Have a personal or library account? Click to login
Almost Everywhere Convergence of Varying Parameter Setting Cesàro Means of Fourier Series With Respect to Walsh–Kaczmarz System Cover

Almost Everywhere Convergence of Varying Parameter Setting Cesàro Means of Fourier Series With Respect to Walsh–Kaczmarz System

Open Access
|Jan 2025

Full Article

1.
Introduction

Let ℕ+ denote the set of the positive integers, :=+0 \mathbb{N}:={{\mathbb{N}}_{+}}\cup \left\{ 0 \right\} and ℝ denote the set of real numbers. In this paper, C denote absolute positive constants and Cq denote positive constants depending at most on q although not always the same in different occurrences.

The Walsh–Paley system (the detail briefs can be obtained in the books of [17] and [19]) is a special product generated by the so-called Rademacher functions rn (n ∈ ℕ). For the definition let r be the function given on the interval [0, 1) by rx=1,if0x<12,1,if12x<1, r\left( x \right)=\left\{ \begin{array}{*{35}{l}} 1, & {\rm{if}}~0\le x<\frac{1}{2}, \\ -1, & {\rm{if}}~\frac{1}{2}\le x<1, \\\end{array} \right. and extended to the whole real line ℝ periodically by 1.

Now, define rn(x) := r(2nx) (x ∈ [0, 1), n ∈ ℕ). Then the usual product system (wn, n ∈ ℕ) of rn's r_{n}^{'}s is obtained in the following way: wnx:=k=0rknk,n, {{w}_{n}}\left( x \right):=\underset{k=0}{\overset{\infty }{\mathop \prod }}\,r_{k}^{{{n}_{k}}},~\,\,\,\,\,\,\,n\in \mathbb{N}, where n=k=0nk2k n=\mathup{\sum }_{k=0}^{\infty }{{n}_{k}}{{2}^{k}} is the binary decomposition of n, i.e. nk ∈ {0, 1} (k ∈ ℕ). It is well-known (for details see the book [19]) that (wn, n ∈ ℕ) is a complete orthonormal system with respect to the Lebesgue measure of [0, 1).

Then a basic property of the Walsh–Dirichlet Kernel is (1.1) D2nx=2n,if0x<2n,0,if2nx<1. {{D}_{{{2}^{n}}}}\left( x \right)=\left\{ \begin{array}{*{35}{l}} {{2}^{n}}, & {\rm{if}}~0\le x<{{2}^{-n}}, \\ 0, & {\rm{if}}~{{2}^{-n}}\le x<1. \\\end{array} \right.

This interval [0, 1) can be treated as the so called dyadic group, i.e. the set of all sequences (xk, k ∈ ℕ) where xk = 0 ∨ 1. The group operation ∔ is the coordinate-wise addition modulo 2, i.e. if x = (xk, k ∈ ℕ), y = (yk, k ∈ ℕ) then xy := xkyk, k ∈ ℕ, where ab denotes the addition modulo 2 of a, b ∈ ℕ. For example the Rademacher functions can be computed in this sense rn(x) = (−1)xn (x ∈ [0, 1), n ∈ ℕ). Furthermore, D2n = 2nχIn (n ∈ ℕ) where In is the set of all (xk, k ∈ ℕ) such that x0 = x1 = · · · = xn−1 = 0 and χIn is its characteristic function.

In this work, we focus on summability methods of Walsh–Kaczmarz–Fourier series. For any n=2s+k=0s1nk2k n={{2}^{s}}+\mathup{\sum }_{k=0}^{s-1}{{n}_{k}}{{2}^{k}} , where 0 < n ∈ ℕ, s ∈ ℕ, the so-called Kaczmarz rearrangement (ψn, n ∈ ℕ) (called Walsh–Kaczmarz system) of Walsh–Paley system is defined in the following way ψn:=rsk=0s1rsk1nkandψ0:=w0, {{\psi }_{n}}:={{r}_{s}}\underset{k=0}{\overset{s-1}{\mathop \prod }}\,r_{s-k-1}^{{{n}_{k}}}\,\,\,\,\,\,\,{\rm and}\,\,\,\,\,\,\,{{\psi }_{0}}:={{w}_{0}}, and is called Walsh–Kaczmarz system. We commonly use the following notations. Let |n| := max {k ∈ ℕ : nk ≠ 0} (that is, 2|n| ≤ n < 2|n|+1) and ns:=k=0s1nk2k {{n}^{\left( s \right)}}:=\mathup{\sum }_{k=0}^{s-1}{{n}_{k}}{{2}^{k}} .

If fL1[0, 1), then we can define the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet kernels with respect to the Walsh–Kaczmarz system in the usual manner: f^k:=0,1fψkdμ,k,Snf:=k=0n1f^kψk,n+,S0f:=0,Dn:=k=0n1ψk,n+ \begin{align} & \hat{f}\left( k \right):=\mathup{\int }_{\left[ 0,1 \right)}^{{}}f{{\psi }_{k}}d\mu ,\,\,\,\,\,\,\,k\in \mathbb{N}, \\ & {{S}_{n}}f:=\sum\limits_{k=0}^{n-1}{\hat{f}\left( k \right){{\psi }_{k}},}\,\,\,\,\,\,\,\,n\in {{\mathbb{N}}_{+}},\,\,\,\,\,\,\,{{S}_{0}}f:=0, \\ & {{D}_{n}}:=\sum\limits_{k=0}^{n-1}{{{\psi }_{k}},~\,\,\,\,\,\,\,\,n\in {{\mathbb{N}}_{+}}}\cdot \\ \end{align}

It is known that (for details see [21]) ψ is a complete orthonormal system, ψ2m=w2m=rm {{\psi }_{{{2}^{m}}}}={{w}_{{{2}^{m}}}}={{r}_{m}} and ψk:k=2m,,2m+11=wk:k=2m,,2m+11,m. \left\{ {{\psi }_{k}}:k={{2}^{m}},\ldots ,{{2}^{m+1}}-1 \right\}=\left\{ {{w}_{k}}:k={{2}^{m}},\ldots ,{{2}^{m+1}}-1 \right\},\,\,\,\,\,\,\,\,\,\,m\in \mathbb{N}. Moreover, if we define τsx:=(xs1,xs2,,x1,x0,xs,xs+1,),x0,1, {{\tau }_{s}}\left( x \right):=({{x}_{s-1}},~{{x}_{s-2}},~\ldots ,{{x}_{1}},~{{x}_{0}},~{{x}_{s}},~{{x}_{s+1}},\ldots ),\,\,\,\,\,\,\,~x\in \left[ 0,1 \right), then (1.2) ψnx=wnτsx=rsxwn2sτsx {{\psi }_{n}}\left( x \right)={{w}_{n}}\left( {{\tau }_{s}}\left( x \right) \right)={{r}_{s}}\left( x \right){{w}_{n-{{2}^{s}}}}\left( {{\tau }_{s}}\left( x \right) \right) and D2jτjx=D2jx,j,x0,1. {{D}_{{{2}^{j}}}}\left( {{\tau }_{j}}\left( x \right) \right)={{D}_{{{2}^{j}}}}\left( x \right)~,\,\,\,\,\,\,~j\in \mathbb{N},~x\in \left[ 0,1 \right).

The Fejér means and kernels with respect to the Walsh–Kaczmarz system are defined in the usual manner: σn1f:=1nk=1nSkf,n+,Kn:=1nk=1nDk=k=0n11knwk,n+ \begin{align} & \sigma _{n}^{1}f:=\frac{1}{n}\sum\limits_{k=1}^{n}{{{S}_{k}}f},\,\,\,\,\,\,\,~n\in {{\mathbb{N}}_{+}}, \\ & {{K}_{n}}:=\frac{1}{n}\sum\limits_{k=1}^{n}{{{D}_{k}}}=\sum\limits_{k=0}^{n-1}{\left( 1-\frac{k}{n} \right){{w}_{k}}},\,\,\,\,\,\,\,~n\in {{\mathbb{N}}_{+}}\cdot \\ \end{align}

Let Ko := 0. The next estimation with respect to Kn (see [21]) will be used often in this work: if x ∈ [0, 1), 0 < n ∈ ℕ then (1.3) Knxj=0s2js1i=jsD2ix+D2ix2j1,2sn<2s+1. \left| {{K}_{n}}\left( x \right) \right|\le \sum\limits_{j=0}^{s}{{{2}^{j-s-1}}}\sum\limits_{i=j}^{s}{\left( {{D}_{{{2}^{i}}}}\left( x \right)+{{D}_{{{2}^{i}}}}\left( x\dotplus {{2}^{-j-1}} \right) \right)},\,\,\,\,\,\,{{2}^{s}}\le n<{{2}^{s+1}}. From this it follows by (1.1) the uniform L1 boundedness of Kn in which (1.4) supnKn1. \underset{n}{\mathop{\sup }}\,\|{{K}_{n}}{{\|}_{1}}\le \infty .

Let 0 < α ≤ 1, k ∈ ℕ, and fL1[0, 1). Then, the nth (C, α) Walsh–Kaczmarz Kernels and (C, α) Walsh–Kaczmarz means with respect to ψ will be defined respectively as follows Θnα:=1An1αk=0n1Ank1αψk,σnαfx:=01ftΘkαx+tdt,x0,1,n, \begin{matrix} \Theta _{n}^{\alpha }:=\frac{1}{A_{n-1}^{\alpha }}\sum\limits_{k=0}^{n-1}{A_{n-k-1}^{\alpha }{{\psi }_{k}}}, \\ \sigma _{n}^{\alpha }f\left( x \right)~:=\int_{0}^{1}{f\left( t \right)\Theta _{k}^{\alpha }\left( x+t \right)dt},\,\,\,\,\,\,~x\in \left[ 0,1 \right),~n\in \mathbb{N}, \\\end{matrix} where Akα:=i=1kα+ii. A_{k}^{\alpha }:=\underset{i=1}{\overset{k}{\mathop \prod }}\,\frac{\alpha +i}{i}. It is well-known that (see [24]) Anα=k=0nAnkα1 A_{n}^{\alpha }=\sum\limits_{k=0}^{n}{A_{n-k}^{\alpha -1}} and AnαAn1α=Anα1andAnαnα. A_{n}^{\alpha }-A_{n-1}^{\alpha }=A_{n}^{\alpha -1}\,\,\,\,\text{and}\,\,\,\,A_{n}^{\alpha }\sim {{n}^{\alpha }}. α may also be a sequence α = (αn). In this case we have sequence of (C, αn).

