Have a personal or library account? Click to login

Mechanism and Functions of Identified miRNAs in Poultry Skeletal Muscle Development – A Review

Open Access
|Oct 2019

References

  1. Accili D., Arden K.C. (2004). FoxOs at the crossroads of cellular review metabolism, differentiation, and transformation. Cell, 117: 421–426.10.1016/S0092-8674(04)00452-0
  2. Andreote A.P.D., Rosario M.F., Ledur M.C., Jorge E.C., Sonstegard T.S., Matukumalli L., Coutinho L.L. (2014). Identification and characterization of microRNAs expressed in chicken skeletal muscle. Genet. Mol. Res., 13: 1465–1479; https://doi.org/10.4238/2014.March.6.5.10.4238/2014..6.5
  3. Baquero-Perez B., Kuchipudi S.V., Nelli R.K., Chang K.C. (2012). A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biol. 13, 16; https://doi.org/10.1186/1471-2121-13-16.10.1186/1471-2121-13-16343259722720831
  4. Bassel-Duby R., Olson E.N. (2006). Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem.,75: 19–37; https://doi.org/10.1146/annurev.biochem.75.103004.142622.10.1146/annurev.biochem.75.103004.14262216756483
  5. Berkes C.A., Tapscott S.J. (2005). MyoD and the transcriptional control of myogenesis. Semin. Cell Dev. Biol., 16: 585–595; https://doi.org/10.1016/j.semcdb.2005.07.006.10.1016/j.semcdb.2005.07.00616099183
  6. Bodine S.C., Stitt T.N., Gonzalez M., Kline W.O., Stover G.L., Bauerlein R., Zlotchenko E., Scrimgeour A., Lawrence J.C., Glass D.J., Yancopoulos G.D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol., 3: 1014–1019; https://doi.org/10.1038/ncb1101-1014.10.1038/ncb1101-101411715023
  7. Boutz P.L., Chawla G., Stoilov P., Black D.L. (2007). MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev., 21: 71–84; https://doi.org/10.1101/gad.1500707.10.1101/gad.1500707175990217210790
  8. Braun T., Gautel M. (2011). Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat. Rev. Mol. Cell Biol., 12: 349–361; https://doi.org/10.1038/nrm3118.10.1038/nrm311821602905
  9. Buckingham M. (2006). Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet. Dev.; https://doi.org/10.1016/j.gde.2006.08.008.10.1016/j.gde.2006.08.00816930987
  10. Buechner J., Tømte E., Haug B.H., Henriksen J.R., Løkke C., Flægstad T., Einvik C. (2011). Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br. J. Cancer, 105: 296–303; https://doi.org/10.1038/bjc.2011.220.10.1038/bjc.2011.220314280321654684
  11. Burattini S., Ferri R., Battistelli M., Curci R., Luchetti F., Falcieri E. (2004). C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. Eur. J. Histochem., 48: 223–233.
  12. Cardinalli B., Castellani L., Fasanaro P., Basso A., Alemà S., Martelli F., Falcone G. (2009). Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One, 4; https://doi.org/10.1371/journal.pone.0007607.10.1371/journal.pone.0007607276261419859555
  13. Castigliego L., Armani A., Grifoni G., Rosati R., Mazzi M., Gianfaldoni D., Guidi A. (2010). Effects of growth hormone treatment on the expression of somatotropic axis genes in the skeletal muscle of lactating Holstein cows. Domest. Anim. Endocrinol., 39: 40–53; https://doi.org/10.1016/j.domaniend.2010.02.00110.1016/j.domaniend.2010.02.00120399067
  14. Chen B., Xu J., He X., Xu H., Li G., Du H., Nie Q., Zhang X. (2015). A genome-wide mRNA screen and functional analysis reveal FOXO3 as a candidate gene for chicken growth. PLoS One, 10: 1–22; https://doi.org/10.1371/journal.pone.0137087.10.1371/journal.pone.0137087456932826366565
  15. Chen J.F., Mandel E.M., Thomson J.M., Wu Q., Callis T.E., Hammond S.M., Conlon F.L., Wang D.Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet., 38: 228–233; https://doi.org/10.1038/ng1725.10.1038/ng1725253857616380711
  16. Chen J.F., Tao Y., Li J., Deng Z., Yan Z., Xiao X., Wang D.Z. (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol., 190: 867–879; https://doi.org/10.1083/jcb.200911036.10.1083/jcb.200911036293556520819939
