Have a personal or library account? Click to login
Sensitivity, Impact and Consequences of Changes in Respiratory Rate During Thermoregulation in Livestock – A Review Cover

Sensitivity, Impact and Consequences of Changes in Respiratory Rate During Thermoregulation in Livestock – A Review

Open Access
|May 2019

References

  1. Aarif O., Aggarwal A. (2016). Dry period cooling ameliorates physiological variables and blood acid base balance, improving milk production in Murrah buffaloes. Int. J. Biometeorol., 60: 465–473.10.1007/s00484-015-1044-4
  2. Arieli A., Meltzer A., Berman A. (1980). The thermoneutral temperature zone and seasonal acclimatisation in the hen. Brit. Poultry Sci., 21: 471–478.10.1080/00071668008416699
  3. Banerjee D., Upadhyay R.C., Chaudhary U.B., Kumar R., Singh S., Ashutosh Das T.K., De S., (2014). Seasonal variations in physio-biochemical profiles of Indian goats in the paradigm of hot and cold climate. Biol. Rhythm Res., 46: 221–236.10.1080/09291016.2014.984999
  4. Barnes A., Beatty D., Taylor E., Stockman C., Maloney S., Mc Carthy M. (2004). Physiology of heat stress in cattle and sheep. Meat and Livestock Australia, Project number LIVE.209, pp. 1–36.
  5. Beatty D.T., Barnes A., Taylor E., Pethick D., Mc Carthy M., Maloney S.K. (2006). Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity. J. Anim. Sci., 84: 972–985.10.2527/2006.844972x
  6. Berman A., Folman Y., Kaim M., Mamen M., Herz Z., Wolfenson D., Arieli A., Graber Y. (1985). Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical environment. J. Dairy Sci., 68: 1488–1495.10.3168/jds.S0022-0302(85)80987-5
  7. Bouchama A., De Vol E.B. (2001). Acid-base alteration in heatstroke. Intens. Care Med., 27: 680–685.10.1007/s001340100906
  8. Carstens G.E. (1994). Cold thermoregulation in the newborn calf. Vet. Clin. North Am. Food Anim. Pract., 10: 69–106.10.1016/S0749-0720(15)30590-9
  9. Carvalho F.A., Lammoglia M.A., Simoes M.J., Randel R.D. (1995). Breed affects thermo- regulation and epithelial morphology in imported and native cattle subjected to heat stress. J. Anim. Sci., 73: 3570–3573.10.2527/1995.73123570x
  10. Coleman M.D. (2011). Respiratory and pulmonary physiology. In: Anesthesia secrets, Duke J., (ed). Elsevier Inc., https://doi.org/10.1016/C2009-0-54968-9.10.1016/C2009-0-54968-9
  11. Collier R.J., Collier J.L., Rhoads R.P., Baumgard L.H. (2008). Invited review: genes involved in the bovine heat stress response. J. Dairy Sci., 91: 445–454.10.3168/jds.2007-0540
  12. Collier R.J., Renquist B.J., Xiao J.Y.A. (2017). 100-year review: Stress physiology including heat stress. J. Dairy Sci., 100: 10367–10380.10.3168/jds.2017-13676
  13. Cottrell J.J., Liu F., Wan S., Wijesiriwardana U.A., Di Giacomo K., Kelly F., Ce-li P., Leury B., Clarke I.J., Dunshea F.R. (2017). The effect of heat stress on respiratory alkalosis, blood acid base balance and insulin sensitivity in cinnamon supplemented pigs. Anim. Prod. Sci., 57: 2415–2415.10.1071/ANv57n12Ab043
  14. Dalcin V.C., Fischer V., Daltro D.S., Alfonzo E.P.M., Stumpf M.T., Kolling G.J., da Silva M.V., Mc Manus C. (2016). Physiological parameters for thermal stress in dairy cattle. R. Bras. Zootec., 45: 458–465.10.1590/S1806-92902016000800006
  15. Diesel D.A., Tucker A., Robertshaw D. (1985). Cold-induced changes in breathing pattern as a strategy to reduce respiratory heat loss. J. Appl. Physiol., 69: 1946–1952.10.1152/jappl.1990.69.6.1946
  16. Du Preez J.H. (2000). Parameters for the determination and evaluation of heat stress in dairy cattle in South Africa. Onderstepoort J. Vet. Res., 67: 263–271.