The maximal operator of (C, αn) means is defined as σ*,nαf:=supnσnαf. \sigma _{*,n}^{\alpha }f:=\text{ }\!\!~\!\!\text{ }\underset{n}{\mathop{\sup }}\,\left| \sigma _{n}^{\alpha }f \right|.

Here, we give also the most important concepts with respect to the dyadic Hardy spaces. Let the maximal function of fL1[0, 1) be given by f*x=supn2nxInftdμt,x0,1. {{f}^{*}}\left( x \right)=\underset{n}{\mathop{\text{sup}}}\,\text{ }\!\!~\!\!\text{ }{{2}^{n}}\left| \int_{x\dotplus {{I}_{n}}}{f\left( t \right)d\mu \left( t \right)} \right|,\,\,\,\,\,~x\in \left[ 0,1 \right). Then, Hardy space on [0, 1) is defined as H10,1:={f:fH1:=f*1<}. {{H}^{1}}\left[ 0,1 \right):=\{f:\,\,\|f{{\|}_{{{H}_{1}}}}:=\,\|{{f}^{*}}{{\|}_{1}}<\infty \}. A function aL[0, 1) is called a 1-atom if either a is identically equal to 1 or there exists a dyadic interval I = xIN for some N ∈ ℕ, x ∈ [0, 1) such that suppaI,a2N \text{supp}\,a\subset I,\,\,\,\,\,\,{{\left\| a \right\|}_{\infty }}\le {{2}^{N}} and 01a=0 \int_{0}^{1}{a}=0 . We shall say that a is supported on I.

Definition 1.1 ([19])

A sublinear operator T which maps H1[0, 1) into the collection of measurable functions defined on [0, 1) is called 1-quasi-local if there exists a constant C such that 0,1\ITaC \int_{\left[ 0,1 \right)\backslash I}{\left| Ta \right|}\le C for every p-atom a supported on I.

Lemma 1.2.

Let 1-quasi-local operator T is L-bounded, i.e., TfCf. {{\left\| Tf \right\|}_{\infty }}\le C{{\left\| f \right\|}_{\infty }}. Then T is bounded from H1[0, 1) to L1[0, 1).

Definition 1.3.

It is already defined in [2] that Pn,α:=i=0ni2iαforn,α. P\left( n,~\alpha \right):=\sum\limits_{i=0}^{\infty }{{{n}_{i}}{{2}^{i\alpha }}}\,\,\,\,\,\,{\rm for}\,\,n\in \mathbb{N},\alpha \in \mathbb{R}. For example P (n, 1) = n.

Moreover, for the set of sequences α = (αn) and positive real number q, we consider the following subset of natural numbers: (1.5) αn,q:=n:Pn,αnnαnq. {{\mathbb{N}}_{{{\alpha }_{n}},q}}:=\left\{ n\in \mathbb{N}:\frac{P\left( n,{{\alpha }_{n}} \right)}{{{n}^{{{\alpha }_{n}}}}}\le q \right\}.

The first result on the a.e. convergence of the (C, 1) means of Walsh–Fourier series is due to Fine [8] and Schipp [18], if the Walsh functions are considered by Paley’s ordering. The analogical result in the case of Walsh–Kaczmarz system was also investigated by many authors. One of the Kaczmarz analogue of Schipp’s [18] results was given by Gát [10]. Besides, he proved also an (H1, L1)-like inequality for the maximal operator of Fejér means with respect to Walsh–Kaczmarz system supkσk1f1cfH1,fH1. {{\left\| \underset{k\in \mathbb{N}}{\mathop{\sup }}\,\left| \sigma _{k}^{1}f \right| \right\|}_{1}}\le c{{\left\| f \right\|}_{{{H}^{1}}}},\,\,\,\,\,\,\,\,f\in {{H}^{1}}.

Convergence and summability of Cesàro means of the one and two dimensional cases in Lebesgue and martingale Hardy spaces were studied by a lot of authors. We mention Akhobadze [3], Blahota, Persson and Tephnadze [5], Blahota, Tephnadze and Toledo [7], Blahota, Tephnadze [6], Fridli [9], Gát [12], Nagy [15, 16], Simon [20], Weisz [23].

In 2007, Akhobadze [4] introduced the notion of Cesàro means of trigonometric Fourier series with variable parameter setting. The varying parameter settings of the (C, α) means of the Walsh–Paley–Fourier series for different situation were investigated in [1], [2], [13] and with respect to the character systems of the group of 2-adic integers in [22] (for the more general orthonormal system, i.e., with respect to Vilenkin system, in [14]). However, these problems with respect to Walsh–Kaczmarz orthonormal system have not been investigated yet.

Thus, in this paper, it is going to be proved that the maximal operator of Cesàro means of Walsh–Kaczmarz–Fourier series is of weak type (L1, L1). Moreover, the almost everywhere convergence of Cesàro means with varying parameter setting of integrable functions (i.e. σnαnff ~\sigma _{n}^{{{\alpha }_{n}}}f\to f , as n → ∞) is proved, for fL1, for every sequence α = (αn, n ∈ ℕ) where 0 < αn < 1.

2.
Main results
Lemma 2.1.

Let 0 < αn < 1, n ∈ ℕ. Then, Θnαn=t=16βt, \Theta _{n}^{{{\alpha }_{n}}}=\sum\limits_{t=1}^{6}{{{\beta }_{t}}}, where β1:=1+1An1αnj=0n11An2j1αnD2j+1xD2jx,β2:=1An1αnj=0n11w2j+11τjx2j1An2j1α1K2j1τjx,β3:=1An1αnj=0n11w2j+11τjxk=12j2kAn2j+1+k+1αn2Kkτjx,β4:=1An1αnk=2qwnnk1τn1xAnk11αnD2nkτn1x,β5:=1An1αnk=2qwnnk1τn1xAnk11αn12nk1K2nk1τn1x,β6:=1An1αnk=2qwnnk1τn1xj=12nk2Ank+j+1αn2jKjτn1x. \begin{array}{l} {\beta _1}: = 1 + \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{j = 0}^{{n_1} - 1} {A_{n - {2^j} - 1}^{{\alpha _n}}\left( {{D_{{2^{j + 1}}}}\left( x \right) - {D_{{2^j}}}\left( x \right)} \right)} ,\\ {\beta _2}: = - \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{j = 0}^{{n_1} - 1} {{w_{{2^{j + 1}} - 1}}\left( {{\tau _j}\left( x \right)} \right)\left( {{2^j} - 1} \right)A_{n - {2^{j - 1}}}^{\alpha - 1}{K_{{2^{j - 1}}}}\left( {{\tau _j}\left( x \right)} \right)} ,\\ {\beta _3}: = \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{j = 0}^{{n_1} - 1} {{w_{{2^{j + 1}} - 1}}\left( {{\tau _j}\left( x \right)} \right)} \sum\limits_{k = 1}^{{2^j} - 2} {kA_{n - {2^{j + 1}} + k + 1}^{{\alpha _n} - 2}{K_k}\left( {{\tau _j}\left( x \right)} \right)} ,\\ {\beta _4}: = \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{k = 2}^q {{w_{n - {n^{\left( k \right)}} - 1}}\left( {{\tau _{{n_1}}}\left( x \right)} \right)A_{{n^{\left( {k - 1} \right)}} - 1}^{{\alpha _n}}{D_{{2^{{n_k}}}}}\left( {{\tau _{{n_1}}}\left( x \right)} \right)} ,\\ {\beta _5}: = \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{k = 2}^q {{w_{n - {n^{\left( k \right)}} - 1}}\left( {{\tau _{{n_1}}}\left( x \right)} \right)A_{{n^{\left( {k - 1} \right)}} - 1}^{{\alpha _n} - 1}\left( {{2^{{n_k}}} - 1} \right){K_{{2^{{n_k}}} - 1}}\left( {{\tau _{{n_1}}}\left( x \right)} \right)} ,\\ {\beta _6}: = \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{k = 2}^q {{w_{n - {n^{\left( k \right)}} - 1}}\left( {{\tau _{{n_1}}}\left( x \right)} \right)\sum\limits_{j = 1}^{{2^{{n_k}}} - 2} {A_{{n^{\left( k \right)}} + j + 1}^{{\alpha _n} - 2}j{K_j}\left( {{\tau _{{n_1}}}\left( x \right)} \right)} } . \end{array}

