Have a personal or library account? Click to login
The Effects of Deoxynivalenol (DON) on the Gut Microbiota, Morphology and Immune System of Chicken – A Review Cover

The Effects of Deoxynivalenol (DON) on the Gut Microbiota, Morphology and Immune System of Chicken – A Review

Open Access
|May 2019

References

  1. 2006/576/EC (2006). Commission recommendation of 17th August 2006 on the presence of deoxyni-valenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union L229, pp. 7–9.
  2. Alassane-Kpembi I., Puel O., Oswald I.P. (2015). Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Arch Toxicol., 89:1337–1346.10.1007/s00204-014-1309-4
  3. Andretta I., Kipper M., Lehnen C.R., Hauschild L., Vale M.M., Lovatto P.A. (2011). Meta-analytical study of productive and nutritional interactions of mycotoxins in broilers. Poultry Sci., 90: 1934–1940.10.3382/ps.2011-01470
  4. Antonissen G., van Immerseel F., Pasmans F., Ducatelle R., Janssens G.P.J., de Baere S. (2015). Mycotoxins deoxynivalenol and fumonisins alter the extrinsic component of intestinal barrier in broiler chickens. J. Agric. Food Chem., 63: 10846–10855.10.1021/acs.jafc.5b04119
  5. Awad W.A., Böhm J., Razzazi-Fazeli E., Hulan H.W., Zentek J. (2004). Effects of deoxynivalenol on general performance and electrophysiological properties of intestinal mucosa of broiler chickens. Poultry Sci., 83: 1964–1972.10.1093/ps/83.12.1964
  6. Awad W.A., Razzazi-Fazeli E., Böhm J., Ghareeb K., Zentek J. (2006 a). Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poultry Sci., 85: 974–979.10.1093/ps/85.6.97416776464
  7. Awad W.A., Böhm J., Razzazi-Fazeli E., Zentek J. (2006 b). Effects of feeding deoxynivalenol contaminated wheat on growth performance, organ weights and histological parameters of the intestine of broiler chickens. J. Anim. Nutr. Anim. Physiol., 90: 32–37.10.1111/j.1439-0396.2005.00616.x16422767
  8. Awad W.A., Hess M., Twaruzek M., Grajewski J., Kosicki R., Böhm J. (2011 a). The impact of the Fusarium mycotoxin deoxynivalenol on the health and performance of broiler chickens. Int. J. Mol. Sci., 12: 7996–8012.10.3390/ijms12117996323345222174646
  9. Awad W.A., Vahjen W., Aschenbach J.R., Zentek J. (2011 b). A diet naturally contaminated with the Fusarium mycotoxin deoxynivalenol (DON) downregulates gene expression of glucose transporters in the intestine of broiler chickens. Livest. Sci., 140: 72–79.10.1016/j.livsci.2011.02.014
  10. Awad W.A., Ghareeb K., Chimidtseren S., Strasser A., Hess M., Böh J. (2012 a). Chronic effects of deoxynivalenol on plasma cytokines and vaccine response of broiler chickens. In: Proceedings of the 34th Mykotoxin-Workshops der Ges. für Mykotoxin Forschung e.V., Braunschweig, Germany.
  11. Awad W.A., Ghareeb K., Dadak A., Gille L., Staniek K., Hess M., Böhm J. (2012 b). Genotoxic effects of deoxynivalenol in broiler chickens fed with low protein diets. Poultry Sci., 91: 550–555.10.3382/ps.2011-0174222334729
  12. Awad W.A., Ghareeb K., Böhm J., Zentek J. (2013). The toxicological impacts of the Fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. Toxins, 5: 912–925.10.3390/toxins5050912
  13. Backhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. (2005). Host-bacterial mutualism in the human intestine. Science, 307:1915–1920.10.1126/science.1104816
  14. Becker C., Reiter M., Pfaffl M.W., Meyer H.H.D., Bauer J., Meyer K.H.D. (2011). Expression of immune relevant genes in pigs under the influence of low doses of deoxynivalenol (DON). Mycotoxin Res., 27: 287–293.10.1007/s12550-011-0106-7
  15. Bjerrum L., Engberg R.M., Leser T.D., Jensen B.B., Finster K., Pedersen K. (2006). Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Sci., 85: 1151–1164.10.1093/ps/85.7.1151
  16. Bondy G.S., Pestka J.J. (1991). Dietary exposure to the trichothecene vomitoxin (deoxynivalenol) stimulates terminal differentiation of Peyer’s patch B cells to IgA secreting plasma cells. Toxicol. Appl. Pharmacol., 108: 520–530.10.1016/0041-008X(91)90098-Y
  17. Bondy G.S., Pestka J.J. (2000). Immunomodulation by fungal toxins. J. Toxicol. Environ. Health B, 3: 109–143.10.1080/109374000281113
  18. Bouhet S., Hourcade E., Loiseau N., Fikry A., Martinez S., Roselli M., Galtier P., Mengheri E., Oswald I.P. (2004). The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol. Sci., 77: 165–171.
