. (1987). Effects of copper deficiency on carbon tetrachloride-induced lipid peroxidation. J. Lab. Clin. Med., 109: 134–140.
  39. Le A., Shibata N.M., French S.W., Kim K., Kharbanda K.K., Islam M.S., La Sal-le J.M., Halsted C.H., Keen C.L., Medici V. (2014). Characterization of timed changes in hepatic copper concentrations, methionine metabolism, gene expression, and global DNA methylation in the Jackson toxic milk mouse model of Wilson disease. Int. J. Mol. Sci., 15: 8004–8023.10.3390/ijms15058004
  40. Li S., Tan H.Y., Wang N., Zhang Z.J., Lao L., Wong C.W., Feng Y. (2015). The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 16: 26087–26124.10.3390/ijms161125942
  41. Lisanti S., Omar W.A., Tomaszewski B., De Prins S., Jacobs G., Koppen G., Mathers J.C., Langie S.A.S. (2013). Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One, 8: e79044.10.1371/journal.pone.0079044
  42. Lv Y., Liu P., Xiang C., Yang H. (2013). Oxidative stress and hypoxia observed in the kidneys of mice after a 13-week oral administration of melamine and cyanuric acid combination. Res. Vet. Sci., 95: 1100–1106.10.1016/j.rvsc.2013.10.001
  43. Maiorino M., Zamburlini A., Roveri A., Ursini F. (1995). Copper-induced lipid peroxidation in liposomes, micelles, and LDL: which is the role of vitamin E? Free Radic. Biol. Med., 18: 67–74.10.1016/0891-5849(94)00103-Q
  44. Menkes J.H., Alter M., Steigleder G.K., Weakley D.R., Sung J.H. (1962). A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics, 29: 764–779.
  45. Moore L.D., Le T., Fan G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38: 23–38.10.1038/npp.2012.112
  46. Muriel P., Gordillo K.R. (2016). Role of oxidative stress in liver health and disease. Oxid. Med Cell. Longev., 2016: 9037051.10.1155/2016/9037051
  47. Nishihara E., Furuyama T., Yamashita S., Mori N. (1998). Expression of copper trafficking genes in the mouse brain. Neuroreport, 9: 3259–3263.10.1097/00001756-199810050-00023
  48. NRC (National Research Council) (1989). Recommended Dietary Allowances, 10th ed. Washington, D.C., National Academy Press.
  49. Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poult. Res., 21: 259–271.10.3382/japr.2011-00366
  50. Ognik K., Sembratowicz I., Cholewińska E., Jankowski J., Kozłowski K., Juś-kiewicz J., Zduńczyk Z. (2018). The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim. Sci. J., 89: 579–588.10.1111/asj.12956
  51. Ognik K., Cholewińska E., Juśkiewicz J., Zduńczyk Z., Tutaj K., Szlązak R. (2019). The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model. J. Anim. Physiol. Anim. Nutr. (Berl.), 103: 675–686.10.1111/jpn.13025
  52. Opazo C.M., Greenough M.A., Bush A.I. (2014). Copper: from neurotransmission to neuroproteostasis. Front. Aging Neurosci., 6: 143.10.3389/fnagi.2014.00143
  53. Paglia D.E., Valentine W.N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 70: 158–169.
  54. Palumaa P. (2013). Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Lett., 587: 1902–1910.10.1016/j.febslet.2013.05.019
  55. Prohaska J.R., Lukasewycz O.A. (1981). Copper deficiency suppresses the immune response of mice. Science, 213: 559–561.10.1126/science.7244654
  56. Reeves P.G. (1997). Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr., 127: 838S–8341S.10.1093/jn/127.5.838S
  57. Scheiber I.F., Mercer J.F., Dringen R. (2014). Metabolism and functions of copper in brain. Prog. Neurobiol., 116: 33–57.10.1016/j.pneurobio.2014.01.002
  58. Seol J.K., Jeong J.H., Nam S.Y., Yun J.W., Kim J.S., Lee B.J. (2015). Comparison of the bioavailability of nano- and micro-sized copper oxide particles in copper-deficient mice. J. Prev. Vet. Med., 39: 3–14.10.13041/jpvm.2015.39.1.3
  59. Sirajwala H.B., Dabhi A.S., Malukar N.R., Bhalgami R.B., Pandya T.P. (2007). Serum ceruloplasmin level as an extracellular antioxidant in acute myocardial infarction. JIACM, 8: 135–138.
