References
- N.I. Achieser, Vorlesungen über Approximationstheorie, Akademie-Verlag, Berlin, 1953.
- N.I. Achieser and M.G. Krein, Some Questions in the Theory of Moments, Transl. Math. Monogr., Vol. 2, American Mathematical Society, Providence, RI, 1962.
- A.R. Alimov, Solarity of sets in max-approximation problems, J. Fixed Point Theory Appl. 21 (2019), no. 3, Paper No. 76, 11 pp.
- A.R. Alimov and I.G. Tsarkov, Approximatively compact sets in asymmetric Efimov–Stechkin spaces and convexity of almost suns, Math. Notes 110 (2021), no. 5–6, 947–951.
- D. Amir, Chebyshev centers and uniform convexity, Pacific J. Math. 77 (1978), no. 1, 1–6.
- D. Amir and F. Deutsch, Suns, moons, and quasi-polyhedra, J. Approximation Theory 6 (1972), 176–201.
- E.Z. Andalafte and J.E. Valentine, Criteria for unique metric lines in Banach spaces, Proc. Amer. Math. Soc. 39 (1973), 367–370.
- K.W. Anderson, Midpoint Local Uniform Convexity, and Other Geometric Properties of Banach Spaces, PhD thesis, University of Illinois, Urbana, IL, 1960.
- E. Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4 (1966), 213–216.
- A.A. Astaneh, A characterization of local uniform convexity of the norm, Indian J. Pure Appl. Math. 14 (1983), no. 10, 1217–1219.
- A.A. Astaneh, Completeness of normed linear spaces admitting centers, J. Austral. Math. Soc. Ser. A 39 (1985), no. 3, 360–366.
- J.S. Bae and S.K. Choi, A note on k-uniformly convex spaces, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 3, 489–490.
- P. Bandyopadhyay, D. Huang, B.-L. Lin, and S.L. Troyanski, Some generalizations of locally uniform rotundity, J. Math. Anal. Appl. 252 (2000), no. 2, 906–916.
- P. Bandyopadhyay, Y. Li, B.-L. Lin, and D. Narayana, Proximinality in Banach spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 309–317.
- J. Blatter, Weiteste Punkte und nächste Punkte, Rev. Roumaine Math. Pures Appl. 14 (1969), 615–621.
- J. Blatter, P.D. Morris, and D.E. Wulbert, Continuity of the set-valued metric projection, Math. Ann. 178 (1968), 12–24.
- B. Brosowski and F. Deutsch, Radial continuity of set-valued metric projections, J. Approximation Theory 11 (1974), 236–253.
- H. Busemann, Note on a theorem of convex sets, Mat. Tidsskr. B 1947 (1947), 32–34.
- U.S. Chakraborty, On a generalization of local uniform rotundity, arXiv preprint, 2020. Available at arXiv: 2001.00696.
- Q.J. Cheng, B. Wang, and C.L. Wang, On uniform convexity of Banach spaces, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 3, 587–594.
- J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414.
- S. Cobzaş, Geometric properties of Banach spaces and the existence of nearest and farthest points, Abstr. Appl. Anal. 2005, no. 3, 259–285.
- D.F. Cudia, Rotundity, in: V.L. Klee (ed.), Proceedings of Symposia in Pure Mathematics. Vol. VII: Convexity, American Mathematical Society, Providence, RI, 1963, pp. 73–97.
- G.R. Damai and P.M. Bajracharya, Uniformly rotund in every direction (URED) norm, Int. J. Sci. Res. Pub. 6 (2016), no. 9, 74–83.
- M.M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317.
- M.M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 504–507.
- M.M. Day, Uniform convexity. III, Bull. Amer. Math. Soc. 49 (1943), 745–750.
- M.M. Day, Uniform convexity in factor and conjugate spaces, Ann. of Math. (2) 45 (1944), 375–385.
- M.M. Day, Strict convexity and smoothness of normed spaces, Trans. Amer. Math. Soc. 78 (1955), 516–528.
- M.M. Day, Normed Linear Spaces, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958.
- M.M. Day, R.C. James, and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canadian J. Math. 23 (1971), 1051–1059.
- D. Delbosco and F. Rossati, Characterizations of strictly convex normed linear spaces, Atti Accad. Sci. Lett. Arti Palermo Ser. (5) 2 (1981/82), no. 1, 359–369.
- F. Deutsch and J.M. Lambert, On continuity of metric projections, J. Approx. Theory 29 (1980), no. 2, 116–131.
- R. Deville and V.E. Zizler, Farthest points in w*-compact sets, Bull. Austral. Math. Soc. 38 (1988), no. 3, 433–439.
- S. Dutta and P Shunmugaraj, Strong proximinality of closed convex sets, J. Approx. Theory 163 (2011), no. 4, 547–553.
- S. Dutta and P. Shunmugaraj, Weakly compactly LUR Banach spaces, J. Math. Anal. Appl. 458 (2018), no. 2, 1203–1213.
- M. Edelstein, Farthest points of sets in uniformly convex Banach spaces, Israel J. Math. 4 (1966), 171–176.