  19. Bouhet S., Oswald I.P. (2005). The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response. Vet. Immunol. Immunopathol. 108, 199–209.10.1016/j.vetimm.2005.08.01016144716
  20. Chen P., Ji P., Li S.L. (2008). Effects of feeding extruded soybean, ground canola seed and whole cottonseed on ruminal fermentation, performance and milk fatty acid profile in early lactation dairy cows. Asian-Australas. J. Anim. Sci., 21: 204–213.10.5713/ajas.2008.70079
  21. Chen S.S., Li Y.H., Lin M.F. (2017). Chronic exposure to the Fusarium mycotoxin deoxynivalenol: impact on performance, immune organ, and intestinal integrity of slow-growing chickens. Toxins (Basel), 9: 334.10.3390/toxins9100334
  22. Chen W., Liu F., Ling Z., Tong X., Xiang C. (2012). Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE 7: e39743.10.1371/journal.pone.0039743
  23. Cheng Y.H., Chang M.H., Lin Y.A., Wu J.F., Chen B.J. (2004). Effects of deoxynivalenol and degradation enzyme on growth performance and immune responses in mule ducks. J. Anim. Feed Sci., 13: 275–287.10.22358/jafs/67412/2004
  24. Claesson M.J., O’Toole P.W. (2010). Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities. Gut Microbes., 1: 277–278.10.4161/gmic.1.4.12306
  25. Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S. (2011). Gut microbiota composition correlates with diet and health in the elderly. Nature, 488: 178–18410.1038/nature1131922797518
  26. Cornick S., Tawiah A., Chadee K. (2015). Roles and regulation of the mucus barrier in the gut. Tissue Barriers 3: e982426.10.4161/21688370.2014.982426
  27. Cortinovis C., Pizzo F., Spicer L.J., Caloni F. (2013). Fusarium mycotoxins: effects on reproductive function in domestic animals – a review. Theriogenology, 80: 557–564.10.1016/j.theriogenology.2013.06.018
  28. Dänicke S., Ueberschär K.H., Matthes S., Halle I., Valenta H., Flachowsky G. (2002). Effect of addition of a detoxifying agent to laying hen diets containing uncontaminated or Fusarium toxin contaminated maize on performance of hens and on carryover of zearalenone. Poultry Sci., 81: 1671–1680.10.1093/ps/81.11.1671
  29. Dänicke S., Matthes S., Halle I., Ueberschar K.H., Döll S., Valenta H. (2003). Effects of graded levels of Fusarium toxin contaminated wheat and of a detoxifying agent in broiler diets on performance, nutrient digestibility and blood chemical parameters. Br. Poult. Sci., 44: 113–126.10.1080/0007166031000085300
  30. Dänicke S., Ueberschär K.H., Valenta H., Matthes S., Matthäus K., Halle I. (2004). Effects of graded levels of Fusarium-toxin-contaminated wheat in Pekin duck diets on performance, health and metabolism of deoxynivalenol and zearalenone. Br. Poult. Sci., 45: 264–272.10.1080/00071660410001715876
  31. Dänicke S., Goyarts T., Doll S., Grove N., Spolders M., Flachowsky G. (2006). Effects of the Fusarium toxin deoxynivalenol on tissue protein synthesis in pigs. Toxicol. Lett., 165: 297–311.10.1016/j.toxlet.2006.05.006
  32. Dänicke S., Valenta H., Ueberschär K.H., Matthes S. (2007). On the interactions between Fusarium toxin-contaminated wheat and non-starch-polysaccharide hydrolysing enzymes in turkey diets on performance, health and carry-over of deoxynivalenol and zearalenone. Br. Poult. Sci., 48: 39–48.10.1080/00071660601148161
  33. De La Cochetiere M.F., Durand T., Lepage P., Bourreille A., Galmiche J.P., Doré J. (2005). Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J. Clin. Microbiol., 43: 5588–5592.10.1128/JCM.43.11.5588-5592.2005
  34. Dersjant-Li Y., Verstegen M.W.A., Gerrits W.J.J. (2003). The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutr. Res. Rev., 16: 223–239.