  17. Dzenda T., Ayo J.O., Lakpini C.A.M., Adelaiye A.A. (2015). Diurnal, seasonal and sex influences on respiratory rate of African Giant rats (Cricetomys gambianus, Waterhouse) in a tropical Savannah. Wulfenia J., 22: 475–485.10.14814/phy2.12581
  18. Ebeid T.A., Suzuki T., Sugiyama T. (2012). High ambient temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poultry Sci., 91: 2282–2287.10.3382/ps.2011-01898
  19. Entin P.L., Robertshaw D., Rawson R.E. (2005). Reduction of the PaCO2 set point during hyperthermic exercise in the sheep. Comp. Biochem. Physiol. A, 140: 309–316.10.1016/j.cbpb.2005.01.012
  20. Gagliardi L., Rusconi F., Castagneto M., Porta G.L.N., Razon S., Pellegatta A. (1997). Respiratory rate and body mass in the first three years of life. Arch. Dis. Child., 76: 151–154.10.1136/adc.76.2.151
  21. Gaughan J.B., Holt S.M., Hahn G.L., Mader T.L., Eigenberg R. (2000). Respiration rate – is it a good measure of heat stress in cattle? Asian Austral. J. Anim. Sci., 13: 329–332.
  22. Habibu B., Kawu M.U., Makun H.J., Aluwong T., Yaqub L.S. (2016). Seasonal variation in body mass index cardinal physiological variables and serum thyroid hormones profiles in relation to susceptibility to thermal stress in goats kids. Small Rum. Res., 145: 20–27.10.1016/j.smallrumres.2016.10.023
  23. Habibu B., Kawu M.U., Makum H.J., Aluwong T. (2017 a). Influence of seasonal changes on physiological variables, haematology and serum thyroid hormones profile in male Red Sokoto and Sahel goats. J. Appl. Anim. Res., 45: 508–516.10.1080/09712119.2016.1220384
  24. Habibu B., Kawu M., Makun H., Aluwong T., Yaqub L., Dzenda T., Hajarah Bu-hari H. (2017 b). Influences of breed, sex and age on seasonal changes in haematological variables of tropical goat kids. Arch. Anim. Breed., 60: 33–42.10.5194/aab-60-33-2017
  25. Habibu B., Dzenda T., Ayo J.O., Yaqub L.S., Kawu M.U. (2018). Haematological changes and plasma fluid dynamics in livestock during thermal stress, and response to mitigative measures. Livest. Sci., 214: 189–201.10.1016/j.livsci.2018.05.023
  26. Hamzaoui S., Salama A.A.K., Albanell E., Such X., Caja G. (2013). Physiological responses and lactational performances of late-lactation dairy goats under heat stress conditions. J. Dairy Sci., 96: 1–11.10.3168/jds.2013-6665
  27. Hooper H.B., Titto C.G., Gonella-Diaza A.M., Henriqu,F.L., Pulido-Rodrí-guez L.F., Longo A.L.S., Leme-dos-Santos T.M.C., Geraldo A.C.A.P.M., Perei-ra A.M.F., Binelli M., Balieiro J.C.C., Titto E.A.L. (2018). Heat loss efficiency and HSPs gene expression of Nellore cows in tropical climate conditions. Inter. J. Biometeorol., doi.org/10.1007/s00484-018-1576-510.1007/s00484-018-1576-530116935
  28. Huynh T.T.T., Aarnink A.J.A., Verstegen M.W.A., Gerrits W.J.J., Heetkamp M.J.W., Kemp B., Canh T.T. (2005). Effects of increasing temperatures on physiological changes in pigs at different relative humidities. J. Anim. Sci., 83: 1385–1396.10.2527/2005.8361385x
  29. Igono M.O., Molokwu E.C.I., Aliu Y.O. (1982). Body temperature responses of Savanna Brown goat to the harmattan and hot-dry seasons. Int. J. Biometeorol., 26: 225–230.10.1007/BF02184938
  30. Ingram D.L., Legge K.F. (1969). The effect of environmental temperature on respiratory ventilation in the pig. Respir. Physiol., 8: 1–12.10.1016/0034-5687(69)90041-3