Proof

Consider the binary expansion of 0 < n ∈ ℕ, where nk ∈ ℕ, k = 1, ..., q and nk ≥ nk+1, k = 1, ..., q − 1. Then, Θnα=1An1αnk=0n1Ank1αnψk=1An1αnk=02n11Ank1αnψk+1An1αnk=2n1n1Ank1αnψk=:Θn1αn+Θn2αn. \begin{align} {\Theta _{n}^{\alpha }} \ & {=\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=0}^{n-1}{A_{n-k-1}^{{{\alpha }_{n}}}{{\psi }_{k}}}=\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=0}^{{{2}^{{{n}_{1}}}}-1}{A_{n-k-1}^{{{\alpha }_{n}}}{{\psi }_{k}}+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}}\sum\limits_{k={{2}^{{{n}_{1}}}}}^{n-1}{A_{n-k-1}^{{{\alpha }_{n}}}{{\psi }_{k}}}} \\{} & {=:\Theta _{{{n}_{1}}}^{{{\alpha }_{n}}}+\Theta _{{{n}_{2}}}^{{{\alpha }_{n}}}.} \\ \end{align} Let x ∈ [0, 1), thus by applying (1.2) we get Θn1αnx=1+1An1αj=0n11k=02j1An12j+11kαψ2j+11kx=1+1An1αnj=0n11k=02j1An2j+1+kαnw2j+11kτjx=1+1An1αnj=0n11k=02j1An2j+1+kαnw2j+11τjxwkτjx=1+1An1αnj=0n11w2j+11τjx×k=02j1An2j+1+kαn(Dk+1τjxDkτjx. \begin{array}{*{20}{l}} {\Theta _{{n_1}}^{{\alpha _n}}\left( x \right)}&{ = 1 + \frac{1}{{A_{n - 1}^\alpha }}\sum\limits_{j = 0}^{{n_1} - 1} {\sum\limits_{k = 0}^{{2^j} - 1} {A_{n - 1 - \left( {{2^{j + 1}} - 1 - k} \right)}^\alpha {\psi _{{2^{j + 1}} - 1 - k}}\left( x \right)} } }\\ {}&{ = 1 + \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{j = 0}^{{n_1} - 1} {\sum\limits_{k = 0}^{{2^j} - 1} {A_{n - {2^{j + 1}} + k}^{{\alpha _n}}{w_{{2^{j + 1}} - 1 - k}}\left( {{\tau _j}\left( x \right)} \right)} } }\\ {}&{ = 1 + \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{j = 0}^{{n_1} - 1} {\sum\limits_{k = 0}^{{2^j} - 1} {A_{n - {2^{j + 1}} + k}^{{\alpha _n}}{w_{{2^{j + 1}} - 1}}\left( {{\tau _j}\left( x \right)} \right){w_k}\left( {{\tau _j}\left( x \right)} \right)} } }\\ {}&{ = 1 + \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{j = 0}^{{n_1} - 1} {{w_{{2^{j + 1}} - 1}}\left( {{\tau _j}\left( x \right)} \right)} }\\ {}&{\,\,\,\,\, \times \left( {\sum\limits_{k = 0}^{{2^j} - 1} {A_{n - {2^{j + 1}} + k}^{{\alpha _n}}({D_{k + 1}}\left( {{\tau _j}\left( x \right)} \right) - {D_k}\left( {{\tau _j}\left( x \right)} \right)} } \right).} \end{array} Applying Abel’s transformation, we get the following Θn1αnx=1+1An1αnj=0n11w2j+11τjx×k=12jAn2j+1+k1αnDkτjxk=02j1An2j+1+kαnDkτjx=1+1An1αnj=0n11w2j+11τjxAn2j1αnD2jτjx1An1αnj=0n11w2j+11τjxk=12j1An2j+1+k1αnAn2j+1+kαnDkτjx=1+1An1αnj=0n11w2j+11τjxAn2j1αnD2jτjx1An1αnj=0n11w2j+11τjxk=12j1An2j+1+kαnDkτjx:=Θn1αn,1+Θn2αn,2. \begin{array}{*{20}{l}}{\Theta _{{n_1}}^{{\alpha _n}}\left( x \right)}&{ = 1 + \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{j = 0}^{{n_1} - 1} {{w_{{2^{j + 1}} - 1}}\left( {{\tau _j}\left( x \right)} \right)} }\\{}&{\,\,\,\,\, \times \left( {\sum\limits_{k = 1}^{{2^j}} {A_{n - {2^{j + 1}} + k - 1}^{{\alpha _{_n}}}{D_k}\left( {{\tau _j}\left( x \right)} \right)} - \sum\limits_{k = 0}^{{2^j} - 1} {A_{n - {2^{j + 1}} + k}^{{\alpha _n}}{D_k}\left( {{\tau _j}\left( x \right)} \right)} } \right)}\\{}&{ = 1 + \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{j = 0}^{{n_1} - 1} {{w_{{2^{j + 1}} - 1}}\left( {{\tau _j}\left( x \right)} \right)A_{n - {2^j} - 1}^{{\alpha _n}}{D_{{2^j}}}\left( {{\tau _j}\left( x \right)} \right)} }\\{}&{\,\,\,\,\, - \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{j = 0}^{{n_1} - 1} {{w_{{2^{j + 1}} - 1}}\left( {{\tau _j}\left( x \right)} \right)} \left( {\sum\limits_{k = 1}^{{2^j} - 1} {A_{n - {2^{j + 1}} + k - 1}^{{\alpha _n}} - A_{n - {2^{j + 1}} + k}^{{\alpha _n}}} } \right){D_k}\left( {{\tau _j}\left( x \right)} \right)}\\{}&{ = 1 + \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{j = 0}^{{n_1} - 1} {{w_{{2^{j + 1}} - 1}}\left( {{\tau _j}\left( x \right)} \right)A_{n - {2^j} - 1}^{{\alpha _n}}{D_{{2^j}}}\left( {{\tau _j}\left( x \right)} \right)} }\\{}&{\,\,\,\,\, - \frac{1}{{A_{n - 1}^{{\alpha _n}}}}\sum\limits_{j = 0}^{{n_1} - 1} {{w_{{2^{j + 1}} - 1}}\left( {{\tau _j}\left( x \right)} \right)} \sum\limits_{k = 1}^{{2^j} - 1} {A_{n - {2^{j + 1}} + k}^{{\alpha _n}}{D_k}\left( {{\tau _j}\left( x \right)} \right)} }\\{}&{: = \Theta _{{n_1}}^{{\alpha _{n,1}}} + \Theta _{{n_2}}^{{\alpha _{n,2}}}.}\end{array} By considering Dk=kKkk1Kk1,0<k, {D_k} = k{K_k} - \left( {k - 1} \right){K_{k - 1}},\;\,\,\,\,\,\,0 < k \in \mathbb{N}, we can transform Θn1αn,2 \Theta _{{{n}_{1}}}^{{{\alpha }_{n,2}}} as follows: Θn1αn,2=1An1αnj=0n11w2j+11τjxk=12j1An2j+1+kαn1×kKkτjxk1Kk1τjx=1An1αnj=0n11w2j+11τjxk=12j1An2j+1+kαn1kKkτjx+1An1αnj=0n11w2j+11τjxk=12j1An2j+1+kαn2k1Kk1τjx=1An1αnj=0n11w2j+11τjxk=12j1An2j+1+kαn1kKkτjx+1An1αnj=0n11w2j+11τjxk=02j2An2j+1+kαn2kKkτjx=1An1αnj=0n11w2j+11τjx2j1An2j1αn1K2j1τjx+1An1αnj=0n11w2j+11τjxk=12j2kAn2j+1+k+1αn2Kkτjx=:β2+β3. \begin{array}{*{35}{l}} \Theta _{{{n}_{1}}}^{{{\alpha }_{n,2}}} & =-\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{j=0}^{{{n}_{1}}-1}{{{w}_{{{2}^{j+1}}-1}}\left( {{\tau }_{j}}\left( x \right) \right)}\sum\limits_{k=1}^{{{2}^{j}}-1}{A_{n-{{2}^{j+1}}+k}^{{{\alpha }_{n}}-1}} \\ {} & \,\,\,\,\,\times \left( k{{K}_{k}}\left( {{\tau }_{j}}\left( x \right) \right)-\left( k-1 \right){{K}_{k-1}}\left( {{\tau }_{j}}\left( x \right) \right) \right) \\ {} & =-\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{j=0}^{{{n}_{1}}-1}{{{w}_{{{2}^{j+1}}-1}}}\left( {{\tau }_{j}}\left( x \right) \right)\sum\limits_{k=1}^{{{2}^{j}}-1}{A_{n-{{2}^{j+1}}+k}^{{{\alpha }_{n}}-1}k{{K}_{k}}\left( {{\tau }_{j}}\left( x \right) \right)} \\ {} & \,\,\,\,+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{j=0}^{{{n}_{1}}-1}{{{w}_{{{2}^{j+1}}-1}}\left( {{\tau }_{j}}\left( x \right) \right)}\sum\limits_{k=1}^{{{2}^{j}}-1}{A_{n-{{2}^{j+1}}+k}^{{{\alpha }_{n}}-2}\left( k-1 \right){{K}_{k-1}}\left( {{\tau }_{j}}\left( x \right) \right)} \\ {} & =-\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{j=0}^{{{n}_{1}}-1}{{{w}_{{{2}^{j+1}}-1}}\left( {{\tau }_{j}}\left( x \right) \right)\sum\limits_{k=1}^{{{2}^{j}}-1}{A_{n-{{2}^{j+1}}+k}^{{{\alpha }_{n}}-1}k{{K}_{k}}\left( {{\tau }_{j}}\left( x \right) \right)}} \\ {} & \,\,\,\,+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{j=0}^{{{n}_{1}}-1}{{{w}_{{{2}^{j+1}}-1}}\left( {{\tau }_{j}}\left( x \right) \right)\sum\limits_{k=0}^{{{2}^{j}}-2}{A_{n-{{2}^{j+1}}+k}^{{{\alpha }_{n}}-2}k{{K}_{k}}\left( {{\tau }_{j}}\left( x \right) \right)}} \\ {} & =-\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{j=0}^{{{n}_{1}}-1}{{{w}_{{{2}^{j+1}}-1}}\left( {{\tau }_{j}}\left( x \right) \right)\left( {{2}^{j}}-1 \right)A_{n-{{2}^{j}}-1}^{{{\alpha }_{n}}-1}{{K}_{{{2}^{j}}-1}}\left( {{\tau }_{j}}\left( x \right) \right)} \\ {} & \,\,\,\,+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{j=0}^{{{n}_{1}}-1}{{{w}_{{{2}^{j+1}}-1}}\left( {{\tau }_{j}}\left( x \right) \right)}\sum\limits_{k=1}^{{{2}^{j}}-2}{kA_{n-{{2}^{j+1}}+k+1}^{{{\alpha }_{n}}-2}{{K}_{k}}\left( {{\tau }_{j}}\left( x \right) \right)} \\ {} & =:{{\beta }_{2}}+{{\beta }_{3}}. \\\end{array}

