Have a personal or library account? Click to login
On Various Types of Uniform Rotundities Cover
Open Access
|Mar 2025

References

  1. N.I. Achieser, Vorlesungen über Approximationstheorie, Akademie-Verlag, Berlin, 1953.
  2. N.I. Achieser and M.G. Krein, Some Questions in the Theory of Moments, Transl. Math. Monogr., Vol. 2, American Mathematical Society, Providence, RI, 1962.
  3. A.R. Alimov, Solarity of sets in max-approximation problems, J. Fixed Point Theory Appl. 21 (2019), no. 3, Paper No. 76, 11 pp.
  4. A.R. Alimov and I.G. Tsarkov, Approximatively compact sets in asymmetric Efimov–Stechkin spaces and convexity of almost suns, Math. Notes 110 (2021), no. 5–6, 947–951.
  5. D. Amir, Chebyshev centers and uniform convexity, Pacific J. Math. 77 (1978), no. 1, 1–6.
  6. D. Amir and F. Deutsch, Suns, moons, and quasi-polyhedra, J. Approximation Theory 6 (1972), 176–201.
  7. E.Z. Andalafte and J.E. Valentine, Criteria for unique metric lines in Banach spaces, Proc. Amer. Math. Soc. 39 (1973), 367–370.
  8. K.W. Anderson, Midpoint Local Uniform Convexity, and Other Geometric Properties of Banach Spaces, PhD thesis, University of Illinois, Urbana, IL, 1960.
  9. E. Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4 (1966), 213–216.
  10. A.A. Astaneh, A characterization of local uniform convexity of the norm, Indian J. Pure Appl. Math. 14 (1983), no. 10, 1217–1219.
  11. A.A. Astaneh, Completeness of normed linear spaces admitting centers, J. Austral. Math. Soc. Ser. A 39 (1985), no. 3, 360–366.
  12. J.S. Bae and S.K. Choi, A note on k-uniformly convex spaces, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 3, 489–490.
  13. P. Bandyopadhyay, D. Huang, B.-L. Lin, and S.L. Troyanski, Some generalizations of locally uniform rotundity, J. Math. Anal. Appl. 252 (2000), no. 2, 906–916.
  14. P. Bandyopadhyay, Y. Li, B.-L. Lin, and D. Narayana, Proximinality in Banach spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 309–317.
  15. J. Blatter, Weiteste Punkte und nächste Punkte, Rev. Roumaine Math. Pures Appl. 14 (1969), 615–621.
  16. J. Blatter, P.D. Morris, and D.E. Wulbert, Continuity of the set-valued metric projection, Math. Ann. 178 (1968), 12–24.
  17. B. Brosowski and F. Deutsch, Radial continuity of set-valued metric projections, J. Approximation Theory 11 (1974), 236–253.
  18. H. Busemann, Note on a theorem of convex sets, Mat. Tidsskr. B 1947 (1947), 32–34.
  19. U.S. Chakraborty, On a generalization of local uniform rotundity, arXiv preprint, 2020. Available at arXiv: 2001.00696.
  20. Q.J. Cheng, B. Wang, and C.L. Wang, On uniform convexity of Banach spaces, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 3, 587–594.
  21. J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414.
  22. S. Cobzaş, Geometric properties of Banach spaces and the existence of nearest and farthest points, Abstr. Appl. Anal. 2005, no. 3, 259–285.
  23. D.F. Cudia, Rotundity, in: V.L. Klee (ed.), Proceedings of Symposia in Pure Mathematics. Vol. VII: Convexity, American Mathematical Society, Providence, RI, 1963, pp. 73–97.
  24. G.R. Damai and P.M. Bajracharya, Uniformly rotund in every direction (URED) norm, Int. J. Sci. Res. Pub. 6 (2016), no. 9, 74–83.