  31. Jerath R., Crawford M.W., Barnes V.A., Kyler H. (2014). Widespread depolarization during expiration: a source of respiratory drive? Med. Hypoth., 84: 31–37.10.1016/j.mehy.2014.11.010
  32. Jian W., Ke Y., Cheng L. (2015). Physiological responses and lactation to cutaneous evaporative heat loss in Bos indicus, Bos taurus, and their crossbreds. Asian Austral. J. Anim. Sci., 28: 1558.10.5713/ajas.14.0526
  33. Jian W., Duangjinda M., Vajrabukka C., Katawatin S. (2014). Differences of skin morphology in Bos indicus, Bos taurus, and their crossbreds. Int. J. Biometeorol., 58: 1087–1094.10.1007/s00484-013-0700-9
  34. Justino E., Naas I.D.A., Carvalho T.M.R., Neves D.P., Salgado D.D. (2014). The impact of evaporative cooling on the thermoregulation and sensible heat loss of sows during farrowing. Eng. Agr., Jaboticabal, 34: 1050–1061.10.1590/S0100-69162014000600003
  35. Kabuga J.D. (1992).The influence of thermal conditions on rectal temperature, respiration rate and pulse rate of lactating Holstein-Friesian cows in the humid tropics. Int. J. Biometeorol., 36: 146–150.10.1007/BF01224817
  36. King J.M. (1983). Livestock water needs in pastoral Africa in relation to climate. ILCA Res. Rep., 7: 1–95.
  37. Kraut J.A., Madias N.E. (2014). Lactic acidosis. N. Engl. J. Med., 371: 2309–2319.10.1056/NEJMra1309483
  38. Lara L.J., Rostagn M.H. (2013). Impact of heat stress on poultry production. Animals, 3: 356–369.10.3390/ani3020356
  39. Leite J.H.G.M., Da Silva R.G., Silva W.S.T., Silva W.E., Paiva R.D.M., Sousa J.E.R., Asensio L.A.B., Façanha D.A.E. (2018). Locally adapted Brazilian ewes with different coat colors maintain homeothermy during the year in an equatorial semiarid environment. Inter. J. Biometeorol., 62:1635–1644.10.1007/s00484-018-1563-x
  40. Luz C.S.M., Fonseca W.J.L., Vogado G.M.S., Fonseca W.L., de Oliveira M.R.A., Sousa G.G.T., Farias L.A., de Sousa S.C.Jr (2016). Adaptative thermal traits in farm animals. J. Anim. Behav. Biometeorol., 4: 6–11.10.14269/2318-1265/jabb.v4n1p6-11
  41. Macías-Cruz U., Correa-Calderón A., Mellado M., Meza-Herrera C.A., Aréch-iga C.F., Avendaño-Reyes L. (2018). Thermoregulatory response to outdoor heat stress of hair sheep females at different physiological state. Int. J. Biometeorol., https://doi.org/10.1007/s00484-018-1615-2.10.1007/s00484-018-1615-230244321
  42. Magazanik A., Shapiro Y., Shibolet S. (1980). Dynamic changes in acid base balance during heatstroke in dogs. Pflfigers Arch., 388: 129–135.10.1007/BF00584118
  43. Maia A.S.C., Da Silva R.G., Nascimento S.T., Nascimento C.C.N., Pedrosa H.P., Do-mingos H.G.T. (2015). Thermoregulatory responses of goats in hot environments. Int. J. Biometeorol., 59: 1025–1033.10.1007/s00484-014-0916-3
  44. Marai I.F.M., Habeebb A.A.M., Gad A.E. (2002). Rabbits’ productive, reproductive and physiological performance traits as affected by heat stress: a review. Livest. Prod. Sci., 78: 71–90.10.1016/S0301-6226(02)00091-X
  45. Marder J., Arad Z. (1989). Panting and acid-base regulation in heat stressed birds. Comp. Biochem. Physiol. A Comp. Physiol., 94: 395–400.10.1016/0300-9629(89)90112-6
  46. Masero E.J., Siegel P.D. (1977). Acid base regulation, its physiology and pathology and interpretation of blood gas analysis. 2nd ed. W.B. Saunders, Philadelphia.
