Accili D., Arden K.C. (2004). FoxOs at the crossroads of cellular review metabolism, differentiation, and transformation. Cell, 117: 421–426.10.1016/S0092-8674(04)00452-0
Baquero-Perez B., Kuchipudi S.V., Nelli R.K., Chang K.C. (2012). A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biol. 13, 16; https://doi.org/10.1186/1471-2121-13-16.10.1186/1471-2121-13-16343259722720831
Bodine S.C., Stitt T.N., Gonzalez M., Kline W.O., Stover G.L., Bauerlein R., Zlotchenko E., Scrimgeour A., Lawrence J.C., Glass D.J., Yancopoulos G.D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol., 3: 1014–1019; https://doi.org/10.1038/ncb1101-1014.10.1038/ncb1101-101411715023
Boutz P.L., Chawla G., Stoilov P., Black D.L. (2007). MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev., 21: 71–84; https://doi.org/10.1101/gad.1500707.10.1101/gad.1500707175990217210790
Burattini S., Ferri R., Battistelli M., Curci R., Luchetti F., Falcieri E. (2004). C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. Eur. J. Histochem., 48: 223–233.
Castigliego L., Armani A., Grifoni G., Rosati R., Mazzi M., Gianfaldoni D., Guidi A. (2010). Effects of growth hormone treatment on the expression of somatotropic axis genes in the skeletal muscle of lactating Holstein cows. Domest. Anim. Endocrinol., 39: 40–53; https://doi.org/10.1016/j.domaniend.2010.02.00110.1016/j.domaniend.2010.02.00120399067
Chen J.F., Mandel E.M., Thomson J.M., Wu Q., Callis T.E., Hammond S.M., Conlon F.L., Wang D.Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet., 38: 228–233; https://doi.org/10.1038/ng1725.10.1038/ng1725253857616380711
Chen J.F., Tao Y., Li J., Deng Z., Yan Z., Xiao X., Wang D.Z. (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol., 190: 867–879; https://doi.org/10.1083/jcb.200911036.10.1083/jcb.200911036293556520819939
Chen L., Li Y.S., Cui J., Ning J.N., Wang G.S., Qian G.S., Lu K.Z., Yi B. (2014). MiR-206 controls the phenotypic modulation of pulmonary arterial smooth muscle cells induced by serum from rats with Hepatopulmonary syndrome by regulating the target gene, Annexin A2. Cell. Physiol. Biochem., 34: 1768–1779; https://doi.org/10.1159/000366377.10.1159/00036637725427750
Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., Bouix J., Caiment F., Elsen J.M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet., 38: 813–818; https://doi.org/10.1038/ng1810.10.1038/ng181016751773
Crist C.G., Montarras D., Pallafacchina G., Rocancourt D., Cumano A., Conway S.J., Buckingham M. (2009). Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc. Natl. Acad. Sci., 106: 13383–13387; https://doi.org/10.1073/pnas.0900210106.10.1073/pnas.0900210106272638119666532
Cutting A.D., Bannister S.C., Doran T.J., Sinclair A.H., Tizard M.V.L., Smith C.A. (2012). The potential role of microRNAs in regulating gonadal sex differentiation in the chicken embryo. Chromosom. Res., 20: 201–213; https://doi.org/10.1007/s10577-011-9263-y.10.1007/s10577-011-9263-y22161018
Draeger A., Babiychuk E.B., Schaller J., Palstra R.-J.T.S., Kämpfer U. (2002). Annexin VI participates in the formation of a reversible, membrane-cytoskeleton complex in smooth muscle cells. J. Biol. Chem., 274: 35191–3519; https://doi.org/10.1074/jbc.274.49.35191.10.1074/jbc.274.49.3519110575003
Elia L., Contu R., Quintavalle M., Varrone F., Chimenti C., Russo M.A., Cimino V., De Marinis L., Frustaci A., Catalucci D., Condorelli G. (2009). Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 120: 2377–2385; https://doi.org/10.1161/CIRCULATIONAHA.109.879429.10.1161/CIRCULATIONAHA.109.879429282565619933931
Eun J.L., Baek M., Gusev Y., Brackett D.J., Nuovo G.J., Schmittgen T.D. (2008). Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA, 14: 35–42; https://doi.org/10.1261/rna.804508.10.1261/rna.804508215102718025253