  35. Desjardins A.E. (2006). Mechanism of Action of Trichothecenes. In Fusarium Mycotoxins: Chemistry, Genetics and Biology; APS Press: St. Paul, MN, USA, pp. 53–54.
  36. Devegowda G., Murthy T.N.K. (2005). Mycotoxins: their effects in poultry and some practical solutions. In: The Mycotoxin Blue Book, Diaz D.E. (Ed.). Nottingham, United Kingdom, pp. 25–56.
  37. Dohrman A., Miyata S., Gallup M., Li J.D., Chapelin C., Coste A. (1998). Mucin gene (MUC 2 and MUC 5AC) upregulation by gram-positive and gram-negative bacteria. Biochim. Biophys. Acta, 1406: 251–259.10.1016/S0925-4439(98)00010-6
  38. Eriksen G.S., Pettersson H. (2004). Toxicological evaluation of trichothecenes in animal feed. Anim. Feed Sci. Technol., 114: 205–239.10.1016/j.anifeedsci.2003.08.008
  39. Escrivá L., Font G., Manyes L. (2015). In vivo toxicity studies of Fusarium mycotoxins in the last decade: a review. Food Chem. Toxicol., 78: 185–206.10.1016/j.fct.2015.02.005
  40. Feinberg B., Mclaughlin C.S. (1989). Biochemical Mechanism of Action of Trichothecene Mycotoxins. In: Beasley V.R. (Ed.), Trichothecene Mycotoxicosis: Pathophysiologic Effects, CRC Press: Boca Raton, FL, USA, I: 27–35.
  41. Gajęcka M., Tarasiuk M., Zielonka L., Dąbrowski M., Nicpoń J., Baranow-ski M., Gajęcki M.T. (2017). Changes in the metabolic profile and body weight of pre-pubertal gilts during prolonged monotonic exposure to low doses of zearalenone and deoxynivalenol. Toxicon, 125: 32–43.10.1016/j.toxicon.2016.11.007
  42. Ge Y., Ezzel R.M., Warren H.S. (2000). Localization of endotoxin in the rat intestinal epithelium. J. Infect. Dis., 182: 873–881.10.1086/315784
  43. Ghareeb K., Awad W.A., Böhm J. (2012). Ameliorative effect of a microbial feed additive on infectious bronchitis virus antibody titer and stress index in broiler chicks fed deoxynivalenol. Poultry Sci., 91: 800–807.10.3382/ps.2011-01741
  44. Ghareeb K., Awad W.A., Soodoi C., Sasgary S., Strasser A., Böhm J. (2013). Effects of feed contaminant deoxynivalenol on plasma cytokines and mRNA expression of immune genes in the intestine of broiler chickens. PLoS ONE 8: e71492.10.1371/journal.pone.0071492
  45. Ghareeb K., Awad W.A., Böhm J., Zebeli Q. (2015). Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: poultry and swine. J. Appl. Toxicol., 35: 327–337.10.1002/jat.3083
  46. Ghareeb K., Awad W.A., Böhm J., Zebeli Q. (2016 a). Impact of luminal and systemic endotoxin exposure on gut function, immune response and performance of chickens. World’s Poult. Sci. J., 72: 367–380.10.1017/S0043933916000180
  47. Ghareeb K., Awad W.A., Zebeli Q., Bohm J. (2016 b). Deoxynivalenol in chicken feed alters the vaccinal immune response and clinical biochemical serum parameters but not the intestinal and carcass characteristics. J. Anim. Physiol. Anim. Nutr., 100: 53–60.10.1111/jpn.1232825900321
  48. Girgis G.N., Shayan S., Barta J.R., Boermans H.J., Smith T.K. (2008). Immunomodulatory effects of feed-borne Fusarium mycotoxins in chickens infected with Coccidia. Exp. Biol. Med., 233: 1411–1420.10.3181/0805-RM-173