  47. Mc Lean J.A., Calvert D.T. (1972). Influence of air humidity on the partition of heat exchange of cattle. J. Agric. Sci., 78: 303–307.10.1017/S0021859600069148
  48. Minka N.S., Ayo J.O. (2014). Influence of cold-dry (harmattan) season on colonic temperature and the development of pulmonary hypertension in broiler chickens, and the modulating effect of ascorbic acid. O. A. Anim. Physiol., 6: 1–11.10.2147/OAAP.S51741
  49. Minka N.S., Ayo J.O. (2016). Effects of cold-dry (harmattan) and hot-dry seasons on daily rhythms of rectal and body surface temperatures in sheep and goats in a natural tropical environment. J. Circadian Rhythms, 14: 1–11.10.5334/jcr.143
  50. Nay T., Heyman R.H., (1956). Sweat glands in zebu (Bos indicus L.) and European (B. taurus L.) cattle. Aust. J. Agric. Res., 7: 482–494.10.1071/AR9560482
  51. Nishimura T., Motoi M., Egashira Y., Choi D., Aoyagi K., Watanuki S. (2015). Seasonal variation of non-shivering thermogenesis (NST) during mild cold exposure. J. Physiol. Anthropol., http://dx.doi.org/10.1186/s40101-015-0051-9.10.1186/s40101-015-0051-9436432725858699
  52. Park B.S., Park S.O. (2017). Effects of feeding time with betaine diet on growth performance, blood markers, and short chain fatty acids in meat ducks exposed to heat stress. Livest. Sci., 199: 31–36.10.1016/j.livsci.2017.03.003
  53. Park S.O., Kim W.K. (2016). Effects of betaine on biological functions in meat-type ducks exposed to heat stress. Poultry Sci., 96: 1212–1218.10.3382/ps/pew359
  54. Pereira A.M.F., Baccari F.J., Titto E.A.L., Almeida J.A.A. (2008). Effect of thermal stress on physiological parameters, feed intake and plasma thyroid hormones concentration in Alentejana, Mertolenga, Frisian and Limousine cattle breeds. Int. J. Biometeorol., 52: 199–208.10.1007/s00484-007-0111-x
  55. Pocock G., Richards C.D. (2006). Human physiology: the basis of medicine. 3rd ed. Oxford: Oxford University Press, pp. 332–336.