Feng Y., Niu L.L., Wei W., Zhang W.Y., Li X.Y., Cao J.H., Zhao S.H. (2013). A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis., 4: 934; https://doi.org/10.1038/cddis.2013.462.10.1038/cddis.2013.462384733824287695
Glazov E.A., Cottee P.A., Barris W.C., Moore R.J., Dalrymple B.P., Tizard M.L. (2008). A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res., 18: 957–964; https://doi.org/10.1101/gr.074740.107.10.1101/gr.074740.107241316318469162
Grifone R., Demignon J., Giordani J., Niro C., Souil E., Bertin F., Laclef C., Xu P.X., Maire P. (2007). Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev. Biol., 302: 602–616; https://doi.org/10.1016/j.ydbio.2006.08.059.10.1016/j.ydbio.2006.08.05917098221
Gu Z. (2004). The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth. Sci. China Ser. C 47, 25; https://doi.org/10.1360/02yc0201.10.1360/02yc020115382673
Guo C.S., Degnin C., Fiddler T.A., Stauffer D., Thayer M.J. (2003). Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J. Biol. Chem., 278: 22615–22622; https://doi.org/10.1074/jbc.M301943200.10.1074/jbc.301943200
Hache R.J.G., Wiper-Bergeron N., Salem H.A., Wu D., Tomlinson J.J. (2007). Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc. Natl. Acad. Sci., 104: 2703–2708; https://doi.org/10.1073/pnas.0607378104.10.1073/pnas.0607378104181524517301242
Hadjiargyrou M., Lombardo F., Zhao S., Ahrens W., Joo J., Ahn H., Jurman M., White D.W., Rubin C.T. (2002). Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J. Biol. Chem., 277: 30177–30182; https://doi.org/10.1074/jbc.M203171200.10.1074/jbc.203171200
Hillier L.W., Miller W., Birney E., Warren W., Hardison R.C., Ponting C.P., Bork P., Burt D.W., Groenen M.A.M., Delany M.E., Dodgson J.B. (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432: 695–716; https://doi.org/10.1038/nature03154.10.1038/03154
Hirai H., Verma M., Watanabe S., Tastad C., Asakura Y., Asakura A. (2010). MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell Biol., 191: 347–365; https://doi.org/10.1083/jcb.201006025.10.1083/jcb.201006025295847920956382
Hu R., Pan W., Fedulov A. V., Jester W., Jones M.R., Weiss S.T., Panettieri R.A., Tantisira K., Lu Q. (2014). MicroRNA-10a controls airway smooth muscle cell proliferation via direct targeting of the PI3 kinase pathway. FASEB J., 28: 2347–2357; https://doi.org/10.1096/fj.13-247247.10.1096/fj.13-247247398684124522205
Ishibashi J., Perry R.L., Asakura A., Rudnicki M.A. (2005). MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. J. Cell Biol., 171: 471–482; https://doi.org/10.1083/jcb.200502101.10.1083/jcb.200502101217126916275751
Jia X., Lin H., Abdalla B.A., Nie Q. (2016). Characterization of miR-206 promoter and its association with birthweight in chicken. Int. J. Mol. Sci. 17, 559; https://doi.org/10.3390/ijms17040559.10.3390/ijms17040559484901527089330
Junqing L., Shuisheng H., Wei H., Junying Y., Wenwu W. (2011). Polymorphisms in the myostatin gene and their association with growth and carcass traits in duck. African J. Biotechnol., 10: 11309–11312; https://doi.org/10.5897/AJB11.512.10.5897/AJB11.512
Khatri B., Seo D., Shouse S., Pan J.H., Hudson N.J., Kim J.K., Bottje W., Kong B.C. (2018). MicroRNA profiling associated with muscle growth in modern broilers compared to an unselected chicken breed. BMC Genomics, 19: 1–10; https://doi.org/10.1186/s12864-018-5061-7.10.1186/s12864-018-5061-7
Koomkrong N., Theerawatanasirikul S., Boonkaewwan C., Jaturasitha S., Kayan A. (2015). Breed-related number and size of muscle fibres and their response to carcass quality in chickens. Ital. J. Anim. Sci., 14: 638–642; https://doi.org/10.4081/ijas.2015.4145.10.4081/ijas.2015.4145