  49. Girgis G.N., Barta J.R., Brash M., Smith T.K. (2010). Morphological changes in the intestine of broiler breeder pullets fed diets naturally contaminated with Fusarium mycotoxins with or without coccidial challenge. Avian Dis., 54: 67–73.10.1637/8945-052809-Reg.1
  50. Gong A.D., Li H.P., Yuan Q.S., Song X.S., Yao W., He W.J., Zhang J.B., Liao Y.C. (2015). Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens s76-3 from wheat spikes against Fusarium graminearum. PLoS ONE, 10: e0116871.10.1371/journal.pone.0116871
  51. Goyarts T., Dänicke S. (2006). Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig. Toxicol. Lett., 163: 171–182.10.1016/j.toxlet.2005.10.007
  52. Gratz S.W., Duncan G., Richardson A.J. (2013). The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol. Appl. Environ. Microbiol., 79: 1821–1825.10.1128/AEM.02987-12
  53. Gratz S.W., Dinesh R., Yoshinari T., Holtrop G., Richardson A.J., Duncan G. (2017). Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Mol. Nutr. Food Res., 61: 1600680.10.1002/mnfr.201600680
  54. Grenier B., Applegate T.J. (2013). Modulation of intestinal functions following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins, 5: 396–430.10.3390/toxins5020396
  55. Guarner F. (2006). Enteric Flora in Health and Disease. Digestion, 73 (suppl. 1): 5–12.10.1159/000089775
  56. Guarner F., Malagelada J.R. (2003).Gut flora in health and disease. Lancet., 361: 512–519.10.1016/S0140-6736(03)12489-0
  57. Islam Z., Pestka J.J. (2006). LPS priming potentiates and prolongs proinflammatory cytokine. response to the trichothecene deoxynivalenol in the mouse. Toxicol. Appl. Pharmacol., 211: 53–63.10.1016/j.taap.2005.04.031
  58. Islam Z., Nagase M., Ota A., Ueda S., Yoshizawa T., Sakato N. (1998). Structure-function relationship of T-2 toxin and its metabolites in inducing thymic apoptosis in vivo in mice. Biosci. Biotechnol. Biochem., 62: 1492–1497.10.1271/bbb.62.1492
  59. Ivanov I.I., Frutos R.de L., Manel N., Yoshinaga K., Rifkin D.B., Sartor R.B. (2008). Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 4: 337–349.10.1016/j.chom.2008.09.009
  60. Jia S.L., Liu X.C., Huang Z., Li Y., Zhang L.T., Luo Y.K. (2018). Effects of chitosan oligosac-charides on microbiota composition of silver carp (Hypophthalmichthys molitrix) determined by culture-dependent and independent methods during chilled storage. Int. J. Food Microbiol., 268: 81-91.10.1016/j.ijfoodmicro.2018.01.011
  61. Kanora A., Maes D. (2009). The role of mycotoxins in pig reproduction: a review. Vet. Med. (Praha) 54: 565–576.10.17221/156/2009-VETMED
  62. Klasing K.C. (2004) Interplay between diet microbes and immune defenses of the gastrointestinal tract. In: Physiological and Ecological Adaptations to Feeding in Vertebrates, Starck J.M., Wang T. (Eds). (Plymouth, Science Publishers).
  63. Klasing K.C., Leschinsky T.V. (1999). Functions, costs, and benefits of the immune system during development and growth. In: 22nd International Ornithological Congress, Adams N.J., Slotow R.H. (Eds). Durban, South Africa: BirdLife South Africa, pp. 2817–2835.