If x0 = ... = xj−1 = 0, note that w2j+11τjx=rjx {{w}_{{{2}^{j+1}}-1}}\left( {{\tau }_{j}}\left( x \right) \right)={{r}_{j}}\left( x \right) , then by (1.1) we get w2j+11τjxD2jx=rjxD2jx=D2j+1xD2jx. {{w}_{{{2}^{j+1}}-1}}\left( {{\tau }_{j}}\left( x \right) \right){{D}_{{{2}^{j}}}}\left( x \right)={{r}_{j}}\left( x \right){{D}_{{{2}^{j}}}}\left( x \right)={{D}_{{{2}^{j+1}}}}\left( x \right)-{{D}_{{{2}^{j}}}}\left( x \right). Thus, Θn1αn,1=1+1An1αnj=0n11An2j1αnD2j+1xD2jx=:β1. \Theta _{{{n}_{1}}}^{{{\alpha }_{n,1}}}=1+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{j=0}^{{{n}_{1}}-1}{A_{n-{{2}^{j}}-1}^{{{\alpha }_{n}}}\left( {{D}_{{{2}^{j+1}}}}\left( x \right)-{{D}_{{{2}^{j}}}}\left( x \right) \right)}=:{{\beta }_{1}}. For x ∈ [0, 1), the situation for Θn2αnx \Theta _{{{n}_{2}}}^{{{\alpha }_{n}}}\left( x \right) becomes Θn2αn=1An1αnk=2n1n1Ank1αnψkx=1An1αnk=1q1j=2n1+..+2nk2n1++2nk+11Anj1αnψjx=1An1αnk=1q1j=02nk+11An12n1++2nk+11jαnψ2n1++2nk+11jx=1An1αnk=1q1w2n1++2nk+11τn1xj=02nk+11An2n1++2nk+1+jαnwjτn1x=1An1αnk=2qw2n1++2nk1τn1xj=02nk1An2n1++2nk+jαnwjτn1x=1An1αnk=2qwnnk1τn1xj=02nk1Ank+jαnwjτn1x. \begin{align} \Theta _{{{n}_{2}}}^{{{\alpha }_{n}}} & =\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k={{2}^{{{n}_{1}}}}}^{n-1}{A_{n-k-1}^{{{\alpha }_{n}}}{{\psi }_{k}}\left( x \right)}=\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=1}^{q-1}{\sum\limits_{j={{2}^{{{n}_{1}}}}+..+{{2}^{{{n}_{k}}}}}^{{{2}^{{{n}_{1}}}}+\ldots +{{2}^{{{n}_{k+1}}}}-1}{A_{n-j-1}^{{{\alpha }_{n}}}{{\psi }_{j}}\left( x \right)}} \\ {} & =\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=1}^{q-1}{\sum\limits_{j=0}^{{{2}^{{{n}_{k}}}}+{{1}^{-1}}}{A_{n-1-\left( {{2}^{{{n}_{1}}}}+\ldots +{{2}^{{{n}_{k+1}}}}-1-j \right)}^{{{\alpha }_{n}}}{{\psi }_{{{2}^{{{n}_{1}}}}+\ldots +{{2}^{{{n}_{k+1}}}}-1-j}}\left( x \right)}} \\ {} & =\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=1}^{q-1}{{{w}_{{{2}^{{{n}_{1}}}}+\ldots +{{2}^{{{n}_{k+1}}}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)}\sum\limits_{j=0}^{{{2}^{{{n}_{k+1}}}}-1}{A_{n-\left( {{2}^{{{n}_{1}}}}+\ldots +{{2}^{{{n}_{k+1}}}} \right)+j}^{{{\alpha }_{n}}}{{w}_{j}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)} \\ {} & =\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{w}_{{{2}^{{{n}_{1}}}}+\ldots +{{2}^{{{n}_{k}}}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)}\sum\limits_{j=0}^{{{2}^{{{n}_{k}}}}-1}{A_{n-\left( {{2}^{{{n}_{1}}}}+\ldots +{{2}^{{{n}_{k}}}} \right)+j}^{{{\alpha }_{n}}}{{w}_{j}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)} \\ {} & =\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{w}_{n-{{n}^{\left( k \right)}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)\sum\limits_{j=0}^{{{2}^{{{n}_{k}}}}-1}{A_{{{n}^{\left( k \right)}}+j}^{{{\alpha }_{n}}}{{w}_{j}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right).}} \\\end{align} Using Abel’s transformation, where nk:=i=k+12ni {{n}^{\left( k \right)}}:=\mathup{\sum }_{i=k+1}^{\infty }{{2}^{{{n}_{i}}}} , k = 1, . . . , q, we get Θn2αnx=1An1αnk=2qwnnk1τn1xj=02nk1Ank+jαnDj+1τn1xDjτn1x=1An1αnk=2qwnnk1τn1x×j=12nkAnk+j1αnDjτn1xj=02nk1Ank+jαnDjτn1x=1An1αnk=2qwnnk1τn1xAnk+2nk1αnD2nkτn1xj=12nk1Ank+jαn1Djτn1x=1An1αnk=2qwnnk1τn1xAnk11αnD2nkτn1x1An1αnk=2q1wnnk1τn1xj=12nk1Ank+jαn1jKjτn1xj1Kj1τn1x=1An1αnk=2qwnnk1τn1xAnk11αnD2nkτn1x1An1αnk=2qwnnk1τn1xAnk11αn12nk1K2nk1τn1x+1An1αnk=2qwnnk1τn1xj=12nk2Ank+j+1αn2jKjτn1x=:β4+β5+β6. \begin{align} & \Theta _{{{n}_{2}}}^{{{\alpha }_{n}}}\left( x \right)=\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{w}_{n-{{n}^{\left( k \right)}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)}\sum\limits_{j=0}^{{{2}^{{{n}_{k}}}}-1}{A_{{{n}^{\left( k \right)}}+j}^{{{\alpha }_{n}}}\left( {{D}_{j+1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)-{{D}_{j}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right) \right)} \\ & =\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{w}_{n-{{n}^{\left( k \right)}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)} \\ & \,\,\,\,\times \left[ \sum\limits_{j=1}^{{{2}^{{{n}_{k}}}}}{A_{{{n}^{\left( k \right)}}+j-1}^{{{\alpha }_{n}}}{{D}_{j}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)}-\sum\limits_{j=0}^{{{2}^{{{n}_{k}}}}-1}{A_{{{n}^{\left( k \right)}}+j}^{{{\alpha }_{n}}}{{D}_{j}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)} \right] \\ & =\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{w}_{n-{{n}^{\left( k \right)}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)\left( A_{{{n}^{\left( k \right)}}+{{2}^{{{n}_{k}}}}-1}^{{{\alpha }_{n}}}{{D}_{{{2}^{{{n}_{k}}}}}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right) \right.} \\ & \,\,\,\,\left. -\sum\limits_{j=1}^{{{2}^{{{n}_{k}}}}-1}{A_{{{n}^{\left( k \right)}}+j}^{{{\alpha }_{n}}-1}{{D}_{j}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)} \right) \\ & =\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{w}_{n-{{n}^{\left( k \right)}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)A_{{{n}^{\left( k-1 \right)}}-1}^{{{\alpha }_{n}}}{{D}_{{{2}^{{{n}_{k}}}}}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)} \\ & -\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=2}^{q-1}{{{w}_{n-{{n}^{\left( k \right)}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)}\sum\limits_{j=1}^{{{2}^{{{n}_{k}}}}-1}{A_{{{n}^{\left( k \right)}}+j}^{{{\alpha }_{n}}-1}\left( j{{K}_{j}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)-\left( j-1 \right){{K}_{j-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right) \right)} \\ & =\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{w}_{n-{{n}^{\left( k \right)}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)A_{{{n}^{\left( k-1 \right)}}-1}^{{{\alpha }_{n}}}{{D}_{{{2}^{{{n}_{k}}}}}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)} \\ & \,\,\,\,-\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{w}_{n-{{n}^{\left( k \right)}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)A_{{{n}^{\left( k-1 \right)}}-1}^{{{\alpha }_{n}}-1}\left( {{2}^{{{n}_{k}}}}-1 \right){{K}_{{{2}^{{{n}_{k}}}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)} \\ & \,\,\,\,+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{w}_{n-{{n}^{\left( k \right)}}-1}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)}\sum\limits_{j=1}^{{{2}^{{{n}_{k}}}}-2}{A_{{{n}^{\left( k \right)}}+j+1}^{{{\alpha }_{n}}-2}j{{K}_{j}}\left( {{\tau }_{{{n}_{1}}}}\left( x \right) \right)} \\ & =:{{\beta }_{4}}+{{\beta }_{5}}+{{\beta }_{6}}. \\ \end{align} Hence, the theorem follows.

