Have a personal or library account? Click to login
Sensitivity, Impact and Consequences of Changes in Respiratory Rate During Thermoregulation in Livestock – A Review Cover

Sensitivity, Impact and Consequences of Changes in Respiratory Rate During Thermoregulation in Livestock – A Review

Open Access
|May 2019

Abstract

This review discusses the thermal conservative and heat dissipating roles of one of the most sensitive thermoregulatory variables (respiratory rate) with the aim of enhancing its application in evaluating both cold and heat adaptation. During cold exposure, livestock enhance the economy of body heat through reduction in respiratory rate with the extent of reduction being greater and commencing at relatively higher ambient temperature in poorly adapted phenotypes. This is accompanied by an increase in tidal volume and alveolar oxygen uptake, but a decrease in partial pressure of oxygen. On the other hand, heat stress induces increase in respiratory rate to enhance evaporative heat loss with the magnitude of such increase being greater and commencing at relatively lower ambient temperature in phenotypes that are poorly-adapted to heat. This is accompanied by a decrease in tidal volume and the development of hypocapnia. The increase in respiratory rate is observed to be greater, moderate and lesser in livestock that are mainly (pigs, rabbits and poultry), moderately (sheep, goats and Bos taurus) and less (Zebu cattle) dependent on respiratory evaporative heat loss, respectively. The changes during chronic heat stress may cause acid-base crisis in all livestock, in addition to reduction in eggshell quality in birds; due to marked decrease in partial pressure of carbon dioxide and a compensatory increase in elimination of bicarbonate. Within and between breed variations in sensitivity of respiratory rhythm to both cold and heat stress has shown high applicability in identifying phenotypes that are more susceptible to thermal stress; with some cellular and metabolic changes occurring to protect the animal from the consequences of hypo- or hyper-thermia. The information in this review may provide basis for identification of genes that support or suppress thermoregulation and may also be of great use in animal breeding, genomics and selective thermal stress mitigation to provide maximum protection and comfort to poorly-adapted phenotypes.

DOI: https://doi.org/10.2478/aoas-2019-0002 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 291 - 304
Submitted on: Jun 22, 2018
Accepted on: Jan 3, 2019
Published on: May 2, 2019
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Buhari Habibu, Lukuman Surakat Yaqub, Tavershima Dzenda, Mohammed Umaru Kawu, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.