  17. Chen L., Li Y.S., Cui J., Ning J.N., Wang G.S., Qian G.S., Lu K.Z., Yi B. (2014). MiR-206 controls the phenotypic modulation of pulmonary arterial smooth muscle cells induced by serum from rats with Hepatopulmonary syndrome by regulating the target gene, Annexin A2. Cell. Physiol. Biochem., 34: 1768–1779; https://doi.org/10.1159/000366377.10.1159/00036637725427750
  18. Chung F.W., Tellam R.L. (2008). MicroRNA-26a targets the histone methyltransferase enhancer of zeste homolog 2 during myogenesis. J. Biol. Chem., 283: 9836–9843; https://doi.org/10.1074/jbc.M709614200.10.1074/jbc.709614200
  19. Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., Bouix J., Caiment F., Elsen J.M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet., 38: 813–818; https://doi.org/10.1038/ng1810.10.1038/ng181016751773
  20. Crippa S., Cassano M., Messina G., Galli D., Galvez B.G., Curk T., Altomare C., Ronzoni F., Toelen J., Gijsbers R., Debyser Z., Janssens S., Zupan B., Zaza A., Cossu G., Sampaolesi M. (2011). miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. J. Cell Biol., 193: 1197–1212; https://doi.org/10.1083/jcb.201011099.10.1083/jcb.201011099321634021708977
  21. Crist C.G., Montarras D., Pallafacchina G., Rocancourt D., Cumano A., Conway S.J., Buckingham M. (2009). Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc. Natl. Acad. Sci., 106: 13383–13387; https://doi.org/10.1073/pnas.0900210106.10.1073/pnas.0900210106272638119666532
  22. Cui T.X., Schwartz J., Piwien-Pilipuk G., Lanning N., Rathore M., LaPensee C.R., Calinescu A.-A., Lin G., Jin H., Qin Z.S., Carter-Su C., Streeter C. (2011). C/EBPβ mediates growth hormone-regulated expression of multiple target genes. Mol. Endocrinol., 25: 681–693; https://doi.org/10.1210/me.2010-0232.10.1210/me.2010-0232306308621292824
  23. Cutting A.D., Bannister S.C., Doran T.J., Sinclair A.H., Tizard M.V.L., Smith C.A. (2012). The potential role of microRNAs in regulating gonadal sex differentiation in the chicken embryo. Chromosom. Res., 20: 201–213; https://doi.org/10.1007/s10577-011-9263-y.10.1007/s10577-011-9263-y22161018
  24. Darnell D.K., Kaur S., Stanislaw S., Konieczka J.K., Yatskievych T.A., Antin P.B. (2006). MicroRNA expression during chick embryo development. Dev. Dyn., 235: 3156–3165; https://doi.org/10.1002/dvdy.20956.10.1002/dvdy.2095617013880
  25. De Mario A., Quintana-Cabrera R., Martinvalet D., Giacomello M. (2017). (Neuro)degenerated Mitochondria-ER contacts. Biochem. Biophys. Res. Commun., 483: 1096–1109; https://doi.org/10.1016/j.bbrc.2016.07.056.10.1016/j.bbrc.2016.07.05627416756
  26. Dey B.K., Gagan J., Yan Z., Dutta A. (2012). miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev., 26: 2180–2191; https://doi.org/10.1101/gad.198085.112.10.1101/gad.198085.112346573923028144
  27. Draeger A., Babiychuk E.B., Schaller J., Palstra R.-J.T.S., Kämpfer U. (2002). Annexin VI participates in the formation of a reversible, membrane-cytoskeleton complex in smooth muscle cells. J. Biol. Chem., 274: 35191–3519; https://doi.org/10.1074/jbc.274.49.35191.10.1074/jbc.274.49.3519110575003
  28. Dupont J., Holzenberger M. (2003). Biology of insulin-like growth factors in development. Birth Defects Res. Part C: Embryo Today: Rev.; https://doi.org/10.1002/bdrc.10022.10.1002/bdrc.1002214745968
  29. Egerman M.A., Glass D.J. (2014). Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol., 49: 59–68; https://doi.org/10.3109/10409238.2013.857291.10.3109/10409238.2013.857291391308324237131
  30. Elia L., Contu R., Quintavalle M., Varrone F., Chimenti C., Russo M.A., Cimino V., De Marinis L., Frustaci A., Catalucci D., Condorelli G. (2009). Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 120: 2377–2385; https://doi.org/10.1161/CIRCULATIONAHA.109.879429.10.1161/CIRCULATIONAHA.109.879429282565619933931
