Have a personal or library account? Click to login
Algebraic Properties of Semi-Direct Sums of Rings Cover

Algebraic Properties of Semi-Direct Sums of Rings

Open Access
|Jun 2025

References

  1. S.A. Amitsur, Radicals of polynomial rings, Canadian J. Math. 8 (1956), 355–361.
  2. D.D. Anderson, Commutative rings, in: J.W. Brewer, S. Glaz, W. Heinzer, and B. Olberding (Eds.), Multiplicative Ideal Theory in Commutative Algebra: A Tribute to the Work of Robert Gilmer, Springer, New York, 2006, pp. 1–20.
  3. T. Anderson, N. Divinsky, and A. Suliński, Hereditary radicals in associative and alternative rings, Canadian J. Math. 17 (1965), 594–603.
  4. V.A. Andrunakievich, Radicals of associative rings. I, Mat. Sb. (N.S.) 44(86) (1958), 179–212.
  5. R.R. Andruszkiewicz and M. Kępczyk, On left T-nilpotent rings, Results Math. 79 (2024), no. 4, Paper No. 157, 17 pp.
  6. W.D. Burgess and R.M. Raphael, Ideal extensions of rings – some topological aspects, Comm. Algebra 23 (1995), no. 10, 3815–3830.
  7. M. Chhiti and N. Mahdou, Some homological properties of amalgamated duplication of a ring along an ideal, Bull. Iranian Math. Soc. 38 (2012), no. 2, 507–515.
  8. M. Chhiti, N. Mahdou, and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat. 44 (2015), no. 1, 41–49.
  9. B.S. Chwe and J. Neggers, On the extension of linearly independent subsets of free modules to bases, Proc. Amer. Math. Soc. 24 (1970), 466–470.
  10. M. D’Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507–519.
  11. M. D’Anna, C.A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana, S.-E. Kabbaj, B. Olberding, and I. Swanson (Eds.), Commutative Algebra and its Applications, Walter de Gruyter GmbH & Co. KG, Berlin, 2009, pp. 155–172.
  12. M. D’Anna, C.A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633–1641.
  13. M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443–459.
  14. J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85–88.
  15. M. El Maalmi and H. Mouanis, On Steinitz-like properties in amalgamated algebras along an ideal, J. Algebra Appl. 19 (2020), no. 12, 2050237, 9 pp.
  16. C.J. Everett, An extension theory for rings, Amer. J. Math. 64 (1942), 363–370.
  17. B.J. Gardner, Some aspects of T-nilpotence, Pacific J. Math. 53 (1974), 117–130.
  18. B.J. Gardner and R. Wiegandt, Radical theory of rings, Monogr. Textbooks Pure Appl. Math., 261, Marcel Dekker, Inc., New York, 2004.
  19. S. Kabbaj, K. Louartiti, and M. Tamekkante, Bi-amalgamated algebras along ideals, J. Commut. Algebra 9 (2017), no. 1, 65–87.
  20. T.Y. Lam, Corner ring theory: a generalization of Peirce decompositions, I, in: A. Facchini, K. Fuller, C.M. Ringel, and C. Santa-Clara (Eds.), Algebras, Rings and Their Representations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006, pp. 153–182.
  21. S. Mac Lane, Extensions and obstructions for rings, Illinois J. Math. 2 (1958), 316–345.
  22. J. Matczuk, Ore extensions over duo rings, J. Algebra 297 (2006), no. 1, 139–154.
  23. A. Mimouni, Clean-like properties in pullbacks and amalgamation rings, Acta Math. Hungar. 156 (2018), no. 1, 91–101.
  24. W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269–278.
  25. W.K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J. 46 (2004), no. 2, 227–236.
  26. M. Nowakowska, A note on amalgamated rings along an ideal, Ann. Math. Sil. 35 (2021), no. 2, 282–288.
  27. M. Petrich, Ideal extensions of rings, Acta Math. Hungar. 45 (1985), no. 3-4, 263–283.
  28. J. Szendrei, On the Jacobson radical of a ring, Publ. Math. Debrecen 4 (1955), 93–97.
DOI: https://doi.org/10.2478/amsil-2025-0012 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 319 - 330
Submitted on: Feb 2, 2025
Accepted on: May 7, 2025
Published on: Jun 2, 2025
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2025 Marta Nowakowska, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.