Define the maximal operator σ*,nαnf:=supnαn,qσnαnf=supnαn,qI1An1αnk=0n1Ank1αnψk*f. \sigma _{*,n}^{{{\alpha }_{n}}}f:=\text{ }\!\!~\!\!\text{ }\underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,\left| \sigma _{n}^{{{\alpha }_{n}}}f \right|=\text{ }\!\!~\!\!\text{ }\underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,\left| \mathop{\int }_{I}^{{}}\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=0}^{n-1}{A_{n-k-1}^{{{\alpha }_{n}}}{{\psi }_{k}}*f} \right|.

Lemma 2.2.

Let α = (αn, n ∈ ℕ) where 0 < αn < 1. Then, the maximal operator σ*,nαnf \sigma _{*,n}^{{{\alpha }_{n}}}f is quasi-local.

Proof

By the definition of quasi-locality, let fL1[0, 1) be such that suppfINu,INufdμ=0 \text{supp}\,\,f\subset {{I}_{N}}\left( u \right),\,\,\,\,\,\,\mathup{\int }_{{{I}_{N}}\left( u \right)}^{{}}fd\mu =0 for some dyadic interval IN(u). Then, 0,1\INusupnINu1An1αnk=0n1Ank1αnψkxyfxdμydμxC0,1\INusupnINuΘn1αnxyfxdμydμx+C0,1\INusupnINuΘn2αnxyfxdμydμx:=α1+α2. \begin{align} & \int_{\left[ 0,1 \right)\backslash {{I}_{N}}\left( u \right)}{\text{ }\!\!~\!\!\text{ }\underset{n\in \mathbb{N}}{\mathop{\sup }}\,\text{ }\!\!~\!\!\text{ }\left| \int_{{{I}_{N}}\left( u \right)}{\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{k=0}^{n-1}{A_{n-k-1}^{{{\alpha }_{n}}}{{\psi }_{k}}\left( x\dotplus y \right)f\left( x \right)d\mu \left( y \right)}} \right|}d\mu \left( x \right) \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\le C\int_{\left[ 0,1 \right)\backslash {{I}_{N}}\left( u \right)}{\underset{n\in \mathbb{N}}{\mathop{\sup }}\,\text{ }\!\!~\!\!\text{ }\int_{{{I}_{N}}\left( u \right)}{|\Theta _{{{n}_{1}}}^{{{\alpha }_{n}}}\left( x\dotplus y \right)|\left| f\left( x \right) \right|d\mu \left( y \right)d\mu \left( x \right)}}\text{ }\!\!~\!\!\text{ } \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+C\int_{\left[ 0,1 \right)\backslash {{I}_{N}}\left( u \right)}{\underset{n\in \mathbb{N}}{\mathop{\sup }}\,}\int_{{{I}_{N}}\left( u \right)}{|\Theta _{{{n}_{2}}}^{{{\alpha }_{n}}}\left( x\dotplus y \right)|\left| f\left( x \right) \right|d\mu \left( y \right)d\mu \left( x \right)} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,:={{\alpha }_{1}}+{{\alpha }_{2}}. \\ \end{align} Since for n ∈ ℕ, n ≤ 2N and x ∈ IN(u) we have σnαnf=0 \sigma _{n}^{{{\alpha }_{n}}}f=0 , thus σ*,nαnf=supn>2N,nαn,qσnαnf. \sigma _{*,n}^{{{\alpha }_{n}}}f=\underset{n>{{2}^{N}},n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,\left| \sigma _{n}^{{{\alpha }_{n}}}f \right|. From the proof of Lemma 2.1, we have the decomposition σnαnf=σ˜nαnf+σ¯nαnf, \sigma _{n}^{{{\alpha }_{n}}}f=\tilde{\sigma }_{n}^{{{\alpha }_{n}}}f+\bar{\sigma }_{n}^{{{\alpha }_{n}}}f, where σ˜nαnfy:=01Θn1αnxyfxdμx,σ˜nαnfy:=01Θn2αnxyfxdμx. \begin{align} & \tilde{\sigma }_{n}^{{{\alpha }_{n}}}f\left( y \right):=\mathop{\int }_{0}^{1}\Theta _{{{n}_{1}}}^{{{\alpha }_{n}}}\left( x\dotplus y \right)f\left( x \right)d\mu \left( x \right), \\ & \tilde{\sigma }_{n}^{{{\alpha }_{n}}}f\left( y \right):=\mathop{\int }_{0}^{1}\Theta _{{{n}_{2}}}^{{{\alpha }_{n}}}\left( x\dotplus y \right)f\left( x \right)d\mu \left( x \right). \\ \end{align} Again, from the proof of Lemma 2.1, we have σ˜nαnfy=01β1xyfxdμx+01β2xyfxdμx+01β3xyfxdμx=:I+II+III. \begin{align} {\tilde{\sigma }_{n}^{{{\alpha }_{n}}}f\left( y \right)} \ & {=\mathop{\int }_{0}^{1}{{\beta }_{1}}\left( x\dotplus y \right)f\left( x \right)d\mu \left( x \right)} \\{} & {\,\,~+\int_{0}^{1}{{{\beta }_{2}}\left( x\dotplus y \right)f\left( x \right)d\mu \left( x \right)+\mathop{\int }_{0}^{1}{{\beta }_{3}}\left( x\dotplus y \right)f\left( x \right)d\mu \left( x \right)}} \\ {} & {=:I+II+III.} \\ \end{align} If x ∈ [0, 1) \ IN then by (1.1), we get 01fxDtyxdμx=0 \int_{0}^{1}{f\left( x \right){{D}_{t}}\left( y\dotplus x \right)d\mu \left( x \right)}=0 for all t = 0, . . . , 2n1. From the proof of Lemma 2.1, we have I = 0. By Lemma 2.1 in [11], II = 0. The situation for III: with respect to x and for any 0 ≤ j < 2N, we have that the Fejér kernel Kj(yx) depends only on the coordinates x0, x1, . . . , xN−1. This implies that, INfxKjyxdμx=KjyINfxdμx=0. \int_{{{I}_{N}}}{f\left( x \right)\left| {{K}_{j}}\left( y\dotplus x \right)\left| d\mu \left( x \right)= \right|{{K}_{j}}\left( y \right) \right|}\int_{{{I}_{N}}}{f\left( x \right)d\mu \left( x \right)=0}. Thus, we can re-write 0,1\INusupkINuβ3yxfxdμxdμy=0,1\INusupk2N,kINuβ3yxfxdμxdμy. \begin{align} & \int_{\left[ 0,1 \right)\backslash {{I}_{N}}\left( u \right)}{\underset{k\in \mathbb{N}}{\mathop{\sup }}\,\left| \int_{{{I}_{N}}\left( u \right)}{{{\beta }_{3}}\left( y\dotplus x \right)f\left( x \right)d\mu \left( x \right)} \right|}\text{ }\!\!~\!\!\text{ }d\mu \left( y \right) \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\int_{\left[ 0,1 \right)\backslash {{I}_{N}}\left( u \right)}{\underset{k\ge {{2}^{N}},~k\in \mathbb{N}}{\mathop{\sup }}\,\left| \int_{{{I}_{N}}\left( u \right)}{{{\beta }_{3}}\left( y\dotplus x \right)f\left( x \right)d\mu \left( x \right)} \right|d\mu \left( y \right).}\text{ }\!\!~\!\!\text{ } \\ \end{align} So, using Lemma 3 in [11], we get 0,1\INusupk2N,kINuβ3yxfxdμxdμyCINufx0,1\INuj=0n1k=2N2j2supk2NkKkτjyxdμxCINufxdμxCf1. \begin{align} & \int_{\left[ 0,1 \right)\backslash {{I}_{N}}\left( u \right)}{\underset{k\ge {{2}^{N}},~k\in \mathbb{N}}{\mathop{\sup }}\,\left| \int_{{{I}_{N}}\left( u \right)}{{{\beta }_{3}}\left( y\dotplus x \right)f\left( x \right)d\mu \left( x \right)} \right|d\mu \left( y \right)} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\le C\int_{{{I}_{N}}\left( u \right)}{\left| f\left( x \right) \right|}\int_{\left[ 0,1 \right)\backslash {{I}_{N}}\left( u \right)}{\sum\limits_{j=0}^{{{n}_{1}}}{\sum\limits_{k={{2}^{N}}}^{{{2}^{j}}-2}{\underset{k\ge {{2}^{N}}}{\mathop{\sup }}\,k\left| {{K}_{k}}\left( {{\tau }_{j}}\left( y\dotplus x \right) \right) \right|d\mu \left( x \right)}}\text{ }\!\!~\!\!\text{ }} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\le C\int_{{{I}_{N}}\left( u \right)}{|f\left( x \right)|d\mu \left( x \right)\le C\|f{{\|}_{1}}}. \\ \end{align} Hence, 0,1\INusupkINu(β3+β2+β1)yxfxdμxdμyCf1. \int_{\left[ 0,1 \right)\backslash {{I}_{N}}\left( u \right)}{\underset{k\in \mathbb{N}}{\mathop{\sup }}\,\left| \int_{{{I}_{N}}\left( u \right)}{({{\beta }_{3}}+{{\beta }_{2}}+{{\beta }_{1}})\left( y\dotplus x \right)f\left( x \right)d\mu \left( x \right)} \right|d\mu \left( y \right)\le C\|f{{\|}_{1}}}. Note that 0,1\INusupk2N,kINuβ4yxfxdμxdμy=0, \int_{\left[ 0,1 \right)\backslash {{I}_{N}}\left( u \right)}{\underset{k\ge {{2}^{N}},~k\in \mathbb{N}}{\mathop{\sup }}\,\left| \int_{{{I}_{N}}\left( u \right)}{{{\beta }_{4}}\left( y\dotplus x \right)f\left( x \right)d\mu \left( x \right)} \right|d\mu \left( y \right)}=0, since f*D2nk=0 f*{{D}_{{{2}^{{{n}_{k}}}}}}=0 for nl < ns ≤ nk because of the Ank measurablity of D2nk {{D}_{{{2}^{{{n}_{k}}}}}} and ∫ f = 0. Moreover, D2nkyx=0 {{D}_{{{2}^{{{n}_{k}}}}}}\left( y\dotplus x \right)=0 for ns > nk, yxIN.