  31. Eun J.L., Baek M., Gusev Y., Brackett D.J., Nuovo G.J., Schmittgen T.D. (2008). Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA, 14: 35–42; https://doi.org/10.1261/rna.804508.10.1261/rna.804508215102718025253
  32. Feng Y., Cao J.H., Li X.Y., Zhao S.H. (2011). Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts. Cell Biochem. Funct., 29: 378–383; https://doi.org/10.1002/cbf.1760.10.1002/cbf.176021520152
  33. Feng Y., Niu L.L., Wei W., Zhang W.Y., Li X.Y., Cao J.H., Zhao S.H. (2013). A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis., 4: 934; https://doi.org/10.1038/cddis.2013.462.10.1038/cddis.2013.462384733824287695
  34. Flynt A.S., Li N., Thatcher E.J., Solnica-Krezel L., Patton J.G. (2007). Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat. Genet., 39: 259–263; https://doi.org/10.1038/ng1953.10.1038/ng1953398279917220889
  35. Gan W., He H., Li L. (2016). Molecular cloning, characterisation and functional analysis of the duck Forkhead box O3 (FOXO3) gene. Br. Poult. Sci., 57: 143–150; https://doi.org/10.1080/00071668.2015.113550.10.1080/00071668.2015.113550
  36. Ge Y., Sun Y., Chen J. (2011). IGF-II is regulated by microRNA-125b in skeletal myogenesis. J. Cell Biol., 192: 69–81; https://doi.org/10.1083/jcb.201007165.10.1083/jcb.201007165301954721200031
  37. Glazov E.A., Cottee P.A., Barris W.C., Moore R.J., Dalrymple B.P., Tizard M.L. (2008). A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res., 18: 957–964; https://doi.org/10.1101/gr.074740.107.10.1101/gr.074740.107241316318469162
  38. Goettsch C., Rauner M., Pacyna N., Hempel U., Bornstein S.R., Hofbauer L.C. (2011). MiR-125b regulates calcification of vascular smooth muscle cells. Am. J. Pathol., 179: 1594–1600; https://doi.org/10.1016/j.ajpath.2011.06.016.10.1016/j.ajpath.2011.06.016318138321806957
  39. Grifone R., Demignon J., Giordani J., Niro C., Souil E., Bertin F., Laclef C., Xu P.X., Maire P. (2007). Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev. Biol., 302: 602–616; https://doi.org/10.1016/j.ydbio.2006.08.059.10.1016/j.ydbio.2006.08.05917098221
  40. Gu L., Xu T., Huang W., Xie M., Sun S., Hou S. (2014). Identification and profiling of microRNAs in the embryonic breast muscle of Pekin duck. PLoS One, 9: 1–13; https://doi.org/10.1371/journal.pone.0086150.10.1371/journal.pone.0086150390048024465928
  41. Gu Z. (2004). The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth. Sci. China Ser. C 47, 25; https://doi.org/10.1360/02yc0201.10.1360/02yc020115382673
  42. Guo C.S., Degnin C., Fiddler T.A., Stauffer D., Thayer M.J. (2003). Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J. Biol. Chem., 278: 22615–22622; https://doi.org/10.1074/jbc.M301943200.10.1074/jbc.301943200
  43. Hache R.J.G., Wiper-Bergeron N., Salem H.A., Wu D., Tomlinson J.J. (2007). Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc. Natl. Acad. Sci., 104: 2703–2708; https://doi.org/10.1073/pnas.0607378104.10.1073/pnas.0607378104181524517301242
  44. Hadjiargyrou M., Lombardo F., Zhao S., Ahrens W., Joo J., Ahn H., Jurman M., White D.W., Rubin C.T. (2002). Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J. Biol. Chem., 277: 30177–30182; https://doi.org/10.1074/jbc.M203171200.10.1074/jbc.203171200
  45. Hak K.K., Yong S.L., Sivaprasad U., Malhotra A., Dutta A. (2006). Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol., 174: 677–687; https://doi.org/10.1083/jcb.200603008.10.1083/jcb.200603008206431116923828
  46. Hamburger V., Hamilton H.L. (1951). A series of normal stages in the development of the chick embryo. J. Morphol., 88: 49–92; https://doi.org/10.1002/jmor.1050880104.10.1002/jmor.1050880104
  47. Harding R.L., Velleman S.G. (2016). MicroRNA regulation of myogenic satellite cell proliferation and differentiation. Mol. Cell. Biochem., 412: 181–195; https://doi.org/10.1007/s11010-015-2625-6.10.1007/s11010-015-2625-626715133
