References
- S.A. Amitsur, Radicals of polynomial rings, Canadian J. Math. 8 (1956), 355–361.
- D.D. Anderson, Commutative rings, in: J.W. Brewer, S. Glaz, W. Heinzer, and B. Olberding (Eds.), Multiplicative Ideal Theory in Commutative Algebra: A Tribute to the Work of Robert Gilmer, Springer, New York, 2006, pp. 1–20.
- T. Anderson, N. Divinsky, and A. Suliński, Hereditary radicals in associative and alternative rings, Canadian J. Math. 17 (1965), 594–603.
- V.A. Andrunakievich, Radicals of associative rings. I, Mat. Sb. (N.S.) 44(86) (1958), 179–212.
- R.R. Andruszkiewicz and M. Kępczyk, On left T-nilpotent rings, Results Math. 79 (2024), no. 4, Paper No. 157, 17 pp.
- W.D. Burgess and R.M. Raphael, Ideal extensions of rings – some topological aspects, Comm. Algebra 23 (1995), no. 10, 3815–3830.
- M. Chhiti and N. Mahdou, Some homological properties of amalgamated duplication of a ring along an ideal, Bull. Iranian Math. Soc. 38 (2012), no. 2, 507–515.
- M. Chhiti, N. Mahdou, and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat. 44 (2015), no. 1, 41–49.
- B.S. Chwe and J. Neggers, On the extension of linearly independent subsets of free modules to bases, Proc. Amer. Math. Soc. 24 (1970), 466–470.
- M. D’Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507–519.
- M. D’Anna, C.A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana, S.-E. Kabbaj, B. Olberding, and I. Swanson (Eds.), Commutative Algebra and its Applications, Walter de Gruyter GmbH & Co. KG, Berlin, 2009, pp. 155–172.
- M. D’Anna, C.A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633–1641.
- M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443–459.
- J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85–88.
- M. El Maalmi and H. Mouanis, On Steinitz-like properties in amalgamated algebras along an ideal, J. Algebra Appl. 19 (2020), no. 12, 2050237, 9 pp.
- C.J. Everett, An extension theory for rings, Amer. J. Math. 64 (1942), 363–370.
- B.J. Gardner, Some aspects of T-nilpotence, Pacific J. Math. 53 (1974), 117–130.
- B.J. Gardner and R. Wiegandt, Radical theory of rings, Monogr. Textbooks Pure Appl. Math., 261, Marcel Dekker, Inc., New York, 2004.
- S. Kabbaj, K. Louartiti, and M. Tamekkante, Bi-amalgamated algebras along ideals, J. Commut. Algebra 9 (2017), no. 1, 65–87.
- T.Y. Lam, Corner ring theory: a generalization of Peirce decompositions, I, in: A. Facchini, K. Fuller, C.M. Ringel, and C. Santa-Clara (Eds.), Algebras, Rings and Their Representations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006, pp. 153–182.
- S. Mac Lane, Extensions and obstructions for rings, Illinois J. Math. 2 (1958), 316–345.
- J. Matczuk, Ore extensions over duo rings, J. Algebra 297 (2006), no. 1, 139–154.
- A. Mimouni, Clean-like properties in pullbacks and amalgamation rings, Acta Math. Hungar. 156 (2018), no. 1, 91–101.
- W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269–278.
- W.K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J. 46 (2004), no. 2, 227–236.
- M. Nowakowska, A note on amalgamated rings along an ideal, Ann. Math. Sil. 35 (2021), no. 2, 282–288.
- M. Petrich, Ideal extensions of rings, Acta Math. Hungar. 45 (1985), no. 3-4, 263–283.
- J. Szendrei, On the Jacobson radical of a ring, Publ. Math. Debrecen 4 (1955), 93–97.