Koutsoulidou A., Mastroyiannopoulos N.P., Furling D., Uney J.B., Phylactou L.A. (2011). Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev. Biol.,11: 1–9; https://doi.org/10.1186/1471-213X-11-34.10.1186/1471-213X-11-34
Lawlor M.W., De Chene E.T., Roumm E., Geggel A.S., Moghadaszadeh B., Beggs A.H. (2010). Mutations of tropomyosin 3 (TPM3) are common and associated with type 1 myofiber hypotrophy in congenital fiber type disproportion. Hum. Mutat., 31: 176–183; https://doi.org/10.1002/humu.21157.10.1002/humu.21157281519919953533
Li T., Wu R., Zhang Y., Zhu D. (2011). A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics, 12; https://doi.org/10.1186/1471-2164-12-186.10.1186/1471-2164-12-186310718421486491
Li Z., Abdalla B.A., Zheng M., He X., Cai B., Han P., Ouyang H., Chen B., Nie Q., Zhang X. (2018). Systematic transcriptome-wide analysis of mRNA–miRNA interactions reveals the involvement of miR-142-5p and its target (FOXO3) in skeletal muscle growth in chickens. Mol. Genet. Genomics, 293: 69–80; https://doi.org/10.1007/s00438-017-1364-7.10.1007/s00438-017-1364-728866851
Liu J., Luo X.J., Xiong A.W., Zhang Z., Di Yue S., Zhu M.S., Cheng S.Y. (2010). MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras. J. Biol. Chem.; https://doi.org/10.1074/jbc.M110.115824.10.1074/jbc.M110.115824292409820534588
Lu L., Zhou L., Chen E.Z., Sun K., Jiang P., Wang L., Su X., Sun H., Wang H. (2012). A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS One 7. https://doi.org/10.1371/journal.pone.0027596.10.1371/journal.pone.0027596327107622319554
Naguibneva I., Ameyar-Zazoua M., Polesskaya A., Ait-Si-Ali S., Groisman R., Souidi M., Cuvellier S., Harel-Bellan A. (2006). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol., 8: 278–284; https://doi.org/10.1038/ncb1373.10.1038/ncb137316489342
Richards M.P., Poch S.M., Mc Murtry J.P. (2005). Expression of insulin-like growth factor system genes in liver and brain tissue during embryonic and post-hatch development of the turkey. Comp. Biochem. Physiol. – A Mol. Integr. Physiol., 141: 76–86; https://doi.org/10.1016/j.cbpb.2005.04.006.10.1016/j.cbpb.2005.04.00615905111
Schellander K., Holker M., Hossain M.M., Tesfaye D., Salilew-Wondim D., Cinar M.U., Kocamis H., Mohammadi-Sangcheshmeh A. (2013). Expression of microRNA and microRNA processing machinery genes during early quail (Coturnix japonica) embryo development. Poultry Sci., 92: 787–797; https://doi.org/10.3382/ps.2012-02691.10.3382/ps.2012-0269123436530
Shen H., McElhinny A.S., Cao Y., Gao P., Liu J., Bronson R., Griffin J.D., Wu L. (2006). The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev., 20: 675–688; https://doi.org/10.1101/gad.1383706.10.1101/gad.1383706141328416510869
Song C.L., Liu H.H., Kou J., Lv L., Li L., Wang W.X., Wang J.W. (2012). Expression profile of insulin-like growth factor system genes in muscle tissues during the postnatal development growth stage in ducks. Genet. Mol. Res., 12: 4500–4514; https://doi.org/10.4238/2013.May.6.3.10.4238/2013..6.3
Sumariwalla V.M., Klein W.H. (2001). Similar myogenic functions for myogenin and MRF4 but not MyoD in differentiated murine embryonic stem cells. Genesis, 30: 239–249; https://doi.org/10.1002/gene.1070.10.1002/gene.107011536430
Sun Q., Zhang Y., Yang G., Chen X., Zhang Y., Cao G., Wang J., Sun Y., Zhang P., Fan M., Shao N., Yang X. (2008). Transforming growth factor-β-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res., 36: 2690–2699; https://doi.org/10.1093/nar/gkn032.10.1093/nar/gkn032237743418353861
Sun Y., Ge Y., Drnevich J., Zhao Y., Band M., Chen J. (2010). Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J. Cell Biol., 189: 1157–1169; https://doi.org/10.1083/jcb.200912093.10.1083/jcb.200912093289444820566686