  48. Harris L.K., Westwood M. (2012). Biology and significance of signalling pathways activated by IGF-II. Growth Factors; https://doi.org/10.3109/08977194.2011.640325.10.3109/08977194.2011.64032522136428
  49. Hennebry A., Berry C., Siriett V., O ’Callaghan P., Chau L., Watson T., Sharma M., Kambadur R. (2008). Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. AJP Cell Physiol., 296: 525–534; https://doi.org/10.1152/ajpcell.00259.2007.10.1152/ajpcell.00259.200719129464
  50. Hicks J.A., Tembhurne P., Liu H.C. (2008). MicroRNA expression in chicken embryos. Poultry Sci., 87: 2335–2343; https://doi.org/10.3382/ps.2008-00114.10.3382/ps.2008-0011418931185
  51. Hicks J.A., Trakooljul N., Liu H.-C. (2010). Discovery of chicken microRNAs associated with lipogenesis and cell proliferation. Physiol. Genomics, 41: 185–193; https://doi.org/10.1152/physiolgenomics.00156.2009.10.1152/physiolgenomics.00156.200920103699
  52. Hillier L.W., Miller W., Birney E., Warren W., Hardison R.C., Ponting C.P., Bork P., Burt D.W., Groenen M.A.M., Delany M.E., Dodgson J.B. (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432: 695–716; https://doi.org/10.1038/nature03154.10.1038/03154
  53. Hirai H., Verma M., Watanabe S., Tastad C., Asakura Y., Asakura A. (2010). MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell Biol., 191: 347–365; https://doi.org/10.1083/jcb.201006025.10.1083/jcb.201006025295847920956382
  54. Hu R., Pan W., Fedulov A. V., Jester W., Jones M.R., Weiss S.T., Panettieri R.A., Tantisira K., Lu Q. (2014). MicroRNA-10a controls airway smooth muscle cell proliferation via direct targeting of the PI3 kinase pathway. FASEB J., 28: 2347–2357; https://doi.org/10.1096/fj.13-247247.10.1096/fj.13-247247398684124522205
  55. Huang H., Xie C., Sun X., Ritchie R.P., Zhang J., Eugene Chen Y. (2010). miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J. Biol. Chem., 285: 9383–9389; https://doi.org/10.1074/jbc.M109.095612.10.1074/jbc.M109.095612284318720118242
  56. Huang M.B., Xu H., Xie S.J., Zhou H., Qu L.H. (2011). Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One, 6; https://doi.org/10.1371/journal.pone.0029173.10.1371/journal.pone.0029173324064022195016
  57. Huang T.H., Zhu M.J., Li X.Y., Zhao S.H. (2008). Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS One, 3; https://doi.org/10.1371/journal.pone.0003225.10.1371/journal.pone.0003225252894418795099
  58. Hunter R.B., Kandarian S.C. (2004). Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J. Clin. Invest., 114: 1504–1511; https://doi.org/10.1172/JCI200421696.10.1172/JCI200421696
  59. Ishibashi J., Perry R.L., Asakura A., Rudnicki M.A. (2005). MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. J. Cell Biol., 171: 471–482; https://doi.org/10.1083/jcb.200502101.10.1083/jcb.200502101217126916275751
  60. Jebessa E., Ouyang H., Abdalla B.A., Li Z. (2017). Characterization of miRNA and their target gene during chicken embryo skeletal muscle development. Oncotarget, 9: 17309–17324; https://doi.org/10.18632/oncotarget.22457.10.18632/oncotarget.22457591511829707110
  61. Jia X., Lin H., Abdalla B.A., Nie Q. (2016). Characterization of miR-206 promoter and its association with birthweight in chicken. Int. J. Mol. Sci. 17, 559; https://doi.org/10.3390/ijms17040559.10.3390/ijms17040559484901527089330
  62. Juan A.H., Kumar R.M., Marx J.G., Young R.A., Sartorelli V. (2009). Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol. Cell., 36: 61–74; https://doi.org/10.1016/j.molcel.2009.08.008.10.1016/j.molcel.2009.08.008276124519818710
  63. Junqing L., Shuisheng H., Wei H., Junying Y., Wenwu W. (2011). Polymorphisms in the myostatin gene and their association with growth and carcass traits in duck. African J. Biotechnol., 10: 11309–11312; https://doi.org/10.5897/AJB11.512.10.5897/AJB11.512
  64. Kablar B., Rudnicki M.A. (2000). Skeletal muscle development in the mouse embryo. Histol. Histopathol.; https://doi.org/10.14670/HH-15.649.
