Have a personal or library account? Click to login
A Note on Bifurcation of Equilibrium Forms of a Gas Balloon Parachute Cover

A Note on Bifurcation of Equilibrium Forms of a Gas Balloon Parachute

By: Anita Zgorzelska and  Hanna Guze  
Open Access
|May 2025

References

  1. S.S. Antman, Nonlinear Problems of Elasticity, Appl. Math. Sci., 107, Springer-Verlag, New York, 1995.
  2. A.Yu. Borisovich, J. Dymkowska, and Cz. Szymczak, Buckling and postcritical behaviour of the elastic infinite plate strip resting on linear elastic foundation, J. Math. Anal. Appl. 307 (2005), no. 2, 480–495.
  3. A.Yu. Borisovich and J. Janczewska, Stable and unstable bifurcation in the von Kármán problem for a circular plate, Abstr. Appl. Anal. 2005, no. 8, 889–899.
  4. I. Chueshow and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long-Time Dynamics, Springer Monogr. Math., Springer, New York, 2010.
  5. P.G. Ciarlet, Mathematical Elasticity. Volume III: Theory of Shells, Stud. Math. Appl., 29, North-Holland Publishing Co., Amsterdam, 2000.
  6. M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340.
  7. H. Guze and J. Janczewska, Symmetry-breaking bifurcation for free elastic shell of biological cluster, part 2, Milan J. Math. 82 (2014), no. 2, 331–342.
  8. H. Guze and J. Janczewska, Subcritical bifurcation of free elastic shell of biological cluster, Nonlinear Anal. Real World Appl. 24 (2015), 61–72.
  9. J. Janczewska, Local properties of the solution set of the operator equation in Banach spaces in a neighbourhood of a bifurcation point, Cent. Eur. J. Math. 2 (2004), no. 4, 561–572.
  10. J. Janczewska, Multiple bifurcation in the solution set of the von Kármán equations with S1-symmetries, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 1, 109–126.
  11. N.F. Morozov, Selected Two-Dimensional Problems of Elasticity Theory (in Russian), Univ. Press, Leningrad, 1978.
  12. J.N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, Inc., Hoboken, New Jersey, 2002.
  13. Yu. I. Sapronov, Branching of solutions of smooth Fredholm equations, in: Yu. G. Borisovich (Ed.), Equations on Manifolds (in Russian), Novoe Global. Anal., Voronezh. Gos. Univ., Voronezh, 1982, pp. 60–82.
  14. I.I. Vorovich, Mathematical Problems in the Nonlinear Theory of Shallow Shells (in Russian), Nauka, Moscow, 1989.
DOI: https://doi.org/10.2478/amsil-2025-0009 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 368 - 380
Submitted on: Mar 17, 2025
Accepted on: Apr 15, 2025
Published on: May 20, 2025
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2025 Anita Zgorzelska, Hanna Guze, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.