  60. Sunderman F.W., Nomoto S. (1970). Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin. Chem., 16: 903–910.10.1093/clinchem/16.11.903
  61. Surai P.F., Kochish I.I., Fisinin V.I. (2018). Glutathione peroxidases in poultry biology: Part 1. Classification and mechanisms of action. Worlds Poult. Sci. J., 74: 185–198.10.1017/S0043933918000284
  62. Telianidis J., Hung Y.H., Materia S., Fontaine S.L. (2013). Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front. Aging Neurosci., 23: 44.10.3389/fnagi.2013.00044
  63. Tishchenko K.I., Beloglazkina E.K., Mazhuga A.G., Zyk N.V. (2016). Copper containing enzymes: site types and low molecular weight model compounds. Rev. J. Chem., 6: 49–82.10.1134/S2079978016010027
  64. Tümer Z., Møller L.B. (2010). Menkes disease. Eur. J. Hum. Genet., 18: 511–518.10.1038/ejhg.2009.187
  65. Udomsinprasert W., Kitkumthorn N., Mutirangura A., Chongsrisawat V., Poovorawan Y., Honsawek S. (2016). Global methylation, oxidative stress, and relative telomere length in biliary atresia patients. Sci. Rep., 6: 26969.10.1038/srep26969
  66. Uttara B., Singh A.V., Zamboni P., Mahajan R.T. (2009). Oxidative stress and neurode-generative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 7: 65–74.10.2174/157015909787602823
  67. Venza M., Visalli M., Beninati C., De Gaetano G.V., Teti D., Venza I. (2015). Cellular mechanisms of oxidative stress and action in melanoma. Oxid Med. Cell. Longev., 2015: 481782.10.1155/2015/481782
  68. Walsh W.J. (2012). Nutrient Power: Heal your biochemistry and heal your brain. New York, NY, Skyhorse.
  69. Weschawalit S., Thongthip S., Phutrakool P., Asawanonda P. (2017). Glutathione and its antiaging and antimelanogenic effects. Clin. Cosmet. Investig. Dermatol., 10: 147–153.10.2147/CCID.S128339
  70. Yamada H., Ono S., Wada S., Aoi W., Park E.Y., Nakamura Y., Sato K. (2018). Statuses of food-derived glutathione in intestine, blood, and liver of rat. NPJ Sci. Food, 2: 3.10.1038/s41538-018-0011-y
  71. Yanar K., Aydın S., Cakatay U., Mengi M., Buyukpınarbaşılı N., Atukeren P., Sitar M.E., Sönmez A., Uslu E. (2011). Protein and DNA oxidation in different anatomic regions of rat brain in a mimetic ageing model. Basic Clin. Pharmacol. Toxicol., 109: 423–433.10.1111/j.1742-7843.2011.00756.x
  72. Yang J., Yu L., Gaiteri C., Srivastava G.P., Chibnik L.B., Leurgans S.E., Schnei-der J.A., Meissner A., De Jager P.L., Bennett D.A. (2015). Association of DNA methylation in the brain with age in older persons is confounded by common neuropathologies. Int. J. Biochem. Cell Biol., 67: 58–64.10.1016/j.biocel.2015.05.009
DOI: https://doi.org/10.2478/aoas-2019-0075 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 503 - 520
Submitted on: Mar 22, 2019
Accepted on: Oct 16, 2019
Published on: May 4, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Katarzyna Ognik, Krzysztof Tutaj, Ewelina Cholewińska, Monika Cendrowska-Pinkosz, Wojciech Dworzański, Anna Dworzańska, Jerzy Juśkiewicz, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.