  65. Khanna N., Ge Y., Chen J. (2014). MicroRNA-146b promotes myogenic differentiation and modulates multiple gene targets in muscle cells. PLoS One, 9; https://doi.org/10.1371/journal.pone.0100657.10.1371/journal.pone.0100657
  66. Khatri B., Seo D., Shouse S., Pan J.H., Hudson N.J., Kim J.K., Bottje W., Kong B.C. (2018). MicroRNA profiling associated with muscle growth in modern broilers compared to an unselected chicken breed. BMC Genomics, 19: 1–10; https://doi.org/10.1186/s12864-018-5061-7.10.1186/s12864-018-5061-7
  67. Koomkrong N., Theerawatanasirikul S., Boonkaewwan C., Jaturasitha S., Kayan A. (2015). Breed-related number and size of muscle fibres and their response to carcass quality in chickens. Ital. J. Anim. Sci., 14: 638–642; https://doi.org/10.4081/ijas.2015.4145.10.4081/ijas.2015.4145
  68. Koutsoulidou A., Mastroyiannopoulos N.P., Furling D., Uney J.B., Phylactou L.A. (2011). Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev. Biol.,11: 1–9; https://doi.org/10.1186/1471-213X-11-34.10.1186/1471-213X-11-34
  69. Lagos-Quintana M., Rauhut R., Yalcin A., Meyer J., Lendeckel W., Tuschl T. (2002). Identification of tissue-specific MicroRNAs from mouse. Curr. Biol., 12: 735–739; https://doi.org/10.1016/S0960-9822(02)00809-6.10.1016/S0960-9822(02)00809-6
  70. Lawlor M.W., De Chene E.T., Roumm E., Geggel A.S., Moghadaszadeh B., Beggs A.H. (2010). Mutations of tropomyosin 3 (TPM3) are common and associated with type 1 myofiber hypotrophy in congenital fiber type disproportion. Hum. Mutat., 31: 176–183; https://doi.org/10.1002/humu.21157.10.1002/humu.21157281519919953533
  71. Li T., Wu R., Zhang Y., Zhu D. (2011). A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics, 12; https://doi.org/10.1186/1471-2164-12-186.10.1186/1471-2164-12-186310718421486491
  72. Li Z., Abdalla B.A., Zheng M., He X., Cai B., Han P., Ouyang H., Chen B., Nie Q., Zhang X. (2018). Systematic transcriptome-wide analysis of mRNA–miRNA interactions reveals the involvement of miR-142-5p and its target (FOXO3) in skeletal muscle growth in chickens. Mol. Genet. Genomics, 293: 69–80; https://doi.org/10.1007/s00438-017-1364-7.10.1007/s00438-017-1364-728866851
  73. Liang Y., Ridzon D., Wong L., Chen C. (2007). Characterization of microRNA expression profiles in normal human tissues. BMC Genomics, 8: 166; https://doi.org/10.1186/1471-2164-8-166.10.1186/1471-2164-8-166190420317565689
  74. Liu C., Gersch R.P., Hawke T.J., Hadjiargyrou M. (2010). Silencing of Mustn1 inhibits myogenic fusion and differentiation. Am. J. Physiol. Physiol., 298: 1100–1108; https://doi.org/10.1152/ajpcell.00553.2009.10.1152/ajpcell.00553.2009286739320130207
  75. Liu J., Luo X.J., Xiong A.W., Zhang Z., Di Yue S., Zhu M.S., Cheng S.Y. (2010). MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras. J. Biol. Chem.; https://doi.org/10.1074/jbc.M110.115824.10.1074/jbc.M110.115824292409820534588
  76. Liu N., Bezprozvannaya S., Shelton J.M., Frisard M.I., Hulver M.W., McMillan R.P., Wu Y., Voelker K.A., Grange R.W., Richardson J.A., Bassel-Duby R., Olson E.N. (2011). Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. J. Clin. Invest., 121: 3258–3268; https://doi.org/10.1172/JCI46267.10.1172/JCI46267314873721737882
  77. Liu X., Cheng Y., Zhang S., Lin Y., Yang J., Zhangr C. (2009). A necessary role of miR-221 and miR-222 in vascular smooth muscle cell prolife ation and neointimal hyperplasia. Circ. Res., 104: 476–486; https://doi.org/10.1161/CIRCRESAHA.108.185363.10.1161/CIRCRESAHA.108.185363272829019150885
  78. Lu L., Zhou L., Chen E.Z., Sun K., Jiang P., Wang L., Su X., Sun H., Wang H. (2012). A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS One 7. https://doi.org/10.1371/journal.pone.0027596.10.1371/journal.pone.0027596327107622319554
  79. Luo W., Nie Q., Zhang X. (2013). MicroRNAs involved in skeletal muscle differentiation. J. Genet. Genomics, 40: 107–116; https://doi.org/10.1016/j.jgg.2013.02.002.10.1016/j.jgg.2013.02.00223522383
  80. McCarthy J.J. (2008). MicroRNA-206: The skeletal muscle-specific myomiR. Biochim. Biophys. Acta – Gene Regul. Mech., 1779: 682–691; https://doi.org/10.1016/j.bbagrm.2008.03.001.10.1016/j.bbagrm.2008.03.001265639418381085