- M. Edelstein, On nearest points of sets in uniformly convex Banach spaces, J. London Math. Soc. 43 (1968), 375–377.
- M. Edelstein, Weakly proximinal sets, J. Approximation Theory 18 (1976), no. 1, 1–8.
- N.V. Efimov and S.B. Stechkin, Approximative compactness and Chebyshev sets, Dokl. Akad. Nauk SSSR 140 (1961), 522–524.
- K. Eshita and W. Takahashi, On the uniform convexity of subsets of Banach spaces, Sci. Math. Jpn. 60 (2004), no. 4, 577–594.
- K. Fan and I. Glicksberg, Fully convex normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 947–953.
- K. Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553–568.
- S. Fitzpatrick, Metric projections and the differentiability of distance functions, Bull. Austral. Math. Soc. 22 (1980), no. 2, 291–312.
- J. Fletcher and W.B. Moors, Chebyshev sets, J. Aust. Math. Soc. 98 (2015), no. 2, 161–231.
- A.L. Garkavi, On the optimal net and best cross-section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87–106.
- P. Gayathri and V. Thota, Characterizations of weakly uniformly rotund Banach spaces, J. Math. Anal. Appl. 514 (2022), no. 1, Paper No. 126298, 15 pp.
- S. Gudder and D. Strawther, Strictly convex normed linear spaces, Proc. Amer. Math. Soc. 59 (1976), no. 2, 263–267.
- A.J. Guirao and V. Montesinos, A note in approximative compactness and continuity of metric projections in Banach spaces, J. Convex Anal. 18 (2011), no. 2, 397–401.
- S. Gupta and T.D. Narang, Strong proximinality and rotundities in Banach spaces, J. Adv. Math. Stud. 10 (2017), no. 2, 174–182.
- P. Hájek and A. Quilis, Counterexamples in rotundity of norms in Banach spaces, arXiv preprint, 2023. Available at arXiv: 2302.11041.
- R.A. Hirschfeld, On best approximations in normed vector spaces. II, Nieuw Arch. Wisk. (3) 6 (1958), 99–107.
- R.B. Holmes, A Course on Optimization and Best Approximation, Lecture Notes in Math., Vol. 257, Springer-Verlag, Berlin-New York, 1972.
- R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), no. 4, 743–749.
- V.I. Istrăţescu, Fixed Point Theory, Math. Appl., 7, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1981.
- V.I. Istrăţescu, Strict Convexity and Complex Strict Convexity, Lecture Notes in Pure and Appl. Math., 89, Marcel Dekker, Inc., New York, 1984.
- V.I. Istrăţescu and J.R. Partington, On nearly uniformly convex and k-uniformly convex spaces, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 2, 325–327.
- P.S. Kenderov, Uniqueness on a residual part of best approximations in Banach spaces, Pliska Stud. Math. Bulgar. 1 (1977), 122–127.
- V.L. Klee, Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10–43.
- V.L. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959), pp. 51–63.
- V.L. Klee, Convexity of Chebyshev sets, Math. Ann. 142 (1961), 292–304.
- S.V. Konyagin, Sets of points of nonemptiness and continuity of a metric projection, Mat. Zametki 33 (1983), no. 5, 641–655.
- K.-S. Lau, Farthest points in weakly compact sets, Israel J. Math. 22 (1975), no. 2, 168–174.
- K.-S. Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27 (1978), no. 5, 791–795.
- K.-S. Lau, Best approximation by closed sets in Banach spaces, J. Approx. Theory 23 (1978), no. 1, 29–36.
- B.L. Lin and X.T. Yu, On the k-uniform rotund and the fully convex Banach spaces, J. Math. Anal. Appl. 110 (1985), no. 2, 407–410.
- A.R. Lovaglia, Locally uniformly convex Banach spaces, Trans. Amer. Math. Soc. 78 (1955), 225–238.
- R.E. Megginson, The Semi-Kadec-Klee Condition and Nearest-Point Properties of Sets in Normed Linear Spaces, PhD thesis, University of Illinois, Urbana, IL, 1984.
- R.E. Megginson, An Introduction to Banach Space Theory, Grad. Texts in Math., 183, Springer-Verlag, New York, 1998.
- H.N. Mhaskar and D.V. Pai, Fundamentals of Approximation Theory, Narosa Publishing House, New Delhi, 2000.
- V.D. Milman, Geometric theory of Banach spaces. Part II. Geometry of the unit sphere, Russian Math. Surveys 26 (1971), no. 6, 79–163.
- S. Miyajima and F. Wada, Uniqueness of a farthest point in a bounded closed set in Banach spaces, SUT J. Math. 29 (1993), no. 2, 291–310.
- A. Moltó, J. Orihuela, S. Troyanski, and M. Valdivia, On weakly locally uniformly rotund Banach spaces, J. Funct. Anal. 163 (1999), no. 2, 252–271.
- T.D. Narang and S. Gupta, On Chebyshev centers, Bull. Allahabad Math. Soc. 34 (2019), no. 2, 181–199.
- E.V. Oshman, A continuity criterion for metric projections in Banach spaces, Math. Notes Acad. Sci. USSR 10 (1971), no. 4, 697–701.