  64. Kogut M.H., Arsenault R.J. (2016). Editorial: gut health: the new paradigm in food animal prouction. Front. Vet. Sci., 3: 71.10.3389/fvets.2016.00071
  65. Kohl K.D., Dearing M.D. (2012). Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol Lett., 15: 1008–1015.10.1111/j.1461-0248.2012.01822.x
  66. Kubena L.F., Swanson S.P., Harvey R.B., Fletcher O.J., Rowe L.D., Phillips T.D. (1985). Effects of feeding deoxynivalenol (vomitoxin)-contaminated wheat to growing chicks. Poultry Sci., 64: 1649–1655.10.3382/ps.0641649
  67. Kubena L.F., Edrington T.S., Harvey R.B., Phillips T.D., Sarr A.B., Rotting-haus G.E. (1997). Individual and combined effects of fumonisin B1 present in Fusarium monili-forme culture material and diacetoxyscirpenol or ochratoxin A in turkey poults. Poultry Sci., 76: 256–264.10.1093/ps/76.2.256
  68. Lee H.J., Ryu D. (2017). Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-occurrence. J. Agric. Food Chem. 65: 7034–7051.10.1021/acs.jafc.6b04847
  69. Levy J. (2007). Secondary glomerular disease. Medicine, 35: 497–499.10.1016/j.mpmed.2007.06.008
  70. Ley R.E., Peterson D.A., Gordon J.I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 124: 837–848.10.1016/j.cell.2006.02.017
  71. Li Y., Wang Z., Beier R.C., Shen J., De Smet D., De Saeger S. (2011). T-2 toxin, a tricho-thecenemycotoxin: review of toxicity, metabolism, and analytical methods. J. Agric. Food Chem., 59: 3441–3453.10.1021/jf200767q
  72. Li Y.D., Verstegen M.W.A., Gerrits W.J.J. (2003). The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutr. Res. Rev., 16: 223–239.10.1079/NRR200368
  73. Li Z., Yang Z.B., Yang W.R., Wang S.J., Jiang S.Z., Wu Y.B. (2012). Effects of feed-borne Fusarium mycotoxins with or without yeast cell wall adsorbent on organ weight, serum biochemistry, and immunological parameters of broiler chickens. Poultry Sci., 91: 2487–2495.10.3382/ps.2012-02437
  74. Liew W.P.P., Mohd-Redzwan S. (2018). Mycotoxin: its impact on gut health and microbiota. Front. Cell. Infect. Mi., 8: 60.10.3389/fcimb.2018.00060
  75. Lucke A., Doupovec B., Paulsen P., Zebeli Q., Böhm J. (2017 a). Effects of low to moderate levels of deoxynivalenol on feed and water intake, weight gain, and slaughtering traits of broiler chickens. Mycotoxin Res., doi 10.1007/s12550-017-0284-z.10.1007/s12550-017-0284-z564469528687998
  76. Lucke A., Metzler-Zebeli B.U., Zebeli Q., Böhm J. (2017 b). Effects of feeding graded levels of deoxynivalenol and oral administration of lipopolysaccharide on the cecal microbiota of broiler chickens. 111—21st European Society of Veterinary and Comparative Nutrition Congress; 20-23.09.2017, Cirencester, United Kingdom.