From Lemma 1.1 of [14] (see also [4]), we have Ank+j+1αn1An1αnC(nk+j)αn(n)αn,j=1,,2nk1,k=2,,q1. \frac{A_{{{n}^{\left( k \right)}}+j+1}^{{{\alpha }_{n}}-1}}{A_{n-1}^{{{\alpha }_{n}}}}\le C\frac{{{({{n}^{\left( k \right)}}+j)}^{{{\alpha }_{n}}}}}{{{(n)}^{{{\alpha }_{n}}}}},\,\,\,\,\,\,j=1,\ldots ,{{2}^{{{n}_{k}}}}-1,\,\,k=2,\ldots ,q-1. Thus, by the fact that n ∈ ℕαn,q, we have (see (1.5)) k=2q1j=12nk1Ank+j+1α2An1αjCk=2q1t=0nk1j=2l2l+11(nk+j)αn(n)αnjCk=2q1t=0nk1(nk+2l)αn(n)αnj=2l2l+11jCk=2q12kαnnαnCq. \begin{align} & \sum\limits_{k=2}^{q-1}{\sum\limits_{j=1}^{{{2}^{{{n}_{k}}}}-1}{\frac{A_{{{n}^{\left( k \right)}}+j+1}^{\alpha -2}}{A_{n-1}^{\alpha }}j\le C\sum\limits_{k=2}^{q-1}{\sum\limits_{t=0}^{{{n}_{k}}-1}{\sum\limits_{j={{2}^{l}}}^{{{2}^{l+1}}-1}{\frac{{{({{n}^{\left( k \right)}}+j)}^{{{\alpha }_{n}}}}}{{{(n)}^{{{\alpha }_{n}}}}}j}}}}} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\le C\sum\limits_{k=2}^{q-1}{\sum\limits_{t=0}^{{{n}_{k}}-1}{\frac{{{({{n}^{\left( k \right)}}+{{2}^{l}})}^{{{\alpha }_{n}}}}}{{{(n)}^{{{\alpha }_{n}}}}}\sum\limits_{j={{2}^{l}}}^{{{2}^{l+1}}-1}{j\le C}\sum\limits_{k=2}^{q-1}{\frac{{{2}^{k{{\alpha }_{n}}}}}{{{n}^{{{\alpha }_{n}}}}}\le {{C}_{q}}}}}. \\ \end{align} Consequently, using (1.4), we can estimate 0,1\INusupnINuβ5yx+β6yxfxdμxdμyCqf1. \int_{\left[ 0,1 \right)\backslash {{I}_{N}}\left( u \right)}{\underset{n}{\mathop{\sup }}\,\left| \int_{{{I}_{N}}\left( u \right)}{\left[ {{\beta }_{5}}\left( y\dotplus x \right)+{{\beta }_{6}}\left( y\dotplus x \right)f\left( x \right) \right]d\mu \left( x \right)} \right|d\mu \left( y \right)\le {{C}_{q}}\|f{{\|}_{1}}}. Hence, the lemma is proved.

Lemma 2.3.

Let α = (αn, n ∈ ℕ), where 0 < αn < 1 satisfy condition (1.5). Then:

  • (I)

    Θnαn1Cq {{\left\| \Theta _{n}^{{{\alpha }_{n}}} \right\|}_{1}}\le {{C}_{q}} ,

  • (II)

    there exists an absolute constant Cq such that σnαnf1Cqf1 {{\left\| \sigma _{n}^{{{\alpha }_{n}}}f \right\|}_{1}}\le {{C}_{q}}{{\left\| f \right\|}_{1}} ,

  • (III)

    the maximal operator σ*,nαn \sigma _{*,n}^{{{\alpha }_{n}}} is of type (L, L).