- B.B. Panda and O.P. Kapoor, Approximative compactness and continuity of metric projections, Bull. Austral. Math. Soc. 11 (1974), 47–55.
- B.B. Panda and O.P. Kapoor, A generalization of local uniform convexity of the norm, J. Math. Anal. Appl. 52 (1975), no. 2, 300–308.
- B.B. Panda and O.P. Kapoor, On farthest points of sets, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 10, 1369–1377.
- B.B. Panda and O.P. Kapoor, On farthest points of sets, J. Math. Anal. Appl. 62 (1978), no. 2, 345–353.
- R.R. Phelps, Convex sets and nearest points, Proc. Amer. Math. Soc. 8 (1957), 790–797.
- T. Polak and B. Sims, A Banach space which is fully 2-rotund but not locally uniformly rotund, Canad. Math. Bull. 26 (1983), no. 1, 118–120.
- V.S. Raj and A.A. Eldred, A characterization of strictly convex spaces and applications, J. Optim. Theory Appl. 160 (2014), no. 2, 703–710.
- J.P. Revalski and N.V. Zhivkov, Best approximation problems in compactly uniformly rotund spaces, J. Convex Anal. 19 (2012), no. 4, 1153–1166.
- D. Sain, V. Kadets, K. Paul, and A. Ray, Chebyshev centers that are not farthest points, Indian J. Pure Appl. Math. 49 (2018), no. 2, 189–204.
- D. Sain, K. Paul, and A. Ray, Farthest point problem and M-compact sets, J. Nonlinear Convex Anal. 18 (2017), no. 3, 451–457.
- I. Singer, Some remarks on approximative compactness, Rev. Roumaine Math. Pures Appl. 9 (1964), 167–177.
- I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970.
- M.A. Smith, Banach spaces that are uniformly rotund in weakly compact sets of directions, Canadian J. Math. 29 (1977), no. 5, 963–970.
- M.A. Smith, Products of Banach spaces that are uniformly rotund in every direction, Pacific J. Math. 70 (1977), no. 1, 215–219.
- M.A. Smith, A reflexive Banach space that is LUR and not 2R, Canad. Math. Bull. 21 (1978), no. 2, 251–252.
- M.A. Smith, Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), no. 2, 155–161.
- M.A. Smith, A Banach space that is MLUR but not HR, Math. Ann. 256 (1981), no. 2, 277–279.
- V.L.Šmulian, On some geometrical properties of the unit sphere in the space of the type (B), Rec. Math. N.S. [Mat. Sbornik] 6/48 (1939), 77–94.
- V.L.Šmulian, Sur la dérivabilité de la norme dans l’espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 643–648.
- V.L.Šmulian, Sur la structure de la sphère unitaire dans l’espace de Banach, Rec. Math. [Mat. Sbornik] N.S. 9/51 (1941), 545–561.
- S.B. Stechkin, Approximation properties of sets in linear normed spaces, Rev. Math. Pures Appl. 8 (1963), 5–18.
- F. Sullivan, A generalization of uniformly rotund Banach spaces, Canadian J. Math. 31 (1979), no. 3, 628–636.
- I.G. Tsarkov, Uniform convexity in nonsymmetric spaces, Math. Notes 110 (2021), no. 5–6, 773–783.
- L.P. Vlasov, Chebyshev sets and approximately convex sets, Math. Notes Acad. Sci. USSR 2 (1967), no. 2, 600–605.
- L.P. Vlasov, On Chebyshev sets, Soviet Math. Dokl. 8 (1967), 401–404.
- L.P. Vlasov, Chebyshev sets and some generalizations of them, Math. Notes Acad. Sci. USSR 3 (1968), no. 1, 36–41.
- L.P. Vlasov, Approximative properties of sets in normed linear spaces, Russian Math. Surveys 28 (1973), no. 6, 1–66.
- R. Vyborny, On the weak convergence in locally uniformly convex spaces, Casopis Pěst. Mat. 81 (1956), no. 3, 352–353.
- A.O. Wanjara, A classical survey on rotundity of norms in Banach spaces, Indonesian J. Math. Appl. 2 (2024), no. 1, 42–57.
- C.X. Wu and Y.J. Li, Strong convexity in Banach spaces, J. Math. (Wuhan) 13 (1993), no. 1, 105–108.
- D.E. Wulbert, Continuity of metric projections, Trans. Amer. Math. Soc. 134 (1968), 335–341.
- M. Zhao, B.X. Fang, and Y.H. Wang, K-rotundities and their generalizations, Chinese Ann. Math. Ser. A 21 (2000), no. 3, 289–294.
- N.V. Zhivkov, Metric projections and antiprojections in strictly convex normed spaces, C. R. Acad. Bulgare Sci. 31 (1978), no. 4, 369–372.
- N.V. Zhivkov, Continuity and nonmultivaluedness properties of metric projections and antiprojections, Serdica 8 (1982), no. 4, 378–385.
- V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. (Rozprawy Mat.) 87 (1971), 33 pp. (errata insert).