  77. Lun A.K., Moran E.T.Jr., Young L.G., Mc Millan E.G. (1989). Absorption and elimination of an oral dose of 3H-deoxynivalenol in colostomized and intact chickens. Bull. Environ. Contam. Toxicol., 42: 919–925.10.1007/BF01701636
  78. Lun A.K., Young L.G., Moran J.E.T., Hunter D.B., Rodriguez J.P. (1986). Effects of feeding hens a high level of vomitoxin-contaminated corn on performance and tissues residues. Poultry Sci., 65: 1095–1099.10.3382/ps.0651095
  79. Macpherson A.J., Harris N.L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol., 4: 478–485.10.1038/nri1373
  80. Maresca M., Mahfoud R., Garmy N., Fantini J. (2002). The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. J. Nutr., 132: 2723–2731.10.1093/jn/132.9.2723
  81. Maresca M., Fantini J. (2010). Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon, 56: 282–294.10.1016/j.toxicon.2010.04.016
  82. Martins C. (2018). Assessment of multiple mycotoxins in breakfast cereals available in the Portuguese market. Food Chem., 239: 132–140.10.1016/j.foodchem.2017.06.088
  83. Maslowski K.M., Mackay C.R. (2011). Diet, gut microbiota and immune responses. Nat. Immunol., 12: 5–9.10.1038/ni0111-5
  84. Mc Cormick S.P., Stanley A.M., Stover N.A., Alexander N.J. (2011). Trichothecenes: from simple to complex mycotoxins. Toxins, 3: 802–814.10.3390/toxins3070802
  85. Mengheri E., Oswald I.P. (2004). The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol. Sci., 77: 165–171.10.1093/toxsci/kfh006
  86. Noverr M.C., Huffnagle G.B. (2004). Does the microbiota regulate immune responses outside the gut? Trends Microbiol., 12: 562–568.10.1016/j.tim.2004.10.008
  87. Oakley B.B., Lillehoj H.S., Kogut M.H., Kim W.K., Maurer J.J., Pedroso A. (2014). The chicken gastrointestinal microbiome. FEMS Microbiol. Lett., 360: 100–112.10.1111/1574-6968.12608
  88. Osselaere A., Santos R., Hautekiet V., De Backer P., Chiers K., Ducatelle R. (2013). Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. PLoS ONE, 8: e69014, doi 10.1371.10.1371/journal.pone.0069014
  89. Oswald I.P., Marin D.E., Bouhet S., Pinton P., Taranu I., Accensi F. (2005). Immuno-toxicological risk of mycotoxins for domestic animals. Food Add. Contam., 22: 354–360.10.1080/02652030500058320
  90. Pestka J.J. (2003). Deoxynivalenol-induced IgA production and IgA nephropathy-aberrant mucosal immune response with systemic repercussions. Toxicol. Lett., 140: 287–295.10.1016/S0378-4274(03)00024-9
  91. Pestka J.J. (2010). Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol., 84: 663–679.10.1007/s00204-010-0579-8
  92. Pestka J.J., Smolinski A.T. (2005). Deoxynivalenol: Toxicology and potential effects on humans. J. Toxicol. Environ. Health B, 8: 39–69.10.1080/10937400590889458
  93. Pestka J.J., Mormann M.A., Warner R.L. (1989). Dysregulation of IgA production and IgA nephropathy induced by the trichothecene vomitoxin. Food Chem. Toxicol., 27: 361–368.10.1016/0278-6915(89)90141-5
  94. Pestka J.J., Zhou H.R., Moon Y., Chung Y.J. (2004). Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett., 153: 61–73.10.1016/j.toxlet.2004.04.023
  95. Pinton P., Oswald I.P. (2014). Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins, 6: 1615–1643.10.3390/toxins6051615
  96. Pinton P., Accensi F., Beauchamp E., Cossalter A.M., Callu P., Grosjean F., Os-wald I.P. (2008). Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses. Toxicol. Lett., 177: 215–222.10.1016/j.toxlet.2008.01.015
  97. Pinton P., Braicu C., Nougayrede J.P., Laffitte J., Taranu I., Oswald I.P. (2010). Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase dependent mechanism. J. Nutr., 140: 1956–1962.10.3945/jn.110.123919
  98. Prelusky D.B., Hamilton R.M., Trenholm H.L., Miller J.D. (1986). Tissue distribution and excretion of radioactivity following administration of 14C-labeled deoxynivalenol to White Leghorn hens. Fundam. Appl. Toxicol., 7: 635–645.10.1093/toxsci/7.4.635
  99. Reddy K.E., Lee W., Young Jeong J., Lee Y., Lee H.J., Kim M.S. (2018). Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets. Asian-Australas. J. Anim. Sci., 31: 138–148.10.5713/ajas.17.0454
  100. Richard J.L. (2007). Some major mycotoxins and their mycotoxicoses – An overview. Int. J. Food Microb., 119: 3–10.10.1016/j.ijfoodmicro.2007.07.019
  101. Robert H., Payros D., Pinton P., Théodorou V., Mercier-Bonin M., Oswald I.P. (2017). Impact of mycotoxins on the intestine: are mucus and microbiota new targets? J. Toxicol. Environ. Health B, 20: 249–275.10.1080/10937404.2017.1326071
  102. Rocha O., Ansari K., Doohan F.M. (2005). Effects of trichothecene mycotoxins on eukaryotic cells: A review. Food Add. Contam., 22: 369–378.10.1080/02652030500058403
  103. Romer Labs’Guideto Mycotoxins(2000). Mycotoxins – An Overview. Richard J.L. (Ed.), Anytime Publishing Services: Leicestershire, UK, 1, pp. 1–48.