  25. M.M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317.
  26. M.M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 504–507.
  27. M.M. Day, Uniform convexity. III, Bull. Amer. Math. Soc. 49 (1943), 745–750.
  28. M.M. Day, Uniform convexity in factor and conjugate spaces, Ann. of Math. (2) 45 (1944), 375–385.
  29. M.M. Day, Strict convexity and smoothness of normed spaces, Trans. Amer. Math. Soc. 78 (1955), 516–528.
  30. M.M. Day, Normed Linear Spaces, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958.
  31. M.M. Day, R.C. James, and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canadian J. Math. 23 (1971), 1051–1059.
  32. D. Delbosco and F. Rossati, Characterizations of strictly convex normed linear spaces, Atti Accad. Sci. Lett. Arti Palermo Ser. (5) 2 (1981/82), no. 1, 359–369.
  33. F. Deutsch and J.M. Lambert, On continuity of metric projections, J. Approx. Theory 29 (1980), no. 2, 116–131.
  34. R. Deville and V.E. Zizler, Farthest points in w*-compact sets, Bull. Austral. Math. Soc. 38 (1988), no. 3, 433–439.
  35. S. Dutta and P Shunmugaraj, Strong proximinality of closed convex sets, J. Approx. Theory 163 (2011), no. 4, 547–553.
  36. S. Dutta and P. Shunmugaraj, Weakly compactly LUR Banach spaces, J. Math. Anal. Appl. 458 (2018), no. 2, 1203–1213.
  37. M. Edelstein, Farthest points of sets in uniformly convex Banach spaces, Israel J. Math. 4 (1966), 171–176.
  38. M. Edelstein, On nearest points of sets in uniformly convex Banach spaces, J. London Math. Soc. 43 (1968), 375–377.
  39. M. Edelstein, Weakly proximinal sets, J. Approximation Theory 18 (1976), no. 1, 1–8.
  40. N.V. Efimov and S.B. Stechkin, Approximative compactness and Chebyshev sets, Dokl. Akad. Nauk SSSR 140 (1961), 522–524.
  41. K. Eshita and W. Takahashi, On the uniform convexity of subsets of Banach spaces, Sci. Math. Jpn. 60 (2004), no. 4, 577–594.
  42. K. Fan and I. Glicksberg, Fully convex normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 947–953.
  43. K. Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553–568.
  44. S. Fitzpatrick, Metric projections and the differentiability of distance functions, Bull. Austral. Math. Soc. 22 (1980), no. 2, 291–312.
  45. J. Fletcher and W.B. Moors, Chebyshev sets, J. Aust. Math. Soc. 98 (2015), no. 2, 161–231.
  46. A.L. Garkavi, On the optimal net and best cross-section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87–106.
  47. P. Gayathri and V. Thota, Characterizations of weakly uniformly rotund Banach spaces, J. Math. Anal. Appl. 514 (2022), no. 1, Paper No. 126298, 15 pp.
  48. S. Gudder and D. Strawther, Strictly convex normed linear spaces, Proc. Amer. Math. Soc. 59 (1976), no. 2, 263–267.
  49. A.J. Guirao and V. Montesinos, A note in approximative compactness and continuity of metric projections in Banach spaces, J. Convex Anal. 18 (2011), no. 2, 397–401.
  50. S. Gupta and T.D. Narang, Strong proximinality and rotundities in Banach spaces, J. Adv. Math. Stud. 10 (2017), no. 2, 174–182.
  51. P. Hájek and A. Quilis, Counterexamples in rotundity of norms in Banach spaces, arXiv preprint, 2023. Available at arXiv: 2302.11041.
  52. R.A. Hirschfeld, On best approximations in normed vector spaces. II, Nieuw Arch. Wisk. (3) 6 (1958), 99–107.
  53. R.B. Holmes, A Course on Optimization and Best Approximation, Lecture Notes in Math., Vol. 257, Springer-Verlag, Berlin-New York, 1972.
  54. R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), no. 4, 743–749.
  55. V.I. Istrăţescu, Fixed Point Theory, Math. Appl., 7, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1981.
  56. V.I. Istrăţescu, Strict Convexity and Complex Strict Convexity, Lecture Notes in Pure and Appl. Math., 89, Marcel Dekker, Inc., New York, 1984.
  57. V.I. Istrăţescu and J.R. Partington, On nearly uniformly convex and k-uniformly convex spaces, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 2, 325–327.