  81. McCarthy J.J., Esser K.A. (2006). MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J. Appl. Physiol., 102: 306–313; https://doi.org/10.1152/japplphysiol.00932.2006.10.1152/japplphysiol.00932.200617008435
  82. McDaneld T.G., Smith T.P.L., Doumit M.E., Miles J.R., Coutinho L.L., Sonstegard T.S., Matukumalli L.K., Nonneman D.J., Wiedmann R.T. (2009). MicroRNA transcriptome profiles during swine skeletal muscle development. BMC Genomics, 10: 77; https://doi.org/10.1186/1471-2164-10-77.10.1186/1471-2164-10-77264674719208255
  83. Mendias C.L., Bakhurin K.I., Faulkner J.A. (2008). Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc. Natl. Acad. Sci., 105: 388–393; https://doi.org/10.1073/pnas.0707069105.10.1073/pnas.0707069105222422218162552
  84. Moss F.P., Leblond C.P. (1971). Satellite cells as the source of nuclei in muscles of growing rats. Anat. Rec., 170: 421–435; https://doi.org/10.1002/ar.1091700405.10.1002/ar.10917004055118594
  85. Naguibneva I., Ameyar-Zazoua M., Polesskaya A., Ait-Si-Ali S., Groisman R., Souidi M., Cuvellier S., Harel-Bellan A. (2006). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol., 8: 278–284; https://doi.org/10.1038/ncb1373.10.1038/ncb137316489342
  86. O’Rourke J.R., Mc Anally J., Moresi V., Gerard R.D., Sutherland L.B., Olson E.N., Richardson J.A., Small E.M. (2010). Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc. Natl. Acad. Sci., 107: 4218–4223; https://doi.org/10.1073/pnas.1000300107.10.1073/pnas.1000300107284009920142475
  87. Potthoff M.J., Olson E.N. (2007). MEF2: a central regulator of diverse developmental programs. Development, 134: 4131–4140; https://doi.org/10.1242/dev.008367.10.1242/dev.00836717959722
  88. Rathjen T., Pais H., Sweetman D., Moulton V., Munsterberg A., Dalmay T. (2009). High throughput sequencing of microRNAs in chicken somites. FEBS Lett., 583: 1422–1426; https://doi.org/10.1016/j.febslet.2009.03.048.10.1016/j.febslet.2009.03.04819328789
  89. Richards M.P., Poch S.M., Mc Murtry J.P. (2005). Expression of insulin-like growth factor system genes in liver and brain tissue during embryonic and post-hatch development of the turkey. Comp. Biochem. Physiol. – A Mol. Integr. Physiol., 141: 76–86; https://doi.org/10.1016/j.cbpb.2005.04.006.10.1016/j.cbpb.2005.04.00615905111
  90. Rivas D.A., Lessard S.J., Rice N.P., Lustgarten M.S., So K., Goodyear L.J., Parnell L.D., Fielding R.A. (2014). Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J., 28: 4133–4147; https://doi.org/10.1096/fj.14-254490.10.1096/fj.14-254490505831824928197
  91. Saccone V., Puri P.L. (2010). Epigenetic regulation of skeletal myogenesis. Organogenesis, 6: 48–53; https://doi.org/10.4161/org.6.1.11293.10.4161/org.6.1.11293286174320592865
  92. Schellander K., Holker M., Hossain M.M., Tesfaye D., Salilew-Wondim D., Cinar M.U., Kocamis H., Mohammadi-Sangcheshmeh A. (2013). Expression of microRNA and microRNA processing machinery genes during early quail (Coturnix japonica) embryo development. Poultry Sci., 92: 787–797; https://doi.org/10.3382/ps.2012-02691.10.3382/ps.2012-0269123436530
  93. Shen H., McElhinny A.S., Cao Y., Gao P., Liu J., Bronson R., Griffin J.D., Wu L. (2006). The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev., 20: 675–688; https://doi.org/10.1101/gad.1383706.10.1101/gad.1383706141328416510869
  94. Song C.L., Liu H.H., Kou J., Lv L., Li L., Wang W.X., Wang J.W. (2012). Expression profile of insulin-like growth factor system genes in muscle tissues during the postnatal development growth stage in ducks. Genet. Mol. Res., 12: 4500–4514; https://doi.org/10.4238/2013.May.6.3.10.4238/2013..6.3
  95. Sumariwalla V.M., Klein W.H. (2001). Similar myogenic functions for myogenin and MRF4 but not MyoD in differentiated murine embryonic stem cells. Genesis, 30: 239–249; https://doi.org/10.1002/gene.1070.10.1002/gene.107011536430
  96. Sun Q., Zhang Y., Yang G., Chen X., Zhang Y., Cao G., Wang J., Sun Y., Zhang P., Fan M., Shao N., Yang X. (2008). Transforming growth factor-β-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res., 36: 2690–2699; https://doi.org/10.1093/nar/gkn032.10.1093/nar/gkn032237743418353861
