Have a personal or library account? Click to login
Almost Everywhere Convergence of Varying Parameter Setting Cesàro Means of Fourier Series With Respect to Walsh–Kaczmarz System Cover

Almost Everywhere Convergence of Varying Parameter Setting Cesàro Means of Fourier Series With Respect to Walsh–Kaczmarz System

Open Access
|Jan 2025

References

  1. A.A. Abu Joudeh and G. Gát, Convergence of Cesáro means with varying parameters of Walsh–Fourier series, Miskolc Math. Notes 19 (2018), no. 1, 303–317.
  2. A.A. Abu Joudeh and G. Gát, Almost everywhere convergence of Cesàro means of two variable Walsh–Fourier series with varying parameters, Ukraïn. Mat. Zh. 73 (2021), no. 3, 291–307. Ukrainian Math. J. 73 (2021), no. 3, 337–358.
  3. T. Akhobadze, Uniform convergence and (C, α)-summability of trigonometric Fourier series, Soobshch. Akad. Nauk Gruzin. SSR 128 (1987), no. 2, 249–252.
  4. T. Akhobadze, On the generalized Cesáro means of trigonometric Fourier series, Bull. TICMI 18 (2014), no. 1, 75–84.
  5. I. Blahota, L.-E. Persson, and G. Tephnadze, On the Nörlund means of Vilenkin-Fourier series, Czechoslovak Math. J. 65(140) (2015), no. 4, 983–1002.
  6. I. Blahota and G. Tephnadze, On the (C, α)-means with respect to the Walsh system, Anal. Math. 40 (2014), no. 3, 161–174.
  7. I. Blahota, G. Tephnadze, and R. Toledo, Strong convergence theorem of Cesàro means with respect to the Walsh system, Tohoku Math. J. (2) 67 (2015), no. 4, 573–584.
  8. N.J. Fine, Cesàro summability of Walsh–Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 588–591.
  9. S. Fridli, On the rate of convergence of Cesàro means of Walsh–Fourier series, J. Approx. Theory 76 (1994), no. 1, 31–53.
  10. G. Gát, On (C, 1) summability of integrable functions with respect to the Walsh–Kaczmarz system, Studia Math. 130 (1998), no. 2, 135–148.
  11. G. Gát, On (C, 1) summability for Vilenkin-like systems, Studia Math. 144 (2001), no. 2, 101–120.
  12. G. Gát, Cesàro means of integrable functions with respect to unbounded Vilenkin systems, J. Approx. Theory 124 (2003), no. 1, 25–43.
  13. G. Gát and U. Goginava, Maximal operators of Cesàro means with varying parameters of Walsh–Fourier series, Acta Math. Hungar. 159 (2019), no. 2, 653–668.
  14. G. Gát and A. Tilahun, Multi-parameter setting (C, α) means with respect to one dimensional Vilenkin system, Filomat 35 (2021), no. 12, 4121–4133.
  15. K. Nagy, Approximation by Cesàro means of negative order of Walsh–Kaczmarz–Fourier series, East J. Approx. 16 (2010), no. 3, 297–311.
  16. K. Nagy, Approximation by Nörlund means of Walsh–Kaczmarz–Fourier series, Georgian Math. J. 18 (2011), no. 1, 147–162.
  17. L.E. Persson, G. Tephnadze, and F. Weisz, Martingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series, Birkhäuser/Springer, Cham, 2022.
  18. F. Schipp, Certain rearrangements of series in the Walsh system, Mat. Zametki 18 (1975), no. 2, 193–201.
  19. F. Schipp, W.R. Wade, and P. Simon, with the collaboration of J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Ltd., Bristol, 1990.
  20. P. Simon, On the Cesaro summability with respect to the Walsh–Kaczmarz system, J. Approx. Theory 106 (2000), no. 2, 249–261.
  21. P. Simon, (C, α) summability of Walsh–Kaczmarz–Fourier series, J. Approx. Theory 127 (2004), no. 1, 39–60.
  22. A.Tilahun, Almost everywhere convergence of varying-parameter setting Cesáro means of Fourier series on the group of 2-adic integers, Mathematica 65(88) (2023), no. 2, 153–165.
  23. F. Weisz, Cesàro summability of two-parameter Walsh–Fourier series, J. Approx. Theory 88 (1997), no. 2, 168–192.
  24. A. Zygmund, Trigonometric Series, Cambridge University Press, New York, 1959.
DOI: https://doi.org/10.2478/amsil-2025-0001 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 190 - 208
Submitted on: Dec 22, 2023
Accepted on: Jan 4, 2025
Published on: Jan 20, 2025
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2025 Anteneh Tilahun Adimasu, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.