  56. Rahardja D.P., Toleng A.L., Lectari V.S. (2011). Thermoregulation and water balance in fattailed sheep and Kacang goat under sunlight exposure and water restriction in a hot and dry area. Animal, 10: 1587–1593.10.1017/S1751731111000577
  57. Robertshaw D. (2006). Mechanisms for the control of respiratory evaporative heat loss in panting animals. J. Appl. Physiol., 101: 664–668.10.1152/japplphysiol.01380.2005
  58. Rout P.K., Kaushik R., Ramachandran N., Jindal S.K. (2017). Identification of heat stress-susceptible and -tolerant phenotypes in goats in semiarid tropics. Anim. Prod. Sci., 58: 1349–1357.10.1071/AN15818
  59. Sejian V., Bhatta R., Gaughan J.B., Dunshea F.R., Lacetera N. (2018). Review: Adaptation of animals to heat stress. Animal, 12: s431–s444.10.1017/S1751731118001945
  60. Shultz T.A. (1984). Weather and shade effects on corral cow activities. J. Dairy Sci., 67: 868–873.10.3168/jds.S0022-0302(84)81379-X
  61. Silanikove N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci., 67: 1–18.10.1016/S0301-6226(00)00162-7
  62. Silva W.E., Leite J.H.G.M., Souza J.E.R., Costa W.P., Silva W.S.T., Guilhermi-no M.M., Bermejo L.A., Façanha D.A.E. (2017). Daily rhythmicity of the thermoregulatory responses of locally adapted Brasilian sheep in a semiarid environment. Int. J. Biometeorol., 61: 1221–1231.10.1007/s00484-016-1300-2
  63. Singh K.M., Singh S., Ganguly I., Ganguly A., Nachiappan R.K., Chopra A., Na-rula H.K. (2016). Evaluation of Indian sheep breeds of arid zone under heat stress condition. Small Rum. Res., 141: 113–117.10.1016/j.smallrumres.2016.07.008
  64. Sivakumar A.V.N., Singh G., Varshney V.P. (2010). Antioxidants supplementation on acid base balance during heat stress in goats. Asian Austral. J. Anim. Sci., 23: 1462–1468.10.5713/ajas.2010.90471
  65. Souza J.B.F.de, de Queiroza J.P.A.F., dos Santosa V.J.S., Dantasb M.R.T., de Li-mac R.N., Limad P.O., Costa L.L.M. (2018). Cutaneous evaporative thermolysis and hair coat surface temperature of calves evaluated with the aid of a gas analyzer and infrared thermography. Comp. Elect. Agric., 154: 222–226.10.1016/j.compag.2018.09.004
  66. Spyer K.M., Gourine A.V. (2009). Chemosensory pathways in the brainstem controlling cardiorespiratory activity. Philos. Trans. R. Soc. Lond. B Biol. Sci., 364: 2603–2610.10.1098/rstb.2009.0082
  67. Srikandakumar A., Johnson E.H., Mahgoub O. (2003). Effect of heat stress on respiratory rate, rectal temperature and blood chemistry in Omani and Australian Merino sheep. Small Rum. Res., 49: 193–198.10.1016/S0921-4488(03)00097-X
  68. Taylor C.R., Lyman C.P. (1972). Heat storage in running antelopes: Independence of brain and body temperatures. Am. J. Physiol., 221: 114–117.10.1152/ajplegacy.1972.222.1.114
  69. Taylor T.G. (1970). How an eggshell is made. Sci. Amer., 222: 88–95.10.1038/scientificamerican0370-88
  70. Temizel E.M., Senturk S., Kasap S. (2009). Clinical, haematological and biochemical findings in Saanen goat kids with naturally occurring heat stroke. Tierärztliche Praxis Großtiere, 37(G): 236–241.10.1055/s-0038-1623961
  71. Thwaites C.J. (1967). Age and heat tolerance in sheep. Int. J. Biometeorol., 11: 209–212.10.1007/BF01426849
  72. Yaqub L.S., Ayo J.O., Kawu M.U., Rekwot P.I. (2017). Diurnal thermoregulatory responses in pregnant Yankasa ewes to the dry season in a tropical Savannah. Trop. Anim. Health Prod., 49: 1243–1252.10.1007/s11250-017-1322-8
DOI: https://doi.org/10.2478/aoas-2019-0002 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 291 - 304
Submitted on: Jun 22, 2018
Accepted on: Jan 3, 2019
Published on: May 2, 2019
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Buhari Habibu, Lukuman Surakat Yaqub, Tavershima Dzenda, Mohammed Umaru Kawu, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.