  97. Sun Y., Ge Y., Drnevich J., Zhao Y., Band M., Chen J. (2010). Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J. Cell Biol., 189: 1157–1169; https://doi.org/10.1083/jcb.200912093.10.1083/jcb.200912093289444820566686
  98. Sweetman D., Goljanek K., Rathjen T., Oustanina S., Braun T., Dalmay T., Münsterberg A. (2008). Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev. Biol., 321: 491–499; https://doi.org/10.1016/j.ydbio.2008.06.019.10.1016/j.ydbio.2008.06.01918619954
  99. Takaya T., Ono K., Kawamura T., Takanabe R., Kaichi S., Morimoto T., Wada H., Kita T., Shimatsu A., Hasegawa K. (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circ. J., 73: 1492–1497; https://doi.org/10.1253/circj.CJ-08-1032.10.1253/circj.CJ-08-1032
  100. Townley-Tilson W.H.D., Callis T.E., Wang D. (2010). MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease. Int. J. Biochem. Cell Biol.; https://doi.org/10.1016/j.biocel.2009.03.002.10.1016/j.biocel.2009.03.002290432220619221
  101. van der Horst A., Burgering B.M.T., (2007). Stressing the role of FoxO proteins in lifespan and disease. Nat. Rev. Mol. Cell Biol., 8: 440–450; https://doi.org/10.1038/nrm2190.10.1038/nrm219017522590
  102. van Rooij E., Sutherland L.B., Qi X., Richardson J.A., Hill J., Olson E.N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 80: 575–579; https://doi.org/10.1126/science.1139089.10.1126/.1139089
  103. van Rooij E., Liu N., Olson E.N. (2008). MicroRNAs flex their muscles. Trends Genet., 24: 159–166; https://doi.org/10.1016/j.tig.2008.01.007.10.1016/j.tig.2008.01.00718325627
  104. Velleman S.G., Nestor K.E., Coy C.S., Harford I., Anthony N.B. (2010). Effect of posthatch feed restriction on broiler breast muscle development and muscle transcriptional regulatory factor gene and heparan sulfate proteoglycan expression. Int. J. Poult. Sci., 9: 417–425; https://doi.org/10.3923/ijps.2010.417.425.10.3923/ijps.2010.417.425
  105. Wang H., Li X., Liu H., Sun L., Zhang R., Li L., Wangding M., Wang J. (2016). Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR. Genet. Mol. Biol., 39: 151–161; https://doi.org/10.1590/1678-4685-GMB-2015-0075.10.1590/1678-4685-GMB-2015-0075480738227007909
  106. Wang S., Aurora A.B., Johnson B.A., Qi X., McAnally J., Hill J.A., Richardson J.A., Bassel-Duby R., Olson E.N. (2008). The endothelial-specific MicroRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell, 15: 261–271; https://doi.org/10.1016/j.devcel.2008.07.002.10.1016/j.devcel.2008.07.002268576318694565
  107. Wang X.H., Hu Z., Klein J.D., Zhang L., Fang F., Mitch W.E. (2011). Decreased miR-29 suppresses myogenesis in CKD. J. Am. Soc. Nephrol., 22: 2068–2076; https://doi.org/10.1681/ASN.2010121278.10.1681/ASN.2010121278323178321965375
  108. White R.B., Biérinx A., Gnocchi V.F., Zammit P.S. (2010). Dynamics of muscle fibre growth during postnatal mouse development, BMC Developmental Biology, 10.10.1186/1471-213X-10-21283699020175910
  109. Wood W.M., Etemad S., Yamamoto M., Goldhamer D.J. (2013). MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development. Dev. Biol., 384: 114–127; https://doi.org/10.1016/j.ydbio.2013.09.012.10.1016/j.ydbio.2013.09.012383890124055173
  110. Wu N., Gu T., Lu L., Cao Z., Song Q., Wang Z., Zhang Y., Chang G., Xu Q., Chen G. (2019). Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle. J. Cell. Physiol., 234: 3490–3499; https://doi.org/10.1002/jcp.26857.10.1002/jcp.2685730471101
  111. Xu T., Huang W., Zhang X., Ye B., Zhou H., Hou S. (2012). Identification and characterization of genes related to the development of breast muscles in Pekin duck. Mol. Biol. Rep., 39: 7647–7655; https://doi.org/10.1007/s11033-012-1599-7.10.1007/s11033-012-1599-722451153
  112. Xu T.S., Gu L.H., Zhang X.H., Ye B.G., Liu X.L., Hou S.S. (2013 a). Characterization of myostatin gene (MSTN) of Pekin duck and the association of its polymorphism with breast muscle traits. Genet. Mol. Res., 12: 3166–3177; https://doi.org/10.4238/2013.February.28.18.10.4238/2013.February.28.1823479163
  113. Xu T.S., Gu L.H., Zhang X.H., Huang W., Ye B.G., Liu X.L., Hou S.S. (2013 b). IGF-1 and FoxO3 expression profiles and developmental differences of breast and leg muscle in Pekin ducks during postnatal stages. J. Anim. Vet. Adv., 12: 852–858.