Proof

To prove (I) we use Lemma 2.1 and estimation (1.3). That is, β3Cnαn1An1αn1j=1n1s=1j1l=2s12s1An2j+l+1αn2×i=0s1m=0i2mD2iτj1x+D2iτj1xemCnαn1An1αn1j=1n1i=0j2i=i+1j1l=2s12s1n2j+lαn2×m=0i2mD2iτj1x+D2iτj1xem=Cnαn1An1αn1j=1n1i=0j2γijm=0i2mD2iτj1x+D2iτj1xemCnαn1An1αn1j=1n1i=0j2γij2iD2iτj1x+m=0i2mD2iτj1xem, \begin{align} & \left| {{\beta }_{3}} \right|\le C{{n}^{-{{\alpha }_{n}}}}\frac{1}{A_{n-1}^{{{\alpha }_{n}}}-1}\sum\limits_{j=1}^{{{n}_{1}}}{\sum\limits_{s=1}^{j-1}{\sum\limits_{l={{2}^{s-1}}}^{{{2}^{s}}-1}{\left| A_{n-{{2}^{j}}+l+1}^{{{\alpha }_{n}}-2} \right|}}} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\times \sum\limits_{i=0}^{s-1}{\sum\limits_{m=0}^{i}{{{2}^{m}}\left( {{D}_{{{2}^{i}}}}\left( {{\tau }_{j-1}} \right)\left( x \right)+{{D}_{{{2}^{i}}}}\left( {{\tau }_{j-1}} \right)\left( x\dotplus {{e}_{m}} \right) \right)}} \\ & \,\,\,\,\,\,\,\,\le C{{n}^{-{{\alpha }_{n}}}}\frac{1}{A_{n-1}^{{{\alpha }_{n}}}-1}\sum\limits_{j=1}^{{{n}_{1}}}{\sum\limits_{i=0}^{j-2}{\sum\limits_{i=i+1}^{j-1}{\sum\limits_{l={{2}^{s-1}}}^{{{2}^{s}}-1}{{{\left( n-{{2}^{j}}+l \right)}^{{{\alpha }_{n}}-2}}}}}} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\times \sum\limits_{m=0}^{i}{{{2}^{m}}\left( {{D}_{{{2}^{i}}}}\left( {{\tau }_{j-1}} \right)\left( x \right)+{{D}_{{{2}^{i}}}}\left( {{\tau }_{j-1}} \right)\left( x\dotplus {{e}_{m}} \right) \right)} \\ & =C{{n}^{-{{\alpha }_{n}}}}\frac{1}{A_{n-1}^{{{\alpha }_{n}}}-1}\sum\limits_{j=1}^{{{n}_{1}}}{\sum\limits_{i=0}^{j-2}{{{\gamma }_{ij}}}\sum\limits_{m=0}^{i}{{{2}^{m}}\left( {{D}_{{{2}^{i}}}}\left( {{\tau }_{j-1}} \right)\left( x \right)+{{D}_{{{2}^{i}}}}\left( {{\tau }_{j-1}} \right)\left( x\dotplus {{e}_{m}} \right) \right)}} \\ & \le C{{n}^{-{{\alpha }_{n}}}}\frac{1}{A_{n-1}^{{{\alpha }_{n}}}-1}\sum\limits_{j=1}^{{{n}_{1}}}{\sum\limits_{i=0}^{j-2}{\left( {{\gamma }_{ij}}{{2}^{i}}{{D}_{{{2}^{i}}}}\left( {{\tau }_{j-1}} \right)\left( x \right)+\sum\limits_{m=0}^{i}{{{2}^{m}}{{D}_{{{2}^{i}}}}\left( {{\tau }_{j-1}} \right)\left( x\dotplus {{e}_{m}} \right)} \right),}} \\ \end{align} where em := 2m−1 = (0, . . . , 0, 1, 0, . . .) and γij=i=i+1j=1l=2s12s1(n2j+l)αn2C2ij1(n2j+x)αn2dμxC2iαn1. {{\gamma }_{ij}}=\sum\limits_{i=i+1}^{j=1}{\sum\limits_{l={{2}^{s-1}}}^{{{2}^{s}}-1}{{{(n-{{2}^{j}}+l)}^{{{\alpha }_{n}}-2}}\le C}}\int_{{{2}^{i}}}^{j-1}{{{(n-{{2}^{j}}+x)}^{{{\alpha }_{n}}-2}}d\mu \left( x \right)\le C{{2}^{i\left( {{\alpha }_{n}}-1 \right)}}}. With a similar computation we show that the same estimation can be obtained for β2. Thus, Θn1αn,2x \Theta _{{{n}_{1}}}^{{{\alpha }_{n,2}}}\left( x \right) can be estimated as Θn1αn,2x=β2+β3Cnαnj=1n1i=0j22iαn12iD2iτj1x+m=0i2mD2iτj1xem. \begin{align} & \Theta _{{{n}_{1}}}^{{{\alpha }_{n,2}}}\left( x \right)={{\beta }_{2}}+{{\beta }_{3}} \\ & \le C{{n}^{-{{\alpha }_{n}}}}\sum\limits_{j=1}^{{{n}_{1}}}{\sum\limits_{i=0}^{j-2}{{{2}^{i\left( {{\alpha }_{n}}-1 \right)}}\left( {{2}^{i}}{{D}_{{{2}^{i}}}}\left( {{\tau }_{j-1}} \right)\left( x \right)+\sum\limits_{m=0}^{i}{{{2}^{m}}{{D}_{{{2}^{i}}}}\left( {{\tau }_{j-1}} \right)\left( x\dotplus {{e}_{m}} \right)} \right).}} \\ \end{align} Applying (1.1), the previous estimation implies for β2+β3 \left\| {{\beta }_{2}}+{{\beta }_{3}} \right\| that β2+β31Cnαnj=1n1i=0j22iαn12iCnαnj=1n1i=0j22iαnCq. {{\left\| {{\beta }_{2}}+{{\beta }_{3}} \right\|}_{1}}\le C{{n}^{-{{\alpha }_{n}}}}\sum\limits_{j=1}^{{{n}_{1}}}{\sum\limits_{i=0}^{j-2}{{{2}^{i\left( {{\alpha }_{n}}-1 \right)}}{{2}^{i}}\le C{{n}^{-{{\alpha }_{n}}}}}}\sum\limits_{j=1}^{{{n}_{1}}}{\sum\limits_{i=0}^{j-2}{{{2}^{i{{\alpha }_{n}}}}\le {{C}_{q}}}}. Analogically, it can also be obtained for the L1-norm estimation of β1. Consider that w2j+11τjx=rjx {{w}_{{{2}^{j+1}}-1}}\left( {{\tau }_{j}}\left( x \right) \right)={{r}_{j}}\left( x \right) when x0 = . . . = xj−1 = 0. Then by (1.1) we get w2j+11τjxD2jx=rjxD2jx=D2j+1xD2jx, {{w}_{{{2}^{j+1}}-1}}\left( {{\tau }_{j}}\left( x \right) \right){{D}_{{{2}^{j}}}}\left( x \right)={{r}_{j}}\left( x \right){{D}_{{{2}^{j}}}}\left( x \right)={{D}_{{{2}^{j+1}}}}\left( x \right)-{{D}_{{{2}^{j}}}}\left( x \right), that is β1=1+1An1αnj=0n11An2j1αnD2j+1xD2jx=1+1An1αnj=1n1An2j1αnD2jxj=0n11An2j1αnD2jx=1+1An1αnAn2n11αnD2n1x1An1αnAn2αn+1An1αnj=1n11An2j11αnAn2j1αnD2jx. \begin{align} & {{\beta }_{1}}=1+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{j=0}^{{{n}_{1}}-1}{A_{n-{{2}^{j}}-1}^{{{\alpha }_{n}}}\left( {{D}_{{{2}^{j+1}}}}\left( x \right)-{{D}_{{{2}^{j}}}}\left( x \right) \right)} \\ & \,\,\,\,\,\,\,=1+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\left( \sum\limits_{j=1}^{{{n}_{1}}}{A_{n-{{2}^{j}}-1}^{{{\alpha }_{n}}}{{D}_{{{2}^{j}}}}\left( x \right)}-\sum\limits_{j=0}^{{{n}_{1}}-1}{A_{n-{{2}^{j}}-1}^{{{\alpha }_{n}}}{{D}_{{{2}^{j}}}}\left( x \right)} \right) \\ & \,\,\,\,\,\,\,=1+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}A_{n-{{2}^{{{n}_{1}}}}-1}^{{{\alpha }_{n}}}{{D}_{{{2}^{{{n}_{1}}}}}}\left( x \right)-\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}A_{n-2}^{{{\alpha }_{n}}} \\ & \,\,\,\,\,\,\,\,\,\,\,+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{j=1}^{{{n}_{1}}-1}{\left( A_{n-{{2}^{j-1}}-1}^{{{\alpha }_{n}}}-A_{n-{{2}^{j}}-1}^{{{\alpha }_{n}}} \right)}{{D}_{{{2}^{j}}}}\left( x \right). \\ \end{align} From this and (1.1) we get β1Cq+1An1αnj=1n11An2j11αnAn2j1αnCq+1An1αnAn2j11αnAn2j1αnCq. \begin{align} {\left\| {{\beta }_{1}} \right\|} \ & {\le {{C}_{q}}+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\sum\limits_{j=1}^{{{n}_{1}}-1}{\left( A_{n-{{2}^{j-1}}-1}^{{{\alpha }_{n}}}-A_{n-{{2}^{j}}-1}^{{{\alpha }_{n}}} \right)}} \\ {} & {\le {{C}_{q}}+\frac{1}{A_{n-1}^{{{\alpha }_{n}}}}\left( A_{n-{{2}^{j-1}}-1}^{{{\alpha }_{n}}}-A_{n-{{2}^{j}}-1}^{{{\alpha }_{n}}} \right)\le {{C}_{q}}.} \\ \end{align} Let us deal now with the situation β41 {{\left\| {{\beta }_{4}} \right\|}_{1}} , β51 {{\left\| {{\beta }_{5}} \right\|}_{1}} and β61 {{\left\| {{\beta }_{6}} \right\|}_{1}} as follows: β41Cqnαnk=2qAnk11αnCqnαnk=2q(nk1)αnCqnαnk=2q2nkαnCq. \begin{align} {{\left\| {{\beta }_{4}} \right\|}_{1}} \ & {\le {{C}_{q}}{{n}^{-{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{A_{{{n}^{\left( k-1 \right)}}-1}^{{{\alpha }_{n}}}\le {{C}_{q}}{{n}^{-{{\alpha }_{n}}}}}\sum\limits_{k=2}^{q}{{{({{n}^{\left( k-1 \right)}})}^{{{\alpha }_{n}}}}}} \\ {} & {\le {{C}_{q}}{{n}^{-{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{2}^{{{n}_{k}}{{\alpha }_{n}}}}\le {{C}_{q}}}.} \\ \end{align} Similarly, β5Cqnαnk=2q2nk(nk1)αn1K2nk11Cqnαnk=2q2nk2αn1nkCq. \begin{align} {\left\| {{\beta }_{5}} \right\|} \ & {\le {{C}_{q}}{{n}^{-{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{2}^{{{n}_{k}}}}{{({{n}^{\left( k-1 \right)}})}^{{{\alpha }_{n}}-1}}{{\left\| {{K}_{{{2}^{{{n}_{k}}}}-1}} \right\|}_{1}}}} \\{} & {\le {{C}_{q}}{{n}^{-{{\alpha }_{n}}}}\sum\limits_{k=2}^{q}{{{2}^{{{n}_{k}}}}\left( {{2}^{\left( {{\alpha }_{n}}-1 \right){{n}_{k}}}} \right)\le {{C}_{q}}}.} \\ \end{align} From (1.4), β61 {{\left\| {{\beta }_{6}} \right\|}_{1}} can be estimated as follows: β61Cnαnk=2rj=12nk2 Ank+j+1αn1jKj1Cnαn1An1αk=2rl=0nk1j=2l2l+11(nk+j)αn2jCnαnk=2rl=0nk1nk+2lαn2j=2l2l+11jCnαnk=2rl=0nk1nk+2lαn222lCnαnk=2rl=0nk12lαn222lCnαnk=2r2αnkCq. \begin{align} {{\left\| {{\beta }_{6}} \right\|}_{1}} & \le C{{n}^{-{{\alpha }_{n}}}}\sum\limits_{k=2}^{r}{\sum\limits_{j=1}^{{{2}^{{{n}_{k}}}}-2}{{}}}~A_{{{n}^{\left( k \right)}}+j+1}^{{{\alpha }_{n}}-1}j{{\left\| {{K}_{j}} \right\|}_{1}} \\ {} & \le C{{n}^{-{{\alpha }_{n}}}}\frac{1}{A_{n-1}^{\alpha }}\sum\limits_{k=2}^{r}{\sum\limits_{l=0}^{{{n}_{k}}-1}{\sum\limits_{j={{2}^{l}}}^{{{2}^{l+1}}-1}{{{({{n}^{\left( k \right)}}+j)}^{{{\alpha }_{n}}-2}}j}}} \\ {} & \le C{{n}^{-{{\alpha }_{n}}}}\sum\limits_{k=2}^{r}{\sum\limits_{l=0}^{{{n}_{k}}-1}{{{\left( {{n}^{\left( k \right)}}+{{2}^{l}} \right)}^{{{\alpha }_{n}}-2}}\sum\limits_{j={{2}^{l}}}^{{{2}^{l+1}}-1}{j}}} \\ {} & \le C{{n}^{-{{\alpha }_{n}}}}\sum\limits_{k=2}^{r}{\sum\limits_{l=0}^{{{n}_{k}}-1}{{{\left( {{n}^{\left( k \right)}}+{{2}^{l}} \right)}^{{{\alpha }_{n}}-2}}{{2}^{2l}}}} \\ {} & \le C{{n}^{-{{\alpha }_{n}}}}\sum\limits_{k=2}^{r}{\sum\limits_{l=0}^{{{n}_{k}}-1}{{{2}^{l\left( {{\alpha }_{n}}-2 \right)}}{{2}^{2l}}\le C{{n}^{-{{\alpha }_{n}}}}\sum\limits_{k=2}^{r}{{{2}^{\alpha {{n}_{k}}}}\le {{C}_{q}}}}}. \\\end{align} Thus, (I) follows. The results in (II) and (III) are a direct consequence of (I). Hence, the theorem follows.

Theorem 2.4.

Let α = (αn, n ∈ ℕ), where 0 < αn < 1 and fL1[0, 1). Then:

  • (I)

    the maximal operator supnαn,qσnαnf \text{su}{{\text{p}}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}}f \right| is of weak type (L1, L1),

  • (II)

    μ{σnαnff>0}=0 \mu \{\left| \sigma _{n}^{{{\alpha }_{n}}}f-f \right|>0\}=0 as n → ∞ where n ∈ ℕαn,q, where constant Cq depends on q indicated in equation (1.5) above.