  104. Rotter B., Prelusky D.B., Pestka J.J. (1996). Toxicology of deoxynivalenol. J. Toxicol. Environ. Health, 48: 1–34.10.1080/009841096161447
  105. Round J.L., Mazmanian S.K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol., 9: 313–323.10.1038/nri2515
  106. Saadia R., Schein M., Macfarlane C., Boffard K.D. (1990). Gut barrier function and the surgeon. Br. J. Surg., 77: 487–492.10.1002/bjs.1800770505
  107. Schatzmayr G., Streit E. (2013). Global occurrence of mycotoxins in the food and feed chain: facts and figures. World Mycotoxin Journal, 6: 213–222.10.3920/WMJ2013.1572
  108. Sharmar R., Rooke J., Kolmogorova D., Melanson B., Mallet J.F., Matar C., Schwarz J., Ismail N. (2018). Sex differences in the peripheral and central immune responses following lipopolysaccharide treatment in pubertal and adult CD-1 mice. Int. J. Dev. Neurosci., 71: 94–104.10.1016/j.ijdevneu.2018.07.012
  109. Smirnova M.G., Guo L., Birchall J.P., Pearson J.P. (2003). LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cell. Immunol., 221: 42–49.10.1016/S0008-8749(03)00059-5
  110. Stuper-Szablewska K., Szablewski T., Buszko M., Perkowski J. (2016). Changes in contents of trichothecenes during commercial grain milling. LWT-Food Sci. Technol., 69: 55–58.10.1016/j.lwt.2016.01.036
  111. Summerell B.A., Leslie J.F. (2011). Fifty years of Fusarium: how could nine species have ever been enough? Fungal Divers., 50: 135–144.10.1007/s13225-011-0132-y
  112. Suzuki T., Iwahashi Y. (2015). Low toxicity of deoxynivalenol-3-glucoside in microbial cells. Toxins (Basel), 7: 187–200.10.3390/toxins7010187
  113. Waśkiewicz A., Beszterda M., Kostecki M., Zielonka Ł., Goliński P., Gajęc-ki M. (2014). Deoxynivalenol in the gastrointestinal tract of immature gilts under per os toxin application. Toxins, 6: 973–987.10.3390/toxins6030973
  114. Wise M.G., Siragusa G.R. (2007). Quantitative analysis of the intestinal bacterial community in one to three week old commercially reared broiler chickens fed conventional or antibiotic free vegetable based diets. J. Appl. Microbiol., 102: 1138–1149.
  115. Wu Q.J., Zhou Y.M., Wu Y.N., Zhang L.L., Wang T. (2013). The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens. Vet. Immunol. Immunopathol., 153: 70–76.10.1016/j.vetimm.2013.02.006
  116. Yunus A.W., Ghareeb K.K., Twaruzek M., Grajewski J., Böhm J. (2012). Deoxynivale- nol as a contaminant of broiler feed: Effects on bird performance and response to common vaccines. Poultry Sci., 91: 844–851.10.3382/ps.2011-01873
  117. Zhang Q., Eicher S.D., Ajuwon K.M., Applegate T.J. (2017). Development of a chicken ileal explant culture model for measurement of gut inflammation induced by lipopolysaccharide. Poultry Sci., 96: 3096–3103.10.3382/ps/pex160
  118. Zhu X.Y., Joerger R.D. (2003). Composition of microbiota in content and mucus from cecae of broiler chickens as measured by fluorescent in situ hybridization with group specific, 16S rRNA-targeted oligonucleotide probes. Poultry Sci., 82: 1242–1249.10.1093/ps/82.8.1242
DOI: https://doi.org/10.2478/aoas-2019-0013 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 305 - 318
Submitted on: Nov 15, 2018
Accepted on: Feb 7, 2019
Published on: May 2, 2019
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Harry A. Aguzey, Zhenhua Gao, Wu Haohao, Cheng Guilan, Wu Zhengmin, Chen Junhong, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.