  114. Xu T.S., Gu L.H., Sun Y., Zhang X.H., Ye B.G., Liu X.L., Hou S.S. (2015). Characterization of MUSTN1 gene and its relationship with skeletal muscle development at postnatal stages in Pekin ducks. Genet. Mol. Res., 14: 4448–4460; https://doi.org/10.4238/2015.May.4.2.10.4238/2015..4.2
  115. Xu T.S., Gu L.H., Huang W., Xia W.L., Zhang Y.S., Zhang Y.G., Rong G., Schachtschneider K., Hou S.S. (2017). Gene expression profiling in Pekin duck embryonic breast muscle. PLoS One, 12: 1–18; https://doi.org/10.1371/journal.pone.0174612.10.1371/journal.pone.0174612541748328472139
  116. Yaffe D., Saxel O. (1977). A myogenic cell line with altered serum requirements for differentiation. Differentiation, 7: 159–166; https://doi.org/10.1111/j.1432-0436.1977.tb01507.x.10.1111/j.1432-0436.1977.tb01507.x558123
  117. Yin H., Pasut A., Soleimani V.D., Bentzinger C.F., Antoun G., Thorn S., Seale P., Fernando P., Van Ijcken W., Grosveld F., Dekemp R.A., Boushel R., Harper M.E., Rudnicki M.A. (2013). MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab., 17: 210–224; https://doi.org/10.1016/j.cmet.2013.01.004.10.1016/j.cmet.2013.01.004364165723395168
  118. Yin H., Zhang S., Gilbert E.R., Siegel P.B., Zhu Q., Wong E.A. (2014). Expression profiles of muscle genes in postnatal skeletal muscle in lines of chickens divergently selected for high and low body weight. Poultry Sci., 93: 147–154; https://doi.org/10.3382/ps.2013-03612.10.3382/ps.2013-0361224570434
  119. Zhang J., Ying Z.Z., Tang Z.L., Long L.Q., Li K. (2012). MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J. Biol. Chem. 287: 21093–21101; https://doi.org/10.1074/jbc.M111.330381.10.1074/jbc.M111.330381337553222547064
  120. Zhao Y., Samal E., Srivastava D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436: 214–220; https://doi.org/10.1038/nature03817.10.1038/03817
  121. Zhao Y., Hou Y., Zhang K., Yuan B., Peng X. (2017). Identification of differentially expressed miRNAs through high-throughput sequencing in the chicken lung in response to Mycoplasma gallisepticum HS. Comp. Biochem. Physiol. – Part D Genomics Proteomics, 22: 146–156; https://doi.org/10.1016/j.cbd.2017.04.004.10.1016/j.cbd.2017.04.00428433919
  122. Zhu C., Song W., Tao Z., Liu H., Xu W., Zhang S., Li H. (2017). Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds. PLoS One, 12: 1–18; https://doi.org/10.1371/journal.pone.0180403.10.1371/journal.pone.0180403554242728771592
DOI: https://doi.org/10.2478/aoas-2019-0049 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 887 - 904
Submitted on: Apr 24, 2019
Accepted on: Jul 25, 2019
Published on: Oct 30, 2019
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Asiamah Amponsah Collins, Kun Zou, Zhang Li, Su Ying, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.