Sweetman D., Goljanek K., Rathjen T., Oustanina S., Braun T., Dalmay T., Münsterberg A. (2008). Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev. Biol., 321: 491–499; https://doi.org/10.1016/j.ydbio.2008.06.019.10.1016/j.ydbio.2008.06.01918619954
Takaya T., Ono K., Kawamura T., Takanabe R., Kaichi S., Morimoto T., Wada H., Kita T., Shimatsu A., Hasegawa K. (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circ. J., 73: 1492–1497; https://doi.org/10.1253/circj.CJ-08-1032.10.1253/circj.CJ-08-1032
van der Horst A., Burgering B.M.T., (2007). Stressing the role of FoxO proteins in lifespan and disease. Nat. Rev. Mol. Cell Biol., 8: 440–450; https://doi.org/10.1038/nrm2190.10.1038/nrm219017522590
van Rooij E., Sutherland L.B., Qi X., Richardson J.A., Hill J., Olson E.N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 80: 575–579; https://doi.org/10.1126/science.1139089.10.1126/.1139089
Velleman S.G., Nestor K.E., Coy C.S., Harford I., Anthony N.B. (2010). Effect of posthatch feed restriction on broiler breast muscle development and muscle transcriptional regulatory factor gene and heparan sulfate proteoglycan expression. Int. J. Poult. Sci., 9: 417–425; https://doi.org/10.3923/ijps.2010.417.425.10.3923/ijps.2010.417.425
Wu N., Gu T., Lu L., Cao Z., Song Q., Wang Z., Zhang Y., Chang G., Xu Q., Chen G. (2019). Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle. J. Cell. Physiol., 234: 3490–3499; https://doi.org/10.1002/jcp.26857.10.1002/jcp.2685730471101
Xu T., Huang W., Zhang X., Ye B., Zhou H., Hou S. (2012). Identification and characterization of genes related to the development of breast muscles in Pekin duck. Mol. Biol. Rep., 39: 7647–7655; https://doi.org/10.1007/s11033-012-1599-7.10.1007/s11033-012-1599-722451153
Xu T.S., Gu L.H., Zhang X.H., Ye B.G., Liu X.L., Hou S.S. (2013 a). Characterization of myostatin gene (MSTN) of Pekin duck and the association of its polymorphism with breast muscle traits. Genet. Mol. Res., 12: 3166–3177; https://doi.org/10.4238/2013.February.28.18.10.4238/2013.February.28.1823479163
Xu T.S., Gu L.H., Zhang X.H., Huang W., Ye B.G., Liu X.L., Hou S.S. (2013 b). IGF-1 and FoxO3 expression profiles and developmental differences of breast and leg muscle in Pekin ducks during postnatal stages. J. Anim. Vet. Adv., 12: 852–858.
Xu T.S., Gu L.H., Sun Y., Zhang X.H., Ye B.G., Liu X.L., Hou S.S. (2015). Characterization of MUSTN1 gene and its relationship with skeletal muscle development at postnatal stages in Pekin ducks. Genet. Mol. Res., 14: 4448–4460; https://doi.org/10.4238/2015.May.4.2.10.4238/2015..4.2
Yin H., Zhang S., Gilbert E.R., Siegel P.B., Zhu Q., Wong E.A. (2014). Expression profiles of muscle genes in postnatal skeletal muscle in lines of chickens divergently selected for high and low body weight. Poultry Sci., 93: 147–154; https://doi.org/10.3382/ps.2013-03612.10.3382/ps.2013-0361224570434
Zhao Y., Samal E., Srivastava D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436: 214–220; https://doi.org/10.1038/nature03817.10.1038/03817
Zhao Y., Hou Y., Zhang K., Yuan B., Peng X. (2017). Identification of differentially expressed miRNAs through high-throughput sequencing in the chicken lung in response to Mycoplasma gallisepticum HS. Comp. Biochem. Physiol. – Part D Genomics Proteomics, 22: 146–156; https://doi.org/10.1016/j.cbd.2017.04.004.10.1016/j.cbd.2017.04.00428433919
Zhu C., Song W., Tao Z., Liu H., Xu W., Zhang S., Li H. (2017). Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds. PLoS One, 12: 1–18; https://doi.org/10.1371/journal.pone.0180403.10.1371/journal.pone.0180403554242728771592