Proof

To prove (I) of this theorem, we apply the Calderon–Zygmund decomposition Lemma [11]. That is, let fL1[0, 1) and f1<δ {{\left\| f \right\|}_{1}}<\delta . Then there is a decomposition: f=f0+j=1fj f={{f}_{0}}+\sum\limits_{j=1}^{\infty }{{{f}_{j}}} such that f0Cδ,f01Cf1 {{\left\| {{f}_{0}} \right\|}_{\infty }}\le C\delta ,\,\,\,\,\,\,~{{\left\| {{f}_{0}} \right\|}_{1}}\le C{{\left\| f \right\|}_{1}} and [0,1)j=Ikjuj {{[0,1)}^{j}}={{I}_{{{k}_{j}}}}\left( {{u}^{j}} \right) are disjoint intervals for which suppfjIkjuj,Ikjujfjdμ=0,uj0,1,kj,j+, \text{supp}\,{{f}_{j}}\subset {{I}_{{{k}_{j}}}}\left( {{u}^{j}} \right),\,\,\,\,\,\,\,\,\int_{{{I}_{{{k}_{j}}}}\left( {{u}^{j}} \right)}{{{f}_{j}}d\mu =0},\,\,\,\,\,{{u}^{j}}\in \left[ 0,1 \right),\,\,{{k}_{j}}\in \mathbb{N},\,\,j\in {{\mathbb{N}}_{+}}, and FCf1δ,whereF=i=1Ikjuj. \left| F \right|\le \frac{C\|f{{\|}_{1}}}{\delta },\,\,\,\,\,\,\text{where}\,\,F=\bigcup\limits_{i=1}^{\infty }{{{I}_{{{k}_{j}}}}\left( {{u}^{j}} \right)}.

By the σ-sublinearity of the maximal operator with an appropriate constant Cq we have μsupnα,qσnαnf>2Cqδμsupnαn,qσnαnf0>Cqδ+μsupnαn,qσnαnfj>Cqδ=:A+B. \mu \left( \underset{n\in {{\mathbb{N}}_{\alpha ,\,q}}}{\mathop{\sup }}\,\left| \sigma _{n}^{{{\alpha }_{n}}}f \right|>2{{C}_{q}}\delta \right)\le \mu \text{ }\!\!~\!\!\text{ }\left( \underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},\,q}}}{\mathop{\sup }}\,\left| \sigma _{n}^{{{\alpha }_{n}}}{{f}_{0}} \right|>{{C}_{q}}\delta \right)\text{ }\!\!~\!\!\text{ }+\mu \left( \underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},\,q}}}{\mathop{\sup }}\,\left| \sigma _{n}^{{{\alpha }_{n}}}{{f}_{j}} \right|>{{C}_{q}}\delta \right)=:A+B. Since supnαn,qσnαn \text{su}{{\text{p}}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}} \right| is of type (L, L), we have supnαn,qσnαnf0Cqf0Cqδ. \|\underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,\left| \sigma _{n}^{{{\alpha }_{n}}}{{f}_{0}} \right|{{\|}_{\infty }}\le {{C}_{q}}{{\left\| {{f}_{0}} \right\|}_{\infty }}\le {{C}_{q}}\delta . Then we have A = 0. The case for B becomes, B=μ(supnαn,qσnαnfj>Cqδ)F+μ(F¯[supnαn,qσnαnj=1fj>Cqδ])Cf1δ+Cqδj=10,1\Ikjujsupnαn,qσnαnfjdμ=:Cf1δ+Cqδj=1Nj, \begin{align} & B=\mu (\underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,\left| \sigma _{n}^{{{\alpha }_{n}}}{{f}_{j}} \right|>{{C}_{q}}\delta )\le \left| F \right|+\mu (\bar{F}\cap [\underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,\left| \sigma _{n}^{{{\alpha }_{n}}}\sum\limits_{j=1}^{\infty }{{{f}_{j}}} \right|>{{C}_{q}}\delta ]) \\ & \le \frac{C{{\left\| f \right\|}_{1}}}{\delta }+\frac{{{C}_{q}}}{\delta }\sum\limits_{j=1}^{\infty }{\int_{\left[ 0,1 \right)\backslash {{I}_{{{k}_{j}}}}\left( {{u}^{j}} \right)}{\underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,}\left| \sigma _{n}^{{{\alpha }_{n}}}{{f}_{j}} \right|d\mu =:\frac{C{{\left\| f \right\|}_{1}}}{\delta }+\frac{{{C}_{q}}}{\delta }\sum\limits_{j=1}^{\infty }{{{N}_{j}}}}, \\ \end{align} where Nj=0,1\Ikjujsupnαn,qσnαnfjdμ. {{N}_{j}}=\int_{\left[ 0,1 \right)\backslash {{I}_{{{k}_{j}}}}\left( {{u}^{j}} \right)}{\underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,}\left| \sigma _{n}^{{{\alpha }_{n}}}{{f}_{j}} \right|d\mu . From Lemma 2.2 we get Nj0,1\Ikjujsupnαn,qIkjujfjxΘnαny+xdμxdμyCqfj1. \begin{align} {{N}_{j}} & {\le \int_{\left[ 0,1 \right)\backslash {{I}_{{{k}_{j}}}}\left( {{u}^{j}} \right)}{\underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,\left| \int_{{{I}_{{{k}_{j}}}}\left( {{u}^{j}} \right)}{{{f}_{j}}\left( x \right)\Theta _{n}^{{{\alpha }_{n}}}\left( y+x \right)d\mu \left( x \right)} \right|d\mu \left( y \right)}} \\ {} & {\le {{C}_{q}}{{\left\| {{f}_{j}} \right\|}_{1}}.} \\ \end{align} Finally, we have μ(supnαn,qσnαnf>2Cqδ)Cqf1δ. \mu (\underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,\left| \sigma _{n}^{{{\alpha }_{n}}}f \right|>2{{C}_{q}}\delta )\le {{C}_{q}}\frac{{{\left\| f \right\|}_{1}}}{\delta }. This shows that the maximal operator supnαn,qσnαn \text{su}{{\text{p}}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}} \right| is of weak type (L1, L1).

Now, we prove (II). Let t ≥ 2k. Then we have Stp ≡ p, where p is a Walsh–Kaczmarz polynomial which can be given by px=i=02k1Ciψix. p\left( x \right)=\sum\limits_{i=0}^{{{2}^{k}}-1}{{{C}_{i}}{{\psi }_{i}}\left( x \right)}. This implies the statement σnαnpp \sigma _{n}^{{{\alpha }_{n}}}p\to p holds everywhere not only for nαn,q n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}} .

Now, fix η, ϵ > 0, fL1[0, 1). Let p be a one dimensional Walsh–Kaczmarz polynomial such that fp1<η. {{\left\| f-p \right\|}_{1}}<\eta .

Since from (I) the maximal operator supnα,qσnαn \text{su}{{\text{p}}_{n\in {{\mathbb{N}}_{\alpha ,q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}} \right| is of weak type (L1, L1), we get μlim¯nαn,qσnαnff>ϵμlim¯nαn,qσnαnfp>ϵ3+μlim¯nαn,qσnαnpp>ϵ3+μlim¯nαn,qpf>ϵ3μsupnαn,qσnαnfp>ϵ3+0+3ϵpf1Cqpf13ϵCqϵη. \begin{align} & \mu \left( {{\overline{\lim }}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},\,q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}}f-f \right|>\epsilon \right)\le \mu \left( {{\overline{\lim }}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},\,q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}}\left( f-p \right) \right|>\frac{\epsilon }{3} \right) \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,+\mu \left( {{\overline{\lim }}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},\,q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}}p-p \right|>\frac{\epsilon }{3} \right)+\mu \left( {{\overline{\lim }}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},\,q}}}}\left| p-f \right|>\frac{\epsilon }{3} \right) \\ & \le \mu \left( \underset{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,\left| \sigma _{n}^{{{\alpha }_{n}}}\left( f-p \right) \right|>\frac{\epsilon }{3} \right)+0+\frac{3}{\epsilon }{{\left\| p-f \right\|}_{1}}\le {{C}_{q}}{{\left\| p-f \right\|}_{1}}\frac{3}{\epsilon }\le \frac{{{C}_{q}}}{\epsilon }\eta . \\ \end{align} This is true for all η > 0.

Thus, we get μlim¯nαn,qσnαnff>ϵ=0, \mu \left( {{\overline{\lim }}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},\,q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}}f-f \right|>\epsilon \right)=0, for an arbitrary ϵ > 0. As a result, we have μlim¯nαn,qσnαnff>0=0. \mu \left( {{\overline{\lim }}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},\,q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}}f-f \right|>0 \right)=0. Finally, for all nαn,q n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}} , μσnαnff>0=0. \mu \left\{ \left| \sigma _{n}^{{{\alpha }_{n}}}f-f \right|>0 \right\}=0. Hence, the theorem follows.

Theorem 2.5.

The maximal operator supnαn,qσnαnf \text{su}{{\text{p}}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}}f \right| is of strong type (H1, L1) and (Lp, Lp), for all 1 < p ≤ ∞.

Proof

By combining Lemma 2.4 and Marcinkiewicz interpolation theorem of [13], it is possible to get that operator supnαn,qσnαnf \text{su}{{\text{p}}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}}f \right| is of type (Lp, Lp) for all 1 < p ≤ ∞. Moreover, by the σ-sublinearity of supnαn,qσnαnf \text{su}{{\text{p}}_{n\in {{\mathbb{N}}_{{{\alpha }_{n}},q}}}}\left| \sigma _{n}^{{{\alpha }_{n}}}f \right| and since σnαn \sigma _n^{{\alpha _n}} is Ak measurable for n < 2k, we prove that it is of type (H1, L1).

DOI: https://doi.org/10.2478/amsil-2025-0001 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 190 - 208
Submitted on: Dec 22, 2023
Accepted on: Jan 4, 2025
Published on: Jan 20, 2025
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2025 Anteneh Tilahun Adimasu, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.