  58. P.S. Kenderov, Uniqueness on a residual part of best approximations in Banach spaces, Pliska Stud. Math. Bulgar. 1 (1977), 122–127.
  59. V.L. Klee, Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10–43.
  60. V.L. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959), pp. 51–63.
  61. V.L. Klee, Convexity of Chebyshev sets, Math. Ann. 142 (1961), 292–304.
  62. S.V. Konyagin, Sets of points of nonemptiness and continuity of a metric projection, Mat. Zametki 33 (1983), no. 5, 641–655.
  63. K.-S. Lau, Farthest points in weakly compact sets, Israel J. Math. 22 (1975), no. 2, 168–174.
  64. K.-S. Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27 (1978), no. 5, 791–795.
  65. K.-S. Lau, Best approximation by closed sets in Banach spaces, J. Approx. Theory 23 (1978), no. 1, 29–36.
  66. B.L. Lin and X.T. Yu, On the k-uniform rotund and the fully convex Banach spaces, J. Math. Anal. Appl. 110 (1985), no. 2, 407–410.
  67. A.R. Lovaglia, Locally uniformly convex Banach spaces, Trans. Amer. Math. Soc. 78 (1955), 225–238.
  68. R.E. Megginson, The Semi-Kadec-Klee Condition and Nearest-Point Properties of Sets in Normed Linear Spaces, PhD thesis, University of Illinois, Urbana, IL, 1984.
  69. R.E. Megginson, An Introduction to Banach Space Theory, Grad. Texts in Math., 183, Springer-Verlag, New York, 1998.
  70. H.N. Mhaskar and D.V. Pai, Fundamentals of Approximation Theory, Narosa Publishing House, New Delhi, 2000.
  71. V.D. Milman, Geometric theory of Banach spaces. Part II. Geometry of the unit sphere, Russian Math. Surveys 26 (1971), no. 6, 79–163.
  72. S. Miyajima and F. Wada, Uniqueness of a farthest point in a bounded closed set in Banach spaces, SUT J. Math. 29 (1993), no. 2, 291–310.
  73. A. Moltó, J. Orihuela, S. Troyanski, and M. Valdivia, On weakly locally uniformly rotund Banach spaces, J. Funct. Anal. 163 (1999), no. 2, 252–271.
  74. T.D. Narang and S. Gupta, On Chebyshev centers, Bull. Allahabad Math. Soc. 34 (2019), no. 2, 181–199.
  75. E.V. Oshman, A continuity criterion for metric projections in Banach spaces, Math. Notes Acad. Sci. USSR 10 (1971), no. 4, 697–701.
  76. B.B. Panda and O.P. Kapoor, Approximative compactness and continuity of metric projections, Bull. Austral. Math. Soc. 11 (1974), 47–55.
  77. B.B. Panda and O.P. Kapoor, A generalization of local uniform convexity of the norm, J. Math. Anal. Appl. 52 (1975), no. 2, 300–308.
  78. B.B. Panda and O.P. Kapoor, On farthest points of sets, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 10, 1369–1377.
  79. B.B. Panda and O.P. Kapoor, On farthest points of sets, J. Math. Anal. Appl. 62 (1978), no. 2, 345–353.
  80. R.R. Phelps, Convex sets and nearest points, Proc. Amer. Math. Soc. 8 (1957), 790–797.
  81. T. Polak and B. Sims, A Banach space which is fully 2-rotund but not locally uniformly rotund, Canad. Math. Bull. 26 (1983), no. 1, 118–120.
  82. V.S. Raj and A.A. Eldred, A characterization of strictly convex spaces and applications, J. Optim. Theory Appl. 160 (2014), no. 2, 703–710.
  83. J.P. Revalski and N.V. Zhivkov, Best approximation problems in compactly uniformly rotund spaces, J. Convex Anal. 19 (2012), no. 4, 1153–1166.
  84. D. Sain, V. Kadets, K. Paul, and A. Ray, Chebyshev centers that are not farthest points, Indian J. Pure Appl. Math. 49 (2018), no. 2, 189–204.
  85. D. Sain, K. Paul, and A. Ray, Farthest point problem and M-compact sets, J. Nonlinear Convex Anal. 18 (2017), no. 3, 451–457.
  86. I. Singer, Some remarks on approximative compactness, Rev. Roumaine Math. Pures Appl. 9 (1964), 167–177.
  87. I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970.
  88. M.A. Smith, Banach spaces that are uniformly rotund in weakly compact sets of directions, Canadian J. Math. 29 (1977), no. 5, 963–970.
  89. M.A. Smith, Products of Banach spaces that are uniformly rotund in every direction, Pacific J. Math. 70 (1977), no. 1, 215–219.
  90. M.A. Smith, A reflexive Banach space that is LUR and not 2R, Canad. Math. Bull. 21 (1978), no. 2, 251–252.
  91. M.A. Smith, Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), no. 2, 155–161.
  92. M.A. Smith, A Banach space that is MLUR but not HR, Math. Ann. 256 (1981), no. 2, 277–279.
  93. V.L.Šmulian, On some geometrical properties of the unit sphere in the space of the type (B), Rec. Math. N.S. [Mat. Sbornik] 6/48 (1939), 77–94.
  94. V.L.Šmulian, Sur la dérivabilité de la norme dans l’espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 643–648.
  95. V.L.Šmulian, Sur la structure de la sphère unitaire dans l’espace de Banach, Rec. Math. [Mat. Sbornik] N.S. 9/51 (1941), 545–561.
  96. S.B. Stechkin, Approximation properties of sets in linear normed spaces, Rev. Math. Pures Appl. 8 (1963), 5–18.
  97. F. Sullivan, A generalization of uniformly rotund Banach spaces, Canadian J. Math. 31 (1979), no. 3, 628–636.
  98. I.G. Tsarkov, Uniform convexity in nonsymmetric spaces, Math. Notes 110 (2021), no. 5–6, 773–783.
  99. L.P. Vlasov, Chebyshev sets and approximately convex sets, Math. Notes Acad. Sci. USSR 2 (1967), no. 2, 600–605.
  100. L.P. Vlasov, On Chebyshev sets, Soviet Math. Dokl. 8 (1967), 401–404.
  101. L.P. Vlasov, Chebyshev sets and some generalizations of them, Math. Notes Acad. Sci. USSR 3 (1968), no. 1, 36–41.
  102. L.P. Vlasov, Approximative properties of sets in normed linear spaces, Russian Math. Surveys 28 (1973), no. 6, 1–66.
  103. R. Vyborny, On the weak convergence in locally uniformly convex spaces, Casopis Pěst. Mat. 81 (1956), no. 3, 352–353.
  104. A.O. Wanjara, A classical survey on rotundity of norms in Banach spaces, Indonesian J. Math. Appl. 2 (2024), no. 1, 42–57.
  105. C.X. Wu and Y.J. Li, Strong convexity in Banach spaces, J. Math. (Wuhan) 13 (1993), no. 1, 105–108.
  106. D.E. Wulbert, Continuity of metric projections, Trans. Amer. Math. Soc. 134 (1968), 335–341.
  107. M. Zhao, B.X. Fang, and Y.H. Wang, K-rotundities and their generalizations, Chinese Ann. Math. Ser. A 21 (2000), no. 3, 289–294.
  108. N.V. Zhivkov, Metric projections and antiprojections in strictly convex normed spaces, C. R. Acad. Bulgare Sci. 31 (1978), no. 4, 369–372.
  109. N.V. Zhivkov, Continuity and nonmultivaluedness properties of metric projections and antiprojections, Serdica 8 (1982), no. 4, 378–385.
  110. V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. (Rozprawy Mat.) 87 (1971), 33 pp. (errata insert).
DOI: https://doi.org/10.2478/amsil-2025-0003 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 281 - 318
Submitted on: Jun 27, 2024
Accepted on: Jan 15, 2025
Published on: Mar 4, 2025
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2025 Tulsi Dass Narang, Sumit Chandok